1
|
Karal MAS, Billah MM, Nasrin T, Moniruzzaman M. Interaction of anionic Fe 3O 4 nanoparticles with lipid vesicles: a review on deformation and poration under various conditions. RSC Adv 2024; 14:25986-26001. [PMID: 39161454 PMCID: PMC11331399 DOI: 10.1039/d4ra05686h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024] Open
Abstract
This review focuses on the deformation and poration of lipid vesicles caused by the interaction of anionic magnetite nanoparticles (MNPs). Effects of various factors, such as surface charge density, salt and sugar concentrations in buffer, membrane cholesterol content, polymer-grafted phospholipid, and membrane potential have been discussed for the interaction of MNPs with lipid vesicles. To quantify these effects on the vesicles, compactness, fraction of deformation and poration, dynamics of membrane permeation, and kinetics of membrane permeation have been critically evaluated. The review explores the potential advancements as well as future directions of the research field in the biomedical application of MNPs.
Collapse
Affiliation(s)
- Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka 1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Md Masum Billah
- Department of Physics, Jashore University of Science and Technology Jashore 7408 Bangladesh +880-2-42142012 +880-242142046
| | - Tawfika Nasrin
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka 1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Md Moniruzzaman
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka 1000 Bangladesh +880-2-58613046 +880-2-9665613
| |
Collapse
|
2
|
Bhuiyan MTI, Karal MAS, Orchi US, Ahmed N, Moniruzzaman M, Ahamed MK, Billah MM. Probability and kinetics of rupture and electrofusion in giant unilamellar vesicles under various frequencies of direct current pulses. PLoS One 2024; 19:e0304345. [PMID: 38857287 PMCID: PMC11164401 DOI: 10.1371/journal.pone.0304345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
Irreversible electroporation induces permanent permeabilization of lipid membranes of vesicles, resulting in vesicle rupture upon the application of a pulsed electric field. Electrofusion is a phenomenon wherein neighboring vesicles can be induced to fuse by exposing them to a pulsed electric field. We focus how the frequency of direct current (DC) pulses of electric field impacts rupture and electrofusion in cell-sized giant unilamellar vesicles (GUVs) prepared in a physiological buffer. The average time, probability, and kinetics of rupture and electrofusion in GUVs have been explored at frequency 500, 800, 1050, and 1250 Hz. The average time of rupture of many 'single GUVs' decreases with the increase in frequency, whereas electrofusion shows the opposite trend. At 500 Hz, the rupture probability stands at 0.45 ± 0.02, while the electrofusion probability is 0.71 ± 0.01. However, at 1250 Hz, the rupture probability increases to 0.69 ± 0.03, whereas the electrofusion probability decreases to 0.46 ± 0.03. Furthermore, when considering kinetics, at 500 Hz, the rate constant of rupture is (0.8 ± 0.1)×10-2 s-1, and the rate constant of fusion is (2.4 ± 0.1)×10-2 s-1. In contrast, at 1250 Hz, the rate constant of rupture is (2.3 ± 0.8)×10-2 s-1, and the rate constant of electrofusion is (1.0 ± 0.1)×10-2 s-1. These results are discussed by considering the electrical model of the lipid bilayer and the energy barrier of a prepore.
Collapse
Affiliation(s)
| | | | - Urbi Shyamolima Orchi
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Nazia Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md. Moniruzzaman
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md. Kabir Ahamed
- Radiation, Transport and Waste Safety Division, Bangladesh Atomic Energy Regulatory Authority, Agargaon, Dhaka, Bangladesh
| | - Md. Masum Billah
- Department of Physics, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
3
|
Karal MAS, Billah MM, Ahamed MK. Determination of pore edge tension from the kinetics of rupture of giant unilamellar vesicles using the Arrhenius equation: effects of sugar concentration, surface charge and cholesterol. Phys Chem Chem Phys 2024; 26:6107-6117. [PMID: 38299672 DOI: 10.1039/d3cp04451c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The pore edge tension (Γ) of a membrane closely intertwines with membrane stability and plays a vital role in the mechanisms that facilitate membrane resealing following pore formation caused by electrical and mechanical tensions. We have explored a straightforward procedure to determine Γ by fitting the inverse of the tension-dependent logarithm of the rate constant of rupture of giant unilamellar vesicles (GUVs) using the Arrhenius equation. The GUVs were prepared using a combination of 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) and 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) in a physiological environment. The effects of sugar concentration, membrane surface charge density, and membrane cholesterol concentration on Γ have been investigated. The values of Γ increase with sugar concentration in the physiological buffer, measuring 9.6 ± 0.3, 10.4 ± 0.1, and 16.2 ± 0.1 pN for 40, 100, and 300 mM, respectively. A higher concentration of anionic lipids (70 mol% of DOPG) significantly reduces Γ. An increasing trend of Γ with cholesterol content was observed; specifically, the values of Γ were 11.9 ± 0.9, 13.9 ± 0.7, and 16.2 ± 0.4 pN for 15, 29, and 40 mol% cholesterol, respectively. Thus, the presence of higher anionic lipids in the bilayer led to a decrease in membrane stability. In contrast, the presence of higher sugar concentrations in the buffer and increased cholesterol concentration in the membranes enhanced membrane stability.
Collapse
Affiliation(s)
- Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh.
| | - Md Masum Billah
- Department of Physics, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Kabir Ahamed
- Radiation, Transport and Waste Safety Division, Bangladesh Atomic Energy Regulatory Authority, Agargaon, Dhaka 1207, Bangladesh
| |
Collapse
|
4
|
Wadud MA, Karal MAS, Moniruzzaman M, Rashid MMO. Effects of membrane potentials on the electroporation of giant unilamellar vesicles. PLoS One 2023; 18:e0291496. [PMID: 37699026 PMCID: PMC10497157 DOI: 10.1371/journal.pone.0291496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023] Open
Abstract
Living organisms maintain a resting membrane potential, which plays an important role in various biophysical and biological processes. In the context of medical applications, irreversible electroporation (IRE) is a non-thermal and minimally invasive technique that utilizes precisely controlled electric field pulses of micro- to millisecond durations to effectively ablate cancer and tumor cells. Previous studies on IRE-induced rupture of cell-mimetic giant unilamellar vesicles (GUVs) have primarily been conducted in the absence of membrane potentials. In this study, we investigated the electroporation of GUVs, including parameters such as the rate constant of rupture and the probability of rupture, in the presence of various negative membrane potentials. The membranes of GUVs were prepared using lipids and channel forming proteins. As the membrane potential increased from 0 to -90 mV, the rate constant of rupture showed a significant increase from (7.5 ± 1.6)×10-3 to (35.6 ± 5.5)×10-3 s-1. The corresponding probability of rupture also exhibited a notable increase from 0.40 ± 0.05 to 0.68 ± 0.05. To estimate the pore edge tension, the electric tension-dependent logarithm of the rate constant was fitted with the Arrhenius equation for different membrane potentials. The presence of membrane potential did not lead to any significant changes in the pore edge tension. The increase in electroporation is reasonably explained by the decrease in the prepore free energy barrier. The choice of buffer used in GUVs can significantly influence the kinetics of electroporation. This study provides valuable insights that can contribute to the application of electroporation techniques in the biomedical field.
Collapse
Affiliation(s)
- Md. Abdul Wadud
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | | | - Md. Moniruzzaman
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md. Mamun Or Rashid
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
5
|
Hasan S, Karal MAS, Akter S, Ahmed M, Ahamed MK, Ahammed S. Influence of sugar concentration on the vesicle compactness, deformation and membrane poration induced by anionic nanoparticles. PLoS One 2022; 17:e0275478. [PMID: 36174090 PMCID: PMC9521927 DOI: 10.1371/journal.pone.0275478] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
Sugar plays a vital role in the structural and functional characteristics of cells. Hence, the interaction of NPs with cell membranes in the presence of sugar concentrations is important for medicinal and pharmacological innovations. This study integrated three tools: giant unilamellar vesicles (GUVs), anionic magnetite nanoparticles (NPs), and sugar concentrations, to understand a simplified mechanism for interactions between the vesicle membranes and NPs under various sugar concentrations. We focused on changing the sugar concentration in aqueous solution; more precisely, sucrose inside the GUVs and glucose outside with equal osmolarity. 1,2-dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt) (DOPG) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were used to prepare the charged membranes of 40mole%DOPG/60mole%DOPC-GUVs, whereas only DOPC was used to prepare the neutral membranes. Phase contrast fluorescence microscopy shows that the adherence of 18 nm magnetite NPs with anionic charge depends on the sugar concentration. The alterations of GUVs induced by the NPs are characterized in terms of i) vesicle compactness, ii) deformation, and iii) membrane poration. The presence of sugar provides additional structural stability to the GUVs and reduces the effects of the NPs with respect to these parameters; more precisely, the higher the sugar concentration, the smaller the alteration induced by the NPs. The differences in NPs effects are explained by the change in the type of interaction between sugar molecules and lipid membranes, namely enthalpy and entropy-driven interaction, respectively. In addition, such alterations are influenced by the surface charge density of the lipid bilayer. The surface pressure of membranes due to the adsorption of NPs is responsible for inducing the poration in membranes. The differences in deformation and poration in charged and neutral GUVs under various sugar concentrations are discussed based on the structure of the head of lipid molecules.
Collapse
Affiliation(s)
- Sharif Hasan
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- * E-mail:
| | - Salma Akter
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md. Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- Radiation, Transport and Waste Safety Division, Bangladesh Atomic Energy Regulatory Authority, Dhaka, Bangladesh
| | - Shareef Ahammed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| |
Collapse
|
6
|
Sarkar MK, Karal MAS, Levadny V, Belaya M, Ahmed M, Ahamed MK, Ahammed S. Effects of sugar concentration on the electroporation, size distribution and average size of charged giant unilamellar vesicles. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:401-412. [PMID: 35716178 DOI: 10.1007/s00249-022-01607-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
We investigated the effects of sugar concentration on the electroporation, size distribution and average size of giant unilamellar vesicles (GUVs). GUVs were prepared from 40 mol% of 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) and 60 mol% of 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipids. Pulsed electric field was applied to the 40%DOPG/60%DOPC-GUVs and it induced lateral electric tension (σc) in the membranes of vesicles. The σc-induced probability of rupture (Ppore) and the rate constant of rupture (kp) of GUVs under the sugar concentration, c = 40, 100 and 300 mM, were determined. Both the Ppore and kp increased with the increase of σc, but higher tension was required to generate the same values of Ppore and kp with increasing c. We also investigated average sizes of GUVs from the size distribution of vesicles under various sugar concentrations. With the increase of c, the peak of the size distribution histograms shifted to the region of smaller vesicles. The average size decreased 1.6-fold when c increased from 10 to 300 mM. These investigations help to understand various biomedical, biophysical, and biochemical processes in vesicles and cells. Electroporation, size distribution and average size of charged GUVs were investigated under various sugar concentrations. The sugar concentration influences the electroporation of vesicles and the average size of GUVs.
Collapse
Affiliation(s)
- Malay Kumar Sarkar
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
- Department of Arts and Sciences, Ahsanullah University of Science and Technology, Dhaka, 1208, Bangladesh
| | - Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh.
| | - Victor Levadny
- Theoretical Problem Center of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 117977, Russia
| | - Marina Belaya
- Department of Mathematics, Russian State University for the Humanities, GSP-3, Moscow, 125993, Russia
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Md Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Shareef Ahammed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| |
Collapse
|
7
|
Ahamed MK, Ahmed M, Karal MAS. Quantification of pulsed electric field for the rupture of giant vesicles with various surface charges, cholesterols and osmotic pressures. PLoS One 2022; 17:e0262555. [PMID: 35025973 PMCID: PMC8757908 DOI: 10.1371/journal.pone.0262555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/28/2021] [Indexed: 12/02/2022] Open
Abstract
Electropermeabilization is a promising phenomenon that occurs when pulsed electric field with high frequency is applied to cells/vesicles. We quantify the required values of pulsed electric fields for the rupture of cell-sized giant unilamellar vesicles (GUVs) which are prepared under various surface charges, cholesterol contents and osmotic pressures. The probability of rupture and the average time of rupture are evaluated under these conditions. The electric field changes from 500 to 410 Vcm-1 by varying the anionic lipid mole fraction from 0 to 0.60 for getting the maximum probability of rupture (i.e., 1.0). In contrast, the same probability of rupture is obtained for changing the electric field from 410 to 630 Vcm-1 by varying the cholesterol mole fraction in the membranes from 0 to 0.40. These results suggest that the required electric field for the rupture decreases with the increase of surface charge density but increases with the increase of cholesterol. We also quantify the electric field for the rupture of GUVs containing anionic mole fraction of 0.40 under various osmotic pressures. In the absence of osmotic pressure, the electric field for the rupture is obtained 430 Vcm-1, whereas the field is 300 Vcm-1 in the presence of 17 mOsmL-1, indicating the instability of GUVs at higher osmotic pressures. These investigations open an avenue of possibilities for finding the electric field dependent rupture of cell-like vesicles along with the insight of biophysical and biochemical processes.
Collapse
Affiliation(s)
- Md. Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- * E-mail:
| |
Collapse
|
8
|
Karal MAS, Mokta NA, Levadny V, Belaya M, Ahmed M, Ahamed MK, Ahammed S. Effects of cholesterol on the size distribution and bending modulus of lipid vesicles. PLoS One 2022; 17:e0263119. [PMID: 35089965 PMCID: PMC8797199 DOI: 10.1371/journal.pone.0263119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/12/2022] [Indexed: 11/19/2022] Open
Abstract
The influence of cholesterol fraction in the membranes of giant unilamellar vesicles (GUVs) on their size distributions and bending moduli has been investigated. The membranes of GUVs were synthesized by a mixture of two elements: electrically neutral lipid 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol and also a mixture of three elements: electrically charged lipid 1,2-dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (DOPG), DOPC and cholesterol. The size distributions of GUVs have been presented by a set of histograms. The classical lognormal distribution is well fitted to the histograms, from where the average size of vesicle is obtained. The increase of cholesterol content in the membranes of GUVs increases the average size of vesicles in the population. Using the framework of Helmholtz free energy of the system, the theory developed by us is extended to explain the experimental results. The theory determines the influence of cholesterol on the bending modulus of membranes from the fitting of the proper histograms. The increase of cholesterol in GUVs increases both the average size of vesicles in population and the bending modulus of membranes.
Collapse
Affiliation(s)
- Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- * E-mail:
| | - Nadia Akter Mokta
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Victor Levadny
- Theoretical Problem Center of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Belaya
- Department of Mathematics of Russian State University for the Humanities, Moscow, Russia
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md. Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Shareef Ahammed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| |
Collapse
|
9
|
Karal MAS, Ahamed MK, Ahmed M, Mahbub ZB. Recent developments in the kinetics of ruptures of giant vesicles under constant tension. RSC Adv 2021; 11:29598-29619. [PMID: 35479542 PMCID: PMC9040846 DOI: 10.1039/d1ra04647k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023] Open
Abstract
External tension in membranes plays a vital role in numerous physiological and physicochemical phenomena. In this review, recent developments in the constant electric- and mechanical-tension-induced rupture of giant unilamellar vesicles (GUVs) are considered. We summarize the results relating to the kinetics of GUV rupture as a function of membrane surface charge, ions in the bathing solution, lipid composition, cholesterol content in the membrane, and osmotic pressure. The mechanical stability and line tension of the membrane under these conditions are discussed. The membrane tension due to osmotic pressure and the critical tension of rupture for various membrane compositions are also discussed. The results and their analysis provide a biophysical description of the kinetics of rupture, along with insight into biological processes. Future directions and possible developments in this research area are included.
Collapse
Affiliation(s)
- Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka-1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Md Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka-1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka-1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Zaid Bin Mahbub
- Department of Mathematics and Physics, North South University Dhaka-1229 Bangladesh
| |
Collapse
|
10
|
Karal MAS, Nasrin T, Ahmed M, Ahamed MK, Ahammed S, Akter S, Hasan S, Mahbub ZB. A new purification technique to obtain specific size distribution of giant lipid vesicles using dual filtration. PLoS One 2021; 16:e0254930. [PMID: 34324548 PMCID: PMC8321220 DOI: 10.1371/journal.pone.0254930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022] Open
Abstract
A new purification technique is developed for obtaining distribution of giant unilamellar vesicles (GUVs) within a specific range of sizes using dual filtration. The GUVs were prepared using well known natural swelling method. For filtration, different combinations of polycarbonate membranes were implemented in filter holders. In our experiment, the combinations of membranes were selected with corresponding pore sizes-(i) 12 and 10 μm, (ii) 12 and 8 μm, and (iii) 10 and 8 μm. By these filtration arrangements, obtained GUVs size distribution were in the ranges of 6-26 μm, 5-38 μm and 5-30 μm, respectively. In comparison, the size distribution range was much higher for single filtration technique, for example, 6-59 μm GUVs found for a membrane with 12 μm pores. Using this technique, the water-soluble fluorescent probe, calcein, can be removed from the suspension of GUVs successfully. The size distributions were analyzed with lognormal distribution. The skewness became smaller (narrow size distribution) when a dual filtration was used instead of single filtration. The mode of the size distribution obtained in dual filtration was also smaller to that of single filtration. By continuing this process of purification for a second time, the GUVs size distribution became even narrower. After using an extra filtration with dual filtration, two different size distributions of GUVs were obtained at a time. This experimental observation suggests that different size specific distributions of GUVs can be obtained easily, even if GUVs are prepared by different other methods.
Collapse
Affiliation(s)
| | - Tawfika Nasrin
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md. Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Shareef Ahammed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Salma Akter
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Sharif Hasan
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Zaid Bin Mahbub
- Department of Mathematics and Physics, North South University, Dhaka, Bangladesh
| |
Collapse
|
11
|
Galassi VV, Wilke N. On the Coupling between Mechanical Properties and Electrostatics in Biological Membranes. MEMBRANES 2021; 11:478. [PMID: 34203412 PMCID: PMC8306103 DOI: 10.3390/membranes11070478] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
Cell membrane structure is proposed as a lipid matrix with embedded proteins, and thus, their emerging mechanical and electrostatic properties are commanded by lipid behavior and their interconnection with the included and absorbed proteins, cytoskeleton, extracellular matrix and ionic media. Structures formed by lipids are soft, dynamic and viscoelastic, and their properties depend on the lipid composition and on the general conditions, such as temperature, pH, ionic strength and electrostatic potentials. The dielectric constant of the apolar region of the lipid bilayer contrasts with that of the polar region, which also differs from the aqueous milieu, and these changes happen in the nanometer scale. Besides, an important percentage of the lipids are anionic, and the rest are dipoles or higher multipoles, and the polar regions are highly hydrated, with these water molecules forming an active part of the membrane. Therefore, electric fields (both, internal and external) affects membrane thickness, density, tension and curvature, and conversely, mechanical deformations modify membrane electrostatics. As a consequence, interfacial electrostatics appears as a highly important parameter, affecting the membrane properties in general and mechanical features in particular. In this review we focus on the electromechanical behavior of lipid and cell membranes, the physicochemical origin and the biological implications, with emphasis in signal propagation in nerve cells.
Collapse
Affiliation(s)
- Vanesa Viviana Galassi
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza M5500, Argentina;
- Instituto Interdisciplinario de Ciencias Básicas (ICB), Universidad Nacional de Cuyo, CONICET, Mendoza M5500, Argentina
| | - Natalia Wilke
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Universidad Nacional de Córdoba, CONICET, Córdoba X5000HUA, Argentina
| |
Collapse
|
12
|
Sarkar MK, Karal MAS, Ahmed M, Ahamed MK, Ahammed S, Sharmin S, Shibly SUA. Effects of osmotic pressure on the irreversible electroporation in giant lipid vesicles. PLoS One 2021; 16:e0251690. [PMID: 33989363 PMCID: PMC8121316 DOI: 10.1371/journal.pone.0251690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023] Open
Abstract
Irreversible electroporation (IRE) is a nonthermal tumor/cell ablation technique in which a series of high-voltage short pulses are used. As a new approach, we aimed to investigate the rupture of giant unilamellar vesicles (GUVs) using the IRE technique under different osmotic pressures (Π), and estimated the membrane tension due to Π. Two categories of GUVs were used in this study. One was prepared with a mixture of dioleoylphosphatidylglycerol (DOPG), dioleoylphosphatidylcholine (DOPC) and cholesterol (chol) for obtaining more biological relevance while other with a mixture of DOPG and DOPC, with specific molar ratios. We determined the rate constant (kp) of rupture of DOPG/DOPC/chol (46/39/15)-GUVs and DOPG/DOPC (40/60)-GUVs induced by constant electric tension (σc) under different Π. The σc dependent kp values were fitted with a theoretical equation, and the corresponding membrane tension (σoseq) at swelling equilibrium under Π was estimated. The estimated membrane tension agreed well with the theoretical calculation within the experimental error. Interestingly, the values of σoseq were almost same for both types of synthesized GUVs under same osmotic pressure. We also examined the sucrose leakage, due to large osmotic pressure-induced pore formation, from the inside of DOPG/DOPC/chol(46/39/15)-GUVs. The estimated membrane tension due to large Π at which sucrose leaked out was very similar to the electric tension at which GUVs were ruptured without Π. We explained the σc and Π induced pore formation in the lipid membranes of GUVs.
Collapse
Affiliation(s)
- Malay Kumar Sarkar
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- Department of Arts and Sciences, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| | - Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- * E-mail:
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md. Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Shareef Ahammed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Sabrina Sharmin
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- Department of Arts and Sciences, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| | | |
Collapse
|
13
|
Ahmed M, Karal MAS, Ahamed MK, Ullah MS. Analysis of purification of charged giant vesicles in a buffer using their size distribution. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:62. [PMID: 33909146 DOI: 10.1140/epje/s10189-021-00071-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
We have analyzed the purification of charged giant unilamellar vesicles (GUVs) prepared in a buffer containing various concentrations of salt using their size distribution. The membranes of GUVs were synthesized by a mixture of dioleoylphosphocholine (DOPC) and dioleoylphosphatidylglycerol (DOPG) lipids. The DOPG mole fractions (X) in the membranes of GUVs were 0.10, 0.25, 0.40, 0.55, 0.70, 0.90 in a physiological buffer containing 162 mM salt. In addition, for a fixed value of X the concentrations of salt (C) in the buffer were 12, 62, 112, 162, 212, 312, 362 mM. The size distribution histograms of experimentally investigated unpurified and purified GUVs were fitted with the lognormal distribution and obtained the multiplication factor [Formula: see text] for mean ([Formula: see text]) and [Formula: see text] for standard deviation ([Formula: see text]) of the lognormal distribution. The key parameters [Formula: see text] and [Formula: see text] were responsible for changing the average size and size distribution of unpurified GUVs to purified ones. The theoretically fitting equation of experimentally obtained X- and C-dependent values of [Formula: see text] and [Formula: see text] provided the calibration equation for estimating the average size of purified GUVs theoretically for any values of X and C. The estimated size of purified GUVs increased with the increase in electrostatic effect (i.e., increase in vesicle surface charge density or decrease in salt concentration in buffer). The estimated size of purified GUVs varied with X and C, which supported the previous report qualitatively. These investigations might be helpful in the field of cell/chemical biology for understanding the process of purification of vesicles/cells investigated by any other techniques.
Collapse
Affiliation(s)
- Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh.
| | - Md Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Muhammad Samir Ullah
- Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| |
Collapse
|
14
|
Karal MAS, Ahamed MK, Orchi US, Towhiduzzaman M, Ahmed M, Ahammed S, Mokta NA, Ullah MS. An investigation into the critical tension of electroporation in anionic lipid vesicles. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:99-106. [PMID: 33245397 DOI: 10.1007/s00249-020-01477-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/15/2020] [Accepted: 11/08/2020] [Indexed: 01/08/2023]
Abstract
Irreversible electroporation (IRE) is a technique for the disruption of localized cells or vesicles by a series of short and high-frequency electric pulses which has been used for tissue ablation and treatment in certain diseases. It is well reported that IRE induces lateral tension in the membranes of giant unilamellar vesicles (GUVs). The GUVs are prepared by a mixture of anionic lipid dioleoylphosphatidylglycerol (DOPG) and neutral lipid dioleoylphosphatidylcholine (DOPC) using the natural swelling method. Here the influence of DOPG mole fraction, XDOPG, on the critical tension of electroporation in GUVs has been investigated in sodium chloride-containing PIPES buffer. The critical tension decreases from 9.0 ± 0.3 to 6.0 ± 0.2 mN/m with the increase of XDOPG from 0.0 to 0.60 in the membranes of GUVs. Hence an increase in XDOPG greatly decreases the mechanical stability of membranes. We develop a theoretical equation that fits the XDOPG dependent normalized critical tension, and obtain a binding constant for the lipid-ion interaction of 0.75 M-1. The decrease in the energy barrier for formation of the nano-size nascent or prepore state, due to the increase in XDOPG, is the main factor explaining the decrease in critical tension of electroporation in vesicles.
Collapse
Affiliation(s)
- Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh.
| | - Md Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Urbi Shyamolima Orchi
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Md Towhiduzzaman
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Shareef Ahammed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Nadia Akter Mokta
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Muhammad Samir Ullah
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| |
Collapse
|
15
|
Karal MAS, Ahamed MK, Mokta NA, Ahmed M, Ahammed S. Influence of cholesterol on electroporation in lipid membranes of giant vesicles. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:361-370. [PMID: 32535676 DOI: 10.1007/s00249-020-01443-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022]
Abstract
Irreversible electroporation (IRE) is primarily a nonthermal ablative technology that uses a series of high-voltage and ultra-short pulses with high-frequency electrical energy to induce cell death. This paper presents the influence of cholesterol on the IRE-induced probability of pore formation and the rate constant of pore formation in giant unilamellar vesicles (GUVs). The GUVs are prepared by a mixture of dioleoylphosphatidylglycerol (DOPG), dioleoylphosphatidylcholine (DOPC) and cholesterol using the natural swelling method. An IRE signal of frequency 1.1 kHz is applied to the membranes of GUVs. The probability of pore formation and the rate constant of pore formation events are obtained using statistical analysis from several single GUVs. The time-dependent fraction of intact GUVs among all those examined is fitted to a single exponential decay function from where the rate constant of pore formation is calculated. The probability of pore formation and the rate constant of pore formation decreases with an increase in cholesterol content in the membranes of GUVs. Theoretical equations are fitted to the tension-dependent rate constant of pore formation and to the probability of pore formation, which allows us to obtain the line tension of membranes. The obtained line tension increases with an increase in cholesterol in the membranes. The increase in the energy barrier of the prepore state, due to the increase of cholesterol in membranes, is the main factor explaining the decrease in the rate constant of pore formation.
Collapse
Affiliation(s)
- Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh.
| | - Md Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Nadia Akter Mokta
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Shareef Ahammed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| |
Collapse
|