1
|
Lowe LA, Kaushik NK, Wang A. Natural Size Variation Amongst Protocells Leads to Survival and Growth Under Hypoosmotic Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406241. [PMID: 39629530 DOI: 10.1002/smll.202406241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/20/2024] [Indexed: 01/23/2025]
Abstract
Membrane growth is vital to the evolution of cellular life. For model protocells, this is typically achieved through competition between different protocell populations or by adding extra amphiphiles. This work demonstrates an alternative mechanism for protocell membrane growth: hypoosmotic shocks, which could have occurred naturally in the protocell environment, leading to the redistribution of lipids within a single population of vesicles. Here we report that, even without an additional lipid supply, nanoscale and giant fatty acid vesicles can withstand substantial osmotic pressures through membrane growth, whilst also retaining a significant portion of their contents. This stands in contrast to phospholipid systems, which burst and release their contents under the same conditions. Notably, the fatty acid giant vesicles retained contents following hypoosmotic shocks ten times higher than the predicted tolerance levels. The observed robustness is likely enabled by the membrane's incorporation of additional amphiphiles from smaller and less tense vesicles within the same population. The dynamic nature of these fatty acid-based model protocells not only supports membrane growth but also enables protocell survival in hypoosmotic environments.
Collapse
Affiliation(s)
- Lauren A Lowe
- School of Chemistry, Australian Centre for Astrobiology, ARC Centre of Excellence in Synthetic Biology, UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Natasha K Kaushik
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Anna Wang
- School of Chemistry, Australian Centre for Astrobiology, ARC Centre of Excellence in Synthetic Biology, UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Karal MAS, Billah MM, Nasrin T, Moniruzzaman M. Interaction of anionic Fe 3O 4 nanoparticles with lipid vesicles: a review on deformation and poration under various conditions. RSC Adv 2024; 14:25986-26001. [PMID: 39161454 PMCID: PMC11331399 DOI: 10.1039/d4ra05686h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024] Open
Abstract
This review focuses on the deformation and poration of lipid vesicles caused by the interaction of anionic magnetite nanoparticles (MNPs). Effects of various factors, such as surface charge density, salt and sugar concentrations in buffer, membrane cholesterol content, polymer-grafted phospholipid, and membrane potential have been discussed for the interaction of MNPs with lipid vesicles. To quantify these effects on the vesicles, compactness, fraction of deformation and poration, dynamics of membrane permeation, and kinetics of membrane permeation have been critically evaluated. The review explores the potential advancements as well as future directions of the research field in the biomedical application of MNPs.
Collapse
Affiliation(s)
- Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka 1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Md Masum Billah
- Department of Physics, Jashore University of Science and Technology Jashore 7408 Bangladesh +880-2-42142012 +880-242142046
| | - Tawfika Nasrin
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka 1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Md Moniruzzaman
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka 1000 Bangladesh +880-2-58613046 +880-2-9665613
| |
Collapse
|
3
|
Bhuiyan MTI, Karal MAS, Orchi US, Ahmed N, Moniruzzaman M, Ahamed MK, Billah MM. Probability and kinetics of rupture and electrofusion in giant unilamellar vesicles under various frequencies of direct current pulses. PLoS One 2024; 19:e0304345. [PMID: 38857287 PMCID: PMC11164401 DOI: 10.1371/journal.pone.0304345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
Irreversible electroporation induces permanent permeabilization of lipid membranes of vesicles, resulting in vesicle rupture upon the application of a pulsed electric field. Electrofusion is a phenomenon wherein neighboring vesicles can be induced to fuse by exposing them to a pulsed electric field. We focus how the frequency of direct current (DC) pulses of electric field impacts rupture and electrofusion in cell-sized giant unilamellar vesicles (GUVs) prepared in a physiological buffer. The average time, probability, and kinetics of rupture and electrofusion in GUVs have been explored at frequency 500, 800, 1050, and 1250 Hz. The average time of rupture of many 'single GUVs' decreases with the increase in frequency, whereas electrofusion shows the opposite trend. At 500 Hz, the rupture probability stands at 0.45 ± 0.02, while the electrofusion probability is 0.71 ± 0.01. However, at 1250 Hz, the rupture probability increases to 0.69 ± 0.03, whereas the electrofusion probability decreases to 0.46 ± 0.03. Furthermore, when considering kinetics, at 500 Hz, the rate constant of rupture is (0.8 ± 0.1)×10-2 s-1, and the rate constant of fusion is (2.4 ± 0.1)×10-2 s-1. In contrast, at 1250 Hz, the rate constant of rupture is (2.3 ± 0.8)×10-2 s-1, and the rate constant of electrofusion is (1.0 ± 0.1)×10-2 s-1. These results are discussed by considering the electrical model of the lipid bilayer and the energy barrier of a prepore.
Collapse
Affiliation(s)
| | | | - Urbi Shyamolima Orchi
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Nazia Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md. Moniruzzaman
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md. Kabir Ahamed
- Radiation, Transport and Waste Safety Division, Bangladesh Atomic Energy Regulatory Authority, Agargaon, Dhaka, Bangladesh
| | - Md. Masum Billah
- Department of Physics, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
4
|
Karal MAS, Billah MM, Ahamed MK. Determination of pore edge tension from the kinetics of rupture of giant unilamellar vesicles using the Arrhenius equation: effects of sugar concentration, surface charge and cholesterol. Phys Chem Chem Phys 2024; 26:6107-6117. [PMID: 38299672 DOI: 10.1039/d3cp04451c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The pore edge tension (Γ) of a membrane closely intertwines with membrane stability and plays a vital role in the mechanisms that facilitate membrane resealing following pore formation caused by electrical and mechanical tensions. We have explored a straightforward procedure to determine Γ by fitting the inverse of the tension-dependent logarithm of the rate constant of rupture of giant unilamellar vesicles (GUVs) using the Arrhenius equation. The GUVs were prepared using a combination of 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) and 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) in a physiological environment. The effects of sugar concentration, membrane surface charge density, and membrane cholesterol concentration on Γ have been investigated. The values of Γ increase with sugar concentration in the physiological buffer, measuring 9.6 ± 0.3, 10.4 ± 0.1, and 16.2 ± 0.1 pN for 40, 100, and 300 mM, respectively. A higher concentration of anionic lipids (70 mol% of DOPG) significantly reduces Γ. An increasing trend of Γ with cholesterol content was observed; specifically, the values of Γ were 11.9 ± 0.9, 13.9 ± 0.7, and 16.2 ± 0.4 pN for 15, 29, and 40 mol% cholesterol, respectively. Thus, the presence of higher anionic lipids in the bilayer led to a decrease in membrane stability. In contrast, the presence of higher sugar concentrations in the buffer and increased cholesterol concentration in the membranes enhanced membrane stability.
Collapse
Affiliation(s)
- Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh.
| | - Md Masum Billah
- Department of Physics, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Kabir Ahamed
- Radiation, Transport and Waste Safety Division, Bangladesh Atomic Energy Regulatory Authority, Agargaon, Dhaka 1207, Bangladesh
| |
Collapse
|
5
|
Hasan S, Karal MAS, Akter S, Ahmed M, Ahamed MK, Ahammed S. Influence of sugar concentration on the vesicle compactness, deformation and membrane poration induced by anionic nanoparticles. PLoS One 2022; 17:e0275478. [PMID: 36174090 PMCID: PMC9521927 DOI: 10.1371/journal.pone.0275478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
Sugar plays a vital role in the structural and functional characteristics of cells. Hence, the interaction of NPs with cell membranes in the presence of sugar concentrations is important for medicinal and pharmacological innovations. This study integrated three tools: giant unilamellar vesicles (GUVs), anionic magnetite nanoparticles (NPs), and sugar concentrations, to understand a simplified mechanism for interactions between the vesicle membranes and NPs under various sugar concentrations. We focused on changing the sugar concentration in aqueous solution; more precisely, sucrose inside the GUVs and glucose outside with equal osmolarity. 1,2-dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt) (DOPG) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were used to prepare the charged membranes of 40mole%DOPG/60mole%DOPC-GUVs, whereas only DOPC was used to prepare the neutral membranes. Phase contrast fluorescence microscopy shows that the adherence of 18 nm magnetite NPs with anionic charge depends on the sugar concentration. The alterations of GUVs induced by the NPs are characterized in terms of i) vesicle compactness, ii) deformation, and iii) membrane poration. The presence of sugar provides additional structural stability to the GUVs and reduces the effects of the NPs with respect to these parameters; more precisely, the higher the sugar concentration, the smaller the alteration induced by the NPs. The differences in NPs effects are explained by the change in the type of interaction between sugar molecules and lipid membranes, namely enthalpy and entropy-driven interaction, respectively. In addition, such alterations are influenced by the surface charge density of the lipid bilayer. The surface pressure of membranes due to the adsorption of NPs is responsible for inducing the poration in membranes. The differences in deformation and poration in charged and neutral GUVs under various sugar concentrations are discussed based on the structure of the head of lipid molecules.
Collapse
Affiliation(s)
- Sharif Hasan
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- * E-mail:
| | - Salma Akter
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md. Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- Radiation, Transport and Waste Safety Division, Bangladesh Atomic Energy Regulatory Authority, Dhaka, Bangladesh
| | - Shareef Ahammed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| |
Collapse
|