1
|
Zhou L, Yang X, Wang X, Feng L, Wang Z, Dai J, Zhang H, Xie Y. Effects of bacterial inoculation on lignocellulose degradation and microbial properties during cow dung composting. Bioengineered 2023; 14:213-228. [PMID: 37471462 PMCID: PMC10599258 DOI: 10.1080/21655979.2023.2185945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 07/22/2023] Open
Abstract
Inoculation with exogenous microbial agents is a common method to promote organic waste degradation and improve the quality of compost. However, the biotic effects of different microbial agents are often quite different. To evaluate the potential effects of a complex bacterial agent comprised of three strains (belonging to Bacillus and Geobacillus) on lignocellulose degradation and the underlying microbial mechanisms during cow dung composting, two lab-scale composting experiments, a control and a bacterial inoculation treatment, were established. The results suggest that bacterial inoculation accelerated the rate of temperature increase and extended the thermophilic phase. Compared to those in the negative control group, cellulose, hemicellulose, and lignin degradation rates in the inoculated group increased from 53.3% to 70.0%, 50.2% to 61.3%, and 46.4% to 60.0%, respectively. The microbial community structure and diversity in the compost were clearly changed by the bacterial inoculation. Moreover, stamp analysis showed that inoculation modulated the key compost microbial functional populations linked to the degradation of lignocellulose. Correlation matrix analysis indicated that the expression of bacterial lignocellulolytic enzymes is closely related to key microbial functional populations. Overall, the results confirm the importance of bacterial inoculation, and have important implications for promoting the efficiency and quality of cow dung compost.
Collapse
Affiliation(s)
- Liuyan Zhou
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi, XinjiangPR China
- Xinjiang Key Laboratory of Special Environmental Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, PR China
| | - Xinping Yang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi, XinjiangPR China
- Xinjiang Key Laboratory of Special Environmental Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, PR China
| | - Xiaowu Wang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi, XinjiangPR China
- Xinjiang Key Laboratory of Special Environmental Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, PR China
| | - Lei Feng
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi, XinjiangPR China
- Xinjiang Key Laboratory of Special Environmental Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, PR China
| | - Zhifang Wang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi, XinjiangPR China
- Xinjiang Key Laboratory of Special Environmental Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, PR China
| | - Jinping Dai
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi, XinjiangPR China
- Xinjiang Key Laboratory of Special Environmental Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, PR China
| | - Huitao Zhang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi, XinjiangPR China
- Xinjiang Key Laboratory of Special Environmental Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, PR China
| | - Yuqing Xie
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi, XinjiangPR China
- Xinjiang Key Laboratory of Special Environmental Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, PR China
| |
Collapse
|
2
|
Dps-dependent in vivo mutation enhances long-term host adaptation in Vibrio cholerae. PLoS Pathog 2023; 19:e1011250. [PMID: 36928244 PMCID: PMC10104298 DOI: 10.1371/journal.ppat.1011250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/14/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
As one of the most successful pathogenic organisms, Vibrio cholerae (V. cholerae) has evolved sophisticated regulatory mechanisms to overcome host stress. During long-term colonization by V. cholerae in adult mice, many spontaneous nonmotile mutants (approximately 10% at the fifth day post-infection) were identified. These mutations occurred primarily in conserved regions of the flagellar regulator genes flrA, flrC, and rpoN, as shown by Sanger and next-generation sequencing, and significantly increased fitness during colonization in adult mice. Intriguingly, instead of key genes in DNA repair systems (mutS, nfo, xthA, uvrA) or ROS and RNS scavenging systems (katG, prxA, hmpA), which are generally thought to be associated with bacterial mutagenesis, we found that deletion of the cyclin gene dps significantly increased the mutation rate (up to 53% at the fifth day post-infection) in V. cholerae. We further determined that the dpsD65A and dpsF46E point mutants showed a similar mutagenesis profile as the Δdps mutant during long-term colonization in mice, which strongly indicated that the antioxidative function of Dps directly contributes to the development of V. cholerae nonmotile mutants. Methionine metabolism pathway may be one of the mechanism for ΔflrA, ΔflrC and ΔrpoN mutant increased colonization in adult mice. Our results revealed a new phenotype in which V. cholerae fitness increases in the host gut via spontaneous production nonmotile mutants regulated by cyclin Dps, which may represent a novel adaptation strategy for directed evolution of pathogens in the host.
Collapse
|
3
|
Guerra JPL, Blanchet CE, Vieira BJC, Waerenborgh JC, Jones NC, Hoffmann SV, Pereira AS, Tavares P. Controlled modulation of the dynamics of the Deinococcus grandis Dps N-terminal tails by divalent metals. Protein Sci 2023; 32:e4567. [PMID: 36658780 PMCID: PMC9885476 DOI: 10.1002/pro.4567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023]
Abstract
DNA-binding proteins from starved cells (Dps) are small multifunctional nanocages expressed by prokaryotes in acute oxidative stress conditions or during the starvation-induced stationary phase, as a bacterial defense mechanism. Dps proteins protect bacterial DNA from damage by either direct binding or by removing precursors of reactive oxygen species from solution. The DNA-binding properties of most Dps proteins studied so far are related to their unordered, flexible, N- and C-terminal extensions. In a previous work, we revealed that the N-terminal tails of Deinoccocus grandis Dps shift from an extended to a compact conformation depending on the ionic strength of the buffer and detected a novel high-spin ferrous iron center in the proximal ends of those tails. In this work, we further explore the conformational dynamics of the protein by probing the effect of divalent metals binding to the tail by comparing the metal-binding properties of the wild-type protein with a binding site-impaired D34A variant using size exclusion chromatography, dynamic light scattering, synchrotron radiation circular dichroism, and small-angle X-ray scattering. The N-terminal ferrous species was also characterized by Mössbauer spectroscopy. The results herein presented reveal that the conformation of the N-terminal tails is altered upon metal binding in a gradual, reversible, and specific manner. These observations may point towards the existence of a regulatory process for the DNA-binding properties of Dps proteins through metal binding to their N- and/or C-terminal extensions.
Collapse
Affiliation(s)
- João P. L. Guerra
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology | FCT NOVAUniversidade NOVA de LisboaCaparicaPortugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology | FCT NOVAUniversidade NOVA de LisboaCaparicaPortugal
| | | | - Bruno J. C. Vieira
- Centro de Ciências e Tecnologias Nucleares, DECN, Instituto Superior TécnicoUniversidade de LisboaBobadela LRSPortugal
| | - João C. Waerenborgh
- Centro de Ciências e Tecnologias Nucleares, DECN, Instituto Superior TécnicoUniversidade de LisboaBobadela LRSPortugal
| | - Nykola C. Jones
- ISA, Department of Physics and AstronomyAarhus UniversityAarhusDenmark
| | | | - Alice S. Pereira
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology | FCT NOVAUniversidade NOVA de LisboaCaparicaPortugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology | FCT NOVAUniversidade NOVA de LisboaCaparicaPortugal
| | - Pedro Tavares
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology | FCT NOVAUniversidade NOVA de LisboaCaparicaPortugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology | FCT NOVAUniversidade NOVA de LisboaCaparicaPortugal
| |
Collapse
|
4
|
Condensation and Protection of DNA by the Myxococcus xanthus Encapsulin: A Novel Function. Int J Mol Sci 2022; 23:ijms23147829. [PMID: 35887179 PMCID: PMC9321382 DOI: 10.3390/ijms23147829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Encapsulins are protein nanocages capable of harboring smaller proteins (cargo proteins) within their cavity. The function of the encapsulin systems is related to the encapsulated cargo proteins. The Myxococcus xanthus encapsulin (EncA) naturally encapsulates ferritin-like proteins EncB and EncC as cargo, resulting in a large iron storage nanocompartment, able to accommodate up to 30,000 iron atoms per shell. In the present manuscript we describe the binding and protection of circular double stranded DNA (pUC19) by EncA using electrophoretic mobility shift assays (EMSA), atomic force microscopy (AFM), and DNase protection assays. EncA binds pUC19 with an apparent dissociation constant of 0.3 ± 0.1 µM and a Hill coefficient of 1.4 ± 0.1, while EncC alone showed no interaction with DNA. Accordingly, the EncAC complex displayed a similar DNA binding capacity as the EncA protein. The data suggest that initially, EncA converts the plasmid DNA from a supercoiled to a more relaxed form with a beads-on-a-string morphology. At higher concentrations, EncA self-aggregates, condensing the DNA. This process physically protects DNA from enzymatic digestion by DNase I. The secondary structure and thermal stability of EncA and the EncA-pUC19 complex were evaluated using synchrotron radiation circular dichroism (SRCD) spectroscopy. The overall secondary structure of EncA is maintained upon interaction with pUC19 while the melting temperature of the protein (Tm) slightly increased from 76 ± 1 °C to 79 ± 1 °C. Our work reports, for the first time, the in vitro capacity of an encapsulin shell to interact and protect plasmid DNA similarly to other protein nanocages that may be relevant in vivo.
Collapse
|
5
|
The Conformation of the N-Terminal Tails of Deinococcus grandis Dps Is Modulated by the Ionic Strength. Int J Mol Sci 2022; 23:ijms23094871. [PMID: 35563263 PMCID: PMC9103930 DOI: 10.3390/ijms23094871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
DNA-binding proteins from starved cells (Dps) are homododecameric nanocages, with N- and C-terminal tail extensions of variable length and amino acid composition. They accumulate iron in the form of a ferrihydrite mineral core and are capable of binding to and compacting DNA, forming low- and high-order condensates. This dual activity is designed to protect DNA from oxidative stress, resulting from Fenton chemistry or radiation exposure. In most Dps proteins, the DNA-binding properties stem from the N-terminal tail extensions. We explored the structural characteristics of a Dps from Deinococcus grandis that exhibits an atypically long N-terminal tail composed of 52 residues and probed the impact of the ionic strength on protein conformation using size exclusion chromatography, dynamic light scattering, synchrotron radiation circular dichroism and small-angle X-ray scattering. A novel high-spin ferrous iron-binding site was identified in the N-terminal tails, using Mössbauer spectroscopy. Our data reveals that the N-terminal tails are structurally dynamic and alter between compact and extended conformations, depending on the ionic strength of the buffer. This prompts the search for other physiologically relevant modulators of tail conformation and hints that the DNA-binding properties of Dps proteins may be affected by external factors.
Collapse
|
7
|
England P, Jowitt TA. Community-building and promotion of technological excellence in molecular biophysics: the ARBRE-MOBIEU network. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:307-311. [PMID: 34057541 DOI: 10.1007/s00249-021-01550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Patrick England
- Molecular Biophysics Facility, Institut Pasteur, 25-28 rue du Docteur Roux, 75724, Paris cedex 15, France.
| | - Thomas A Jowitt
- Biomolecular Analysis Core Facility, Faculty of Biology Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|