1
|
Yarawsky AE, Herr AB. Assembly landscape of the complete B-repeat superdomain from Staphylococcus epidermidis strain 1457. Biophys J 2025; 124:363-378. [PMID: 39668565 DOI: 10.1016/j.bpj.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/15/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024] Open
Abstract
The accumulation-associated protein (Aap) is the primary determinant of Staphylococcus epidermidis device-related infections. The B-repeat superdomain is responsible for intercellular adhesion that leads to the development of biofilms occurring in such infections. It was recently demonstrated that Zn-induced B-repeat assembly leads to formation of functional amyloid fibrils, which offer strength and stability to the biofilm. Rigorous biophysical studies of Aap B-repeats from S. epidermidis strain RP62A revealed Zn-induced assembly into stable, reversible dimers and tetramers, prior to aggregation into amyloid fibrils. Genetic manipulation is not tractable for many S. epidermidis strains, including RP62A; instead, many genetic studies have used strain 1457. Therefore, to better connect findings from biophysical and structural studies of B-repeats to in vivo studies, the B-repeat superdomain from strain 1457 was examined. Differences between the B-repeats from strains RP62A and 1457 include the number of B-repeats, which has been shown to play a critical role in assembly into amyloid fibrils, as well as the distribution of consensus and variant B-repeat subtypes, which differ in assembly competency and thermal stability. Detailed investigation of the Zn-induced assembly of the full B-repeat superdomain from strain 1457 was conducted using analytical ultracentrifugation. Whereas the previous construct from RP62A (Brpt5.5) formed a stable tetramer prior to aggregation, Brpt6.5 from 1457 forms extremely large stable species on the order of ≈28-mers, prior to aggregation into similar amyloid fibrils. Our data suggest that both assembly pathways may proceed through the same mechanism of dimerization and tetramerization, and both conclude with the formation of amyloid-like fibrils. Discussion of assembly behavior of B-repeats from different strains and of different length is provided with considerations of biological implications.
Collapse
Affiliation(s)
- Alexander E Yarawsky
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrew B Herr
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
2
|
Uzun Yaylacı E. Application of artificial neural network for the mechano-bactericidal effect of bioinspired nanopatterned surfaces. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:415-427. [PMID: 39373773 DOI: 10.1007/s00249-024-01723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/25/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
This study aimed to calculate the effect of nanopatterns' peak sharpness, width, and spacing parameters on P. aeruginosa and S. aureus cell walls by artificial neural network and finite element analysis. Elastic and creep deformation models of bacteria were developed in silico. Maximum deformation, maximum stress, and maximum strain values of the cell walls were calculated. According to the results, while the spacing of the nanopatterns is constant, it was determined that when their peaks were sharpened and their width decreased, maximum deformation, maximum stress, and maximum strain affecting the cell walls of both bacteria increased. When sharpness and width of the nano-patterns are kept constant and the spacing is increased, maximum deformation, maximum stress, and maximum strain in P. aeruginosa cell walls increase, but a decrease in S. aureus was observed. This study proves that changes in the geometric structures of nanopatterned surfaces can show different effects on different bacteria.
Collapse
Affiliation(s)
- Ecren Uzun Yaylacı
- Faculty of Engineering and Architecture, Recep Tayyip Erdogan University, 53100, Rize, Turkey.
| |
Collapse
|
3
|
Yarawsky AE, Gough ES, Zai-Rose V, Figueroa NI, Cunningham HM, Burgner JW, DeLion MT, Paul LN. BASIS: BioAnalysis SEDFIT integrated software for cGMP analysis of SV-AUC data. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:111-121. [PMID: 38329496 DOI: 10.1007/s00249-024-01700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Sedimentation velocity analytical ultracentrifugation (SV-AUC) has long been an important method for characterization of antibody therapeutics. Recently, SV-AUC has experienced a wave of new interest and usage from the gene and cell therapy industry, where SV-AUC has proven itself to be the "gold standard" analytical approach for determining capsid loading ratios for adeno-associated virus (AAV) and other viral vectors. While other more common approaches have existed in the realm of cGMP-compliant techniques for years, SV-AUC has long been used strictly for characterization, but not for release testing. This manuscript describes the challenges faced in bringing SV-AUC to a cGMP environment and describes a new program, "BASIS", which allows for 21 CFR Part 11-compliant data handling and data analysis using the well-known and frequently cited SEDFIT analysis software.
Collapse
Affiliation(s)
| | - Erik S Gough
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA
| | - Valeria Zai-Rose
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA
| | | | | | - John W Burgner
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA
| | - Michael T DeLion
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA
| | - Lake N Paul
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA.
| |
Collapse
|
4
|
Demeler B, Gilbert R, Patel TR. Proceedings of the 25th Analytical Ultracentrifugation Workshops and Symposium. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:195-201. [PMID: 37526680 PMCID: PMC10870507 DOI: 10.1007/s00249-023-01674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The 25th International Analytical Ultracentrifugation (AUC) Workshops and Symposium (AUC2022) took place at the University of Lethbridge in Lethbridge, Canada, in July 2022. In total, 104 attendees (Attendance Profile: 104 attendees, 69 in-person, 35 remote. Brazil 1, Canada 24, China 1, Czech Republic 2, Finland 1, France 3, Germany 22, India 3, Italy 1, Japan 4, Spain 1, Switzerland 3, Taiwan 1, United Kingdom 5, United States 32) participated in the event and presented the latest advances in the field. While the primary focus of the conference was to showcase the applications of AUC in chemical, life sciences, and nanoparticle disciplines, several presentations also integrated complementary methods, such as isothermal titration calorimetry, microscale thermophoresis, light scattering (static and dynamic), small-angle X-ray scattering, X-ray crystallography, and cryo-electron microscopy. Additionally, the delegates gained valuable hands-on experience from 20 workshops covering a broad range of applications, experimental designs and systems, and the latest software innovations in solution biophysics. The AUC2022 special volume highlights the sustained innovation, utility and relevance of AUC and related solution biophysical methods across various disciplines, including biochemistry, structural biology, synthetic polymer chemistry, carbohydrate chemistry, protein and nucleic acid characterization, nano-science, and macromolecular interactions.
Collapse
Affiliation(s)
- Borries Demeler
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
- Canadian Centre for Hydrodynamics, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Robert Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Trushar R Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
- Canadian Centre for Hydrodynamics, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
5
|
Yarawsky AE, Zai-Rose V, Cunningham HM, Burgner JW, DeLion MT, Paul LN. AAV analysis by sedimentation velocity analytical ultracentrifugation: beyond empty and full capsids. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:353-366. [PMID: 37037926 DOI: 10.1007/s00249-023-01646-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 04/12/2023]
Abstract
The recent surge of therapeutic interest in recombinant adeno-associated viral (AAV) vectors for targeted DNA delivery has brought analytical ultracentrifugation (AUC) into the spotlight. A major concern during formulation of AAV therapeutics is purity of the active species (DNA-containing capsid, or "filled capsids"). Insertion of DNA into AAV is not a highly efficient process; thus, a significant amount of empty and partial/intermediate AAV molecules may exist. Recent guidance from the FDA includes limiting the presence of empty AAV capsids and other impurities to reduce immunotoxicity. While chromatographic techniques (SEC, SEC-MALS, AEX) are often used for empty and full capsid quantitation due to the ease of accessibility and familiarity among most biochemists, the resolution and sensitivity attained by sedimentation velocity (SV-AUC) in the formulation buffer and purification buffers is unmatched. Approaches for using SV-AUC to determine the empty-to-full capsid ratio have already been discussed by others; however, in this report, we focus on the importance of characterizing other impurities, such as free DNA, partially filled capsids, and aggregates that are recognized as species of concern for immunotoxicity. We also demonstrate the usefulness of applying multiple analyses (e.g., c(s), g(s*), WDA) in confirming the presence of and determining the hydrodynamic parameters of these various species.
Collapse
Affiliation(s)
| | - Valeria Zai-Rose
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA
| | | | - John W Burgner
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA, 23298, USA
| | - Michael T DeLion
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA
| | - Lake N Paul
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA.
| |
Collapse
|