1
|
van Gunsteren WF, Oostenbrink C. Methods for Classical-Mechanical Molecular Simulation in Chemistry: Achievements, Limitations, Perspectives. J Chem Inf Model 2024; 64:6281-6304. [PMID: 39136351 DOI: 10.1021/acs.jcim.4c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
More than a half century ago it became feasible to simulate, using classical-mechanical equations of motion, the dynamics of molecular systems on a computer. Since then classical-physical molecular simulation has become an integral part of chemical research. It is widely applied in a variety of branches of chemistry and has significantly contributed to the development of chemical knowledge. It offers understanding and interpretation of experimental results, semiquantitative predictions for measurable and nonmeasurable properties of substances, and allows the calculation of properties of molecular systems under conditions that are experimentally inaccessible. Yet, molecular simulation is built on a number of assumptions, approximations, and simplifications which limit its range of applicability and its accuracy. These concern the potential-energy function used, adequate sampling of the vast statistical-mechanical configurational space of a molecular system and the methods used to compute particular properties of chemical systems from statistical-mechanical ensembles. During the past half century various methodological ideas to improve the efficiency and accuracy of classical-physical molecular simulation have been proposed, investigated, evaluated, implemented in general simulation software or were abandoned. The latter because of fundamental flaws or, while being physically sound, computational inefficiency. Some of these methodological ideas are briefly reviewed and the most effective methods are highlighted. Limitations of classical-physical simulation are discussed and perspectives are sketched.
Collapse
Affiliation(s)
- Wilfred F van Gunsteren
- Institute for Molecular Physical Science, Swiss Federal Institute of Technology, ETH, CH-8093 Zurich, Switzerland
| | - Chris Oostenbrink
- Institute of Molecular Modelling and Simulation, BOKU University, 1190 Vienna, Austria
- Christian Doppler Laboratory for Molecular Informatics in the Biosciences, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
2
|
Tandiana R, Barletta GP, Soler MA, Fortuna S, Rocchia W. Computational Mutagenesis of Antibody Fragments: Disentangling Side Chains from ΔΔ G Predictions. J Chem Theory Comput 2024; 20:2630-2642. [PMID: 38445482 DOI: 10.1021/acs.jctc.3c01225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The development of highly potent antibodies and antibody fragments as binding agents holds significant implications in fields such as biosensing and biotherapeutics. Their binding strength is intricately linked to the arrangement and composition of residues at the binding interface. Computational techniques offer a robust means to predict the three-dimensional structure of these complexes and to assess the affinity changes resulting from mutations. Given the interdependence of structure and affinity prediction, our objective here is to disentangle their roles. We aim to evaluate independently six side-chain reconstruction methods and ten binding affinity estimation techniques. This evaluation was pivotal in predicting affinity alterations due to single mutations, a key step in computational affinity maturation protocols. Our analysis focuses on a data set comprising 27 distinct antibody/hen egg white lysozyme complexes, each with crystal structures and experimentally determined binding affinities. Using six different side-chain reconstruction methods, we transformed each structure into its corresponding mutant via in silico single-point mutations. Subsequently, these structures undergo minimization and molecular dynamics simulation. We therefore estimate ΔΔG values based on the original crystal structure, its energy-minimized form, and the ensuing molecular dynamics trajectories. Our research underscores the critical importance of selecting reliable side-chain reconstruction methods and conducting thorough molecular dynamics simulations to accurately predict the impact of mutations. In summary, our study demonstrates that the integration of conformational sampling and scoring is a potent approach to precisely characterizing mutation processes in single-point mutagenesis protocols and crucial for computational antibody design.
Collapse
Affiliation(s)
- Rika Tandiana
- Computational MOdelling of NanosCalE and BioPhysical SysTems─CONCEPT Lab Istituto Italiano di Tecnologia (IIT), Via Melen-83, B Block, 16152 Genoa, Italy
| | - German P Barletta
- Computational MOdelling of NanosCalE and BioPhysical SysTems─CONCEPT Lab Istituto Italiano di Tecnologia (IIT), Via Melen-83, B Block, 16152 Genoa, Italy
- The Abdus Salam International Centre for Theoretical Physics─ICTP, Strada Costiera 11, 34151 Trieste, Italy
| | - Miguel Angel Soler
- Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Universita' di Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Sara Fortuna
- Computational MOdelling of NanosCalE and BioPhysical SysTems─CONCEPT Lab Istituto Italiano di Tecnologia (IIT), Via Melen-83, B Block, 16152 Genoa, Italy
| | - Walter Rocchia
- Computational MOdelling of NanosCalE and BioPhysical SysTems─CONCEPT Lab Istituto Italiano di Tecnologia (IIT), Via Melen-83, B Block, 16152 Genoa, Italy
| |
Collapse
|
3
|
Xie D, Han K, Jiang Q, Xie S, Zhou J, Zhang Y, Xu J, He Y, Zhao P, Yang X. Design, synthesis, and inhibitory activity of hydroquinone ester derivatives against mushroom tyrosinase. RSC Adv 2024; 14:6085-6095. [PMID: 38370459 PMCID: PMC10870825 DOI: 10.1039/d4ra00007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024] Open
Abstract
Tyrosinase is a widely distributed copper-containing enzyme found in various organisms, playing a crucial role in the process of melanin production. Inhibiting its activity can reduce skin pigmentation. Hydroquinone is an efficient inhibitor of tyrosinase, but its safety has been a subject of debate. In this research, a scaffold hybridization strategy was employed to synthesize a series of hydroquinone-benzoyl ester analogs (3a-3g). The synthesized compounds were evaluated for their inhibitory activity against mushroom tyrosinase (mTyr). The results revealed that these hydroquinone-benzoyl ester analogs exhibited inhibitory activity against mTyr, with compounds 3a-3e displaying higher activity, with compound 3b demonstrating the highest potency (IC50 = 0.18 ± 0.06 μM). Kinetic studies demonstrated that the inhibition of mTyr by compounds 3a-3e was reversible, although their inhibition mechanisms varied. Compounds 3a and 3c exhibited non-competitive inhibition, while 3b displayed mixed inhibition, and 3d and 3e showed competitive inhibition. UV spectroscopy analysis indicated that none of these compounds chelated with copper ions in the active center of the enzyme. Molecular docking simulations and molecular dynamics studies revealed that compounds 3a-3e could access the active pocket of mTyr and interact with amino acid residues in the active site. These interactions influenced the conformational flexibility of the receptor protein, subsequently affecting substrate-enzyme binding and reducing enzyme catalytic activity, in line with experimental findings. Furthermore, in vitro melanoma cytotoxicity assay of compound 3b demonstrated its higher toxicity to A375 cells, while displaying low toxicity to HaCaT cells, with a dose-dependent effect. These results provide a theoretical foundation and practical basis for the development of novel tyrosinase inhibitors.
Collapse
Affiliation(s)
- Dong Xie
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University Kunming Yunnan 650224 PR China
| | - Kangjia Han
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University Kunming Yunnan 650224 PR China
| | - Qian Jiang
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University Kunming Yunnan 650224 PR China
| | - Sida Xie
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University Kunming Yunnan 650224 PR China
| | - Jielong Zhou
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University Kunming Yunnan 650224 PR China
| | - Yingjun Zhang
- Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming Yunnan 650204 PR China
| | - Junming Xu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry Nanjing Jiangsu 210042 PR China
| | - Yuanping He
- Kunming Beiye Dai Medicine Research Institute Kunming Yunnan 650499 PR China
| | - Ping Zhao
- Key Laboratory of Ministry of Education for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University Kunming Yunnan 650224 PR China
| | - Xiaoqin Yang
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University Kunming Yunnan 650224 PR China
| |
Collapse
|
4
|
Imran M, Abida, Alotaibi NM, Thabet HK, Alruwaili JA, Eltaib L, Alshehri A, Alsaiari AA, Kamal M, Alshammari AMA. Repurposing Anti-Dengue Compounds against Monkeypox Virus Targeting Core Cysteine Protease. Biomedicines 2023; 11:2025. [PMID: 37509664 PMCID: PMC10377189 DOI: 10.3390/biomedicines11072025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The monkeypox virus (MPXV) is an enveloped, double-stranded DNA virus belonging to the genus Orthopox viruses. In recent years, the virus has spread to countries where it was previously unknown, turning it into a worldwide emergency for public health. This study employs a structural-based drug design approach to identify potential inhibitors for the core cysteine proteinase of MPXV. During the simulations, the study identified two potential inhibitors, compound CHEMBL32926 and compound CHEMBL4861364, demonstrating strong binding affinities and drug-like properties. Their docking scores with the target protein were -10.7 and -10.9 kcal/mol, respectively. This study used ensemble-based protein-ligand docking to account for the binding site conformation variability. By examining how the identified inhibitors interact with the protein, this research sheds light on the workings of the inhibitors' mechanisms of action. Molecular dynamic simulations of protein-ligand complexes showed fluctuations from the initial docked pose, but they confirmed their binding throughout the simulation. The MMGBSA binding free energy calculations for CHEMBL32926 showed a binding free energy range of (-9.25 to -9.65) kcal/mol, while CHEMBL4861364 exhibited a range of (-41.66 to -31.47) kcal/mol. Later, analogues were searched for these compounds with 70% similarity criteria, and their IC50 was predicted using pre-trained machine learning models. This resulted in identifying two similar compounds for each hit with comparable binding affinity for cysteine proteinase. This study's structure-based drug design approach provides a promising strategy for identifying new drugs for treating MPXV infections.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Nawaf M. Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Hamdy Khamees Thabet
- Chemistry Department, College of Arts and Sciences, Northern Border University, Rafha 91911, Saudi Arabia
| | - Jamal Alhameedi Alruwaili
- Medical Lab Technology Department, College of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Ahmed Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, Dammam 31441, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | | |
Collapse
|
5
|
Hameduh T, Mokry M, Miller AD, Heger Z, Haddad Y. Solvent Accessibility Promotes Rotamer Errors during Protein Modeling with Major Side-Chain Prediction Programs. J Chem Inf Model 2023. [PMID: 37410883 PMCID: PMC10369486 DOI: 10.1021/acs.jcim.3c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Side-chain rotamer prediction is one of the most critical late stages in protein 3D structure building. Highly advanced and specialized algorithms (e.g., FASPR, RASP, SCWRL4, and SCWRL4v) optimize this process by use of rotamer libraries, combinatorial searches, and scoring functions. We seek to identify the sources of key rotamer errors as a basis for correcting and improving the accuracy of protein modeling going forward. In order to evaluate the aforementioned programs, we process 2496 high-quality single-chained all-atom filtered 30% homology protein 3D structures and use discretized rotamer analysis to compare original with calculated structures. Among 513,024 filtered residue records, increased amino acid residue-dependent rotamer errors─associated in particular with polar and charged amino acid residues (ARG, LYS, and GLN)─clearly correlate with increased amino acid residue solvent accessibility and an increased residue tendency toward the adoption of non-canonical off rotamers which modeling programs struggle to predict accurately. Understanding the impact of solvent accessibility now appears key to improved side-chain prediction accuracies.
Collapse
Affiliation(s)
- Tareq Hameduh
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1665/1, CZ-613 00 Brno, Czech Republic
| | - Michal Mokry
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1665/1, CZ-613 00 Brno, Czech Republic
| | - Andrew D Miller
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1665/1, CZ-613 00 Brno, Czech Republic
- Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic
- KP Therapeutics (Europe) s.r.o., Purkyňova 649/127, CZ-612 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1665/1, CZ-613 00 Brno, Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1665/1, CZ-613 00 Brno, Czech Republic
| |
Collapse
|
6
|
Fukuda I, Nakamura H. Non-Ewald methods for evaluating the electrostatic interactions of charge systems: similarity and difference. Biophys Rev 2022; 14:1315-1340. [PMID: 36659982 PMCID: PMC9842848 DOI: 10.1007/s12551-022-01029-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/30/2022] [Indexed: 01/13/2023] Open
Abstract
In molecular simulations, it is essential to properly calculate the electrostatic interactions of particles in the physical system of interest. Here we consider a method called the non-Ewald method, which does not rely on the standard Ewald method with periodic boundary conditions, but instead relies on the cutoff-based techniques. We focus on the physicochemical and mathematical conceptual aspects of the method in order to gain a deeper understanding of the simulation methodology. In particular, we take into account the reaction field (RF) method, the isotropic periodic sum (IPS) method, and the zero-multipole summation method (ZMM). These cutoff-based methods are based on different physical ideas and are completely distinguishable in their underlying concepts. The RF and IPS methods are "additive" methods that incorporate information outside the cutoff region, via dielectric medium and isotropic boundary condition, respectively. In contrast, the ZMM is a "subtraction" method that tries to remove the artificial effects, generated near the boundary, from the cutoff sphere. Nonetheless, we find physical and/or mathematical similarities between these methods. In particular, the modified RF method can be derived by the principle of neutralization utilized in the ZMM, and we also found a direct relationship between IPS and ZMM.
Collapse
Affiliation(s)
- Ikuo Fukuda
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima, Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Haruki Nakamura
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|