1
|
Socrier L, Sharma A, Chen T, Flato K, Kettelhoit K, Enderlein J, Werz DB, Steinem C. Fluorophore position of headgroup-labeled Gb 3 glycosphingolipids in lipid bilayers. Biophys J 2023; 122:4104-4112. [PMID: 37735870 PMCID: PMC10598288 DOI: 10.1016/j.bpj.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
Fluorescent lipid probes are an invaluable tool for investigating lipid membranes. In particular, localizing certain receptor lipids such as glycosphingolipids within phase-separated membranes is of pivotal interest to understanding the influence of protein-receptor lipid binding on membrane organization. However, fluorescent labeling can readily alter the phase behavior of a lipid membrane because of the interaction of the fluorescent moiety with the membrane interface. Here, we investigated Gb3 glycosphingolipids, serving as receptor lipids for the protein Shiga toxin, with a headgroup attached BODIPY fluorophore separated by a polyethylene glycol (PEG) spacer of different lengths. We found that the diffusion coefficients of the fluorescently labeled Gb3 species in 1,2-dioleoyl-sn-glycero-3-phosphocholine/Gb3 (98:2, n/n) supported lipid bilayers are unaltered by the PEG spacer length. However, quenching as well as graphene-induced energy transfer experiments indicated that the length of the PEG spacer (n = 3 and n = 13) alters the position of the BODIPY fluorophore. In particular, the graphene-induced energy transfer technique provided accurate end-to-end distances between the fluorophores in the two leaflets of the bilayer thus enabling us to quantify the distance between the membrane interface and the fluorophore with sub-nanometer resolution. The spacer with three oligo ethylene glycol groups positioned the BODIPY fluorophore directly at the membrane interface favoring its interaction with the bilayer and thus may disturb lipid packing. However, the longer PEG spacer (n = 13) separated the BODIPY moiety from the membrane surface by 1.5 nm.
Collapse
Affiliation(s)
- Larissa Socrier
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Akshita Sharma
- III. Institute of Physics - Biophysics, Georg-August-Universität, Göttingen, Germany
| | - Tao Chen
- III. Institute of Physics - Biophysics, Georg-August-Universität, Göttingen, Germany
| | - Kira Flato
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Göttingen, Germany
| | | | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg-August-Universität, Göttingen, Germany
| | - Daniel B Werz
- Institute of Organic Chemistry, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Claudia Steinem
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany; Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Göttingen, Germany.
| |
Collapse
|
2
|
Ortiz-Soto ME, Baier M, Brenner D, Timm M, Seibel J. Single-mutations at the galactose-binding site of enzymes GalK, GalU, and LgtC enable the efficient synthesis of UDP-6-azido-6-deoxy-d-galactose and azido-functionalized Gb3 analogs. Glycobiology 2023; 33:651-660. [PMID: 37283491 DOI: 10.1093/glycob/cwad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023] Open
Abstract
Lysosomal accumulation of the glycosphingolipid globotriaosylceramide Gb3 is linked to the deficient activity of the α-galactosidase A in the Anderson-Fabry disease and an elevated level of deacylated Gb3 is a hallmark of this condition. Localization of Gb3 in the plasma membrane is critical for studying how the membrane organization and its dynamics are affected in this genetic disorder. Gb3 analogs containing a terminal 6-azido-functionalized galactose in its head group globotriose (αGal1, 4βGal1, and 4Glc) are attractive chemical reporters for bioimaging, as the azido-group may act as a chemical tag for bio-orthogonal click chemistry. We report here the production of azido-Gb3 analogs employing mutants of galactokinase, UTP-glucose-1-phosphate uridylyltransferase, and α-1,4-galactosyltransferase LgtC, which participate in the synthesis of the sugar motif globotriose. Variants of enzymes galactokinase/UTP-glucose-1-phosphate uridylyltransferase generate UDP-6-azido-6-deoxy-d-galactose, which is the galactosyl-donor used by LgtC for transferring the terminal galactose moiety to lactosyl-acceptors. Residues at the galactose-binding site of the 3 enzymes were modified to facilitate the accommodation of azido-functionalized substrates and variants outperforming the wild-type enzymes were characterized. Synthesis of 6-azido-6-deoxy-d-galactose-1-phosphate, UDP-6-azido-6-deoxy-d-galactose, and azido-Gb3 analogs by variants GalK-E37S, GalU-D133V, and LgtC-Q187S, respectively, is 3-6-fold that of their wild-type counterparts. Coupled reactions with these variants permit the production of the pricy, unnatural galactosyl-donor UDP-6-azido-6-deoxy-d-galactose with ~90% conversion yields, and products azido-globotriose and lyso-AzGb3 with substrate conversion of up to 70%. AzGb3 analogs could serve as precursors for the synthesis of other tagged glycosphingolipids of the globo-series.
Collapse
Affiliation(s)
- Maria E Ortiz-Soto
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| | - Makarius Baier
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| | - Daniela Brenner
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| | - Malte Timm
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| | - Jürgen Seibel
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
3
|
Socrier L, Ahadi S, Bosse M, Montag C, Werz DB, Steinem C. Optical Manipulation of Gb 3 Enriched Lipid Domains: Impact of Isomerization on Gb 3 -Shiga Toxin B Interaction. Chemistry 2023; 29:e202202766. [PMID: 36279320 PMCID: PMC10099549 DOI: 10.1002/chem.202202766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 11/06/2022]
Abstract
The plasma membrane is a complex assembly of proteins and lipids that can self-assemble in submicroscopic domains commonly termed "lipid rafts", which are implicated in membrane signaling and trafficking. Recently, photo-sensitive lipids were introduced to study membrane domain organization, and photo-isomerization was shown to trigger the mixing and de-mixing of liquid-ordered (lo ) domains in artificial phase-separated membranes. Here, we synthesized globotriaosylceramide (Gb3 ) glycosphingolipids that harbor an azobenzene moiety at different positions of the fatty acid to investigate light-induced membrane domain reorganization, and that serve as specific receptors for the protein Shiga toxin (STx). Using phase-separated supported lipid bilayers on mica surfaces doped with four different photo-Gb3 molecules, we found by fluorescence microscopy and atomic force microscopy that liquid disordered (ld ) domains were formed within lo domains upon trans-cis photo-isomerization. The fraction and size of these ld domains were largest for Gb3 molecules with the azobenzene group at the end of the fatty acid. We further investigated the impact of domain reorganization on the interaction of the B-subunits of STx with the photo-Gb3 . Fluorescence and atomic force micrographs clearly demonstrated that STxB binds to the lo phase if Gb3 is in the trans-configuration, whereas two STxB populations are formed if the photo-Gb3 is switched to the cis-configuration highlighting the idea of manipulating lipid-protein interactions with a light stimulus.
Collapse
Affiliation(s)
- Larissa Socrier
- Max Planck Institute for Dynamics and Self-OrganizationAm Faßberg 1737077GöttingenGermany
- Institute of Organic and Biomolecular ChemistryGeorg-August-UniversitätTammannstraße 237077GöttingenGermany
| | - Somayeh Ahadi
- Institute of Organic ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Mathias Bosse
- Institute for Medical Physics and BiophysicsUniversity of LeipzigHärtelstraße 16–1804107LeipzigGermany
| | - Cindy Montag
- Institute for Medical Physics and BiophysicsUniversity of LeipzigHärtelstraße 16–1804107LeipzigGermany
| | - Daniel B. Werz
- Institute of Organic ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstraße 2179104FreiburgGermany
| | - Claudia Steinem
- Max Planck Institute for Dynamics and Self-OrganizationAm Faßberg 1737077GöttingenGermany
- Institute of Organic and Biomolecular ChemistryGeorg-August-UniversitätTammannstraße 237077GöttingenGermany
| |
Collapse
|
4
|
Socrier L, Bail C, Ackermann E, Beresowski AK, Ahadi S, Werz DB, Steinem C. The Interaction of Gb 3 Glycosphingolipids with ld and lo Phase Lipids in Lipid Monolayers Is a Function of Their Fatty Acids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5874-5882. [PMID: 35439015 DOI: 10.1021/acs.langmuir.2c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The glycosphingolipid Gb3 is a specific receptor of the bacterial Shiga toxin (STx). Binding of STx to Gb3 is a prerequisite for its internalization into the host cells, and the ceramide's fatty acid of Gb3 has been shown to influence STx binding. In in vitro studies on liquid ordered (lo)/liquid disordered (ld) coexisting artificial membranes, Shiga toxin B (STxB) binds solely to lo domains, thus harboring Gb3 concomitant with an observed lipid redistribution process. These findings raise the question of how the molecular structure of the fatty acid of Gb3 influences the interaction of Gb3 with the different lipids preferentially either found in the lo phase, namely, sphingomyelin and cholesterol, or in the ld phase. We addressed this question by using a series of synthetically available and unlabeled Gb3 glycosphingolipids carrying different long chain C24 fatty acids (saturated, monounsaturated, and α-hydroxylated). In conjunction with surface tension experiments on Langmuir monolayers, we quantified the excess of free energy of mixing of the different Gb3 species in monolayers composed of either sphingomyelin or cholesterol or composed of a fluid phase lipid (DOPC). From a calculation of the total free energy of mixing, we conclude that mixing of the saturated Gb3 species with the ld lipid DOPC is energetically less favorable than all other combinations, while the unsaturated species mix equally well with the lo phase lipids sphingomyelin and cholesterol and the ld phase lipid DOPC. Furthermore, we found that STxB partially penetrates in mixed lipid monolayers (DOPC/sphingomyelin/cholesterol) containing the Gb3 sphingolipid with a saturated or a monounsaturated C24 fatty acid. The maximum insertion pressure, as a measure for protein insertion, is >30 mN/m for both Gb3 molecules and is not significantly different for the two Gb3 species.
Collapse
Affiliation(s)
- Larissa Socrier
- Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany
| | - Céline Bail
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany
| | - Elena Ackermann
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany
| | - Ann-Kathrin Beresowski
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany
| | - Somayeh Ahadi
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel B Werz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Claudia Steinem
- Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Prakash G, Paul N, Oliver GA, Werz DB, Maiti D. C-H deuteration of organic compounds and potential drug candidates. Chem Soc Rev 2022; 51:3123-3163. [PMID: 35320331 DOI: 10.1039/d0cs01496f] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
C-H deuteration has been intricately developed to satisfy the urgent need for site-selectively deuterated organic frameworks. Deuteration has been primarily used to study kinetic isotope effects of reactions but recently its significance in pharmaceutical chemistry has been discovered. Deuterium labelled compounds have stolen the limelight since the inception of the first FDA-approved deuterated drug, for the treatment of chorea-associated Huntington's disease, and their pharmacological importance was realised by chemists, although surprisingly very late. Various approaches were developed to carry out site-selective deuteration. However, the most common and efficient method is hydrogen isotope exchange (HIE). This review summarises deuteration methods of various organic motifs containing C(sp2)-H and C(sp3)-H bonds utilizing C-H bond functionalisation as a key step along with a variety of catalysts, and exemplifies their biological relevance.
Collapse
Affiliation(s)
- Gaurav Prakash
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| | - Nilanjan Paul
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| | - Gwyndaf A Oliver
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany.
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany.
| | - Debabrata Maiti
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
6
|
Aly MRE, Azab IHE. Synthesis of a Deuterium-Labeled Globotriaosylceramide Probe for Potential Imaging of Subcellular Localization of Gb3 Using NanoSIMS. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Lingwood C. Therapeutic Uses of Bacterial Subunit Toxins. Toxins (Basel) 2021; 13:toxins13060378. [PMID: 34073185 PMCID: PMC8226680 DOI: 10.3390/toxins13060378] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
The B subunit pentamer verotoxin (VT aka Shiga toxin-Stx) binding to its cellular glycosphingolipid (GSL) receptor, globotriaosyl ceramide (Gb3) mediates internalization and the subsequent receptor mediated retrograde intracellular traffic of the AB5 subunit holotoxin to the endoplasmic reticulum. Subunit separation and cytosolic A subunit transit via the ER retrotranslocon as a misfolded protein mimic, then inhibits protein synthesis to kill cells, which can cause hemolytic uremic syndrome clinically. This represents one of the most studied systems of prokaryotic hijacking of eukaryotic biology. Similarly, the interaction of cholera AB5 toxin with its GSL receptor, GM1 ganglioside, is the key component of the gastrointestinal pathogenesis of cholera and follows the same retrograde transport pathway for A subunit cytosol access. Although both VT and CT are the cause of major pathology worldwide, the toxin–receptor interaction is itself being manipulated to generate new approaches to control, rather than cause, disease. This arena comprises two areas: anti neoplasia, and protein misfolding diseases. CT/CTB subunit immunomodulatory function and anti-cancer toxin immunoconjugates will not be considered here. In the verotoxin case, it is clear that Gb3 (and VT targeting) is upregulated in many human cancers and that there is a relationship between GSL expression and cancer drug resistance. While both verotoxin and cholera toxin similarly hijack the intracellular ERAD quality control system of nascent protein folding, the more widespread cell expression of GM1 makes cholera the toxin of choice as the means to more widely utilise ERAD targeting to ameliorate genetic diseases of protein misfolding. Gb3 is primarily expressed in human renal tissue. Glomerular endothelial cells are the primary VT target but Gb3 is expressed in other endothelial beds, notably brain endothelial cells which can mediate the encephalopathy primarily associated with VT2-producing E. coli infection. The Gb3 levels can be regulated by cytokines released during EHEC infection, which complicate pathogenesis. Significantly Gb3 is upregulated in the neovasculature of many tumours, irrespective of tumour Gb3 status. Gb3 is markedly increased in pancreatic, ovarian, breast, testicular, renal, astrocytic, gastric, colorectal, cervical, sarcoma and meningeal cancer relative to the normal tissue. VT has been shown to be effective in mouse xenograft models of renal, astrocytoma, ovarian, colorectal, meningioma, and breast cancer. These studies are herein reviewed. Both CT and VT (and several other bacterial toxins) access the cell cytosol via cell surface ->ER transport. Once in the ER they interface with the protein folding homeostatic quality control pathway of the cell -ERAD, (ER associated degradation), which ensures that only correctly folded nascent proteins are allowed to progress to their cellular destinations. Misfolded proteins are translocated through the ER membrane and degraded by cytosolic proteosome. VT and CT A subunits have a C terminal misfolded protein mimic sequence to hijack this transporter to enter the cytosol. This interface between exogenous toxin and genetically encoded endogenous mutant misfolded proteins, provides a new therapeutic basis for the treatment of such genetic diseases, e.g., Cystic fibrosis, Gaucher disease, Krabbe disease, Fabry disease, Tay-Sachs disease and many more. Studies showing the efficacy of this approach in animal models of such diseases are presented.
Collapse
Affiliation(s)
- Clifford Lingwood
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Departments of Laboratory Medicine & Pathobiology, and Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
8
|
Special issue: Multicomponent lipid membranes-how molecular organisation leads to function. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:107-108. [PMID: 33860333 PMCID: PMC8071790 DOI: 10.1007/s00249-021-01535-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|