1
|
Sebastian A, Migalska M, Gaczorek T. AmpliSAS and AmpliHLA: Web Server and Local Tools for MHC Typing of Non-model Species and Human Using NGS Data. Methods Mol Biol 2024; 2809:37-66. [PMID: 38907889 DOI: 10.1007/978-1-0716-3874-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
AmpliSAS and AmpliHLA are tools for automatic genotyping of MHC genes from high-throughput sequencing data. AmpliSAS is designed specifically to analyze amplicon sequencing data from non-model species and it is able to perform de novo genotyping without any previous knowledge of the reference alleles. AmpliHLA is a human specific version; it performs HLA typing by comparing sequenced variants against human reference alleles from the IMGT/HLA database. Both tools are available in AmpliSAT web-server as well as scripts for local/server installation. Here we describe the installation and deployment of AmpliSAS and AmpliHLA Perl scripts and dependencies on a local or a server computer. We will show how to run them in the command line using as examples four genotyping protocols: the first two use amplicon sequencing data to genotype the MHC genes of a passerine bird and human respectively; the third and fourth present the HLA typing of a human cell line starting from RNA and exome sequencing data respectively.
Collapse
Affiliation(s)
| | - Magdalena Migalska
- Genomics and Experimental Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| | - Tomasz Gaczorek
- Genomics and Experimental Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
2
|
Li X, Liu T, Li A, Zhang L, Dai W, Jin L, Sun K, Feng J. Genetic polymorphisms and the independent evolution of major histocompatibility complex class II‐
DRB
in sibling bat species
Rhinolophus episcopus
and
Rhinolophus siamensis. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaolin Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Tong Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Lin Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
- Key Laboratory of Vegetation Ecology Ministry of Education Changchun China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
- College of Life Science Jilin Agricultural University Changchun China
| |
Collapse
|
3
|
Chen H, Huang S, Jiang Y, Han F, Ni Q, Yao Y, Xu H, Mishra S, Zhang M. The MHC Class Ia Genes in Chenfu's Treefrog ( Zhangixalus chenfui) Evolved via Gene Duplication, Recombination, and Selection. Animals (Basel) 2019; 10:ani10010034. [PMID: 31877958 PMCID: PMC7023105 DOI: 10.3390/ani10010034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 01/29/2023] Open
Abstract
Simple Summary Amphibians, the first terrestrial vertebrates, provide materials for adaptive evolutionary studies, such as the evolution of the major histocompatibility complex (MHC). To date, various MHC evolutionary mechanisms have been identified in frogs, but more research is needed to determine the evolutionary mechanisms of the frog MHC. The main purpose of this study was to evaluate polymorphisms in the MHC class Ia genes of the Chenfu’s Treefrog. The MHC class Ia genes of the Chenfu’s Treefrog have high polymorphism. The mechanisms responsible for the formation of the polymorphisms include gene duplication, recombination, and selection. Abstract The molecular mechanisms underlying the evolution of adaptive immunity-related proteins can be deduced by a thorough examination of the major histocompatibility complex (MHC). Currently, in vertebrates, there is a relatively large amount of research on MHCs in mammals and birds. However, research related to amphibian MHC genes and knowledge about the evolutionary patterns is limited. This study aimed to isolate the MHC class I genes from Chenfu’s Treefrog (Zhangixalus chenfui) and reveal the underlying evolutionary processes. A total of 23 alleles spanning the coding region of MHC class Ia genes were identified in 13 individual samples. Multiple approaches were used to test and identify recombination from the 23 alleles. Amphibian MHC class Ia alleles, from NCBI, were used to construct the phylogenetic relationships in MEGA. Additionally, the partition strategy was adopted to construct phylogenetic relationships using MrBayes and MEGA. The sites of positive selection were identified by FEL, PAML, and MEME. In Chenfu’s Treefrog, we found that: (1) recombination usually takes place between whole exons of MHC class Ia genes; (2) there are at least 3 loci for MHC class Ia, and (3) the diversity of genes in MHC class Ia can be attributed to recombination, gene duplication, and positive selection. We characterized the evolutionary mechanisms underlying MHC class Ia genes in Chenfu’s Treefrog, and in so doing, broadened the knowledge of amphibian MHC systems.
Collapse
|
4
|
Sebastian A, Migalska M, Biedrzycka A. AmpliSAS and AmpliHLA: Web Server Tools for MHC Typing of Non-Model Species and Human Using NGS Data. Methods Mol Biol 2018; 1802:249-273. [PMID: 29858815 DOI: 10.1007/978-1-4939-8546-3_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AmpliSAS and AmpliHLA are web server tools for automatic genotyping of MHC genes from high-throughput sequencing data. AmpliSAS is designed specifically to analyze amplicon sequencing data from non-model species and it is able to perform de-novo genotyping without any previous knowledge of the reference alleles. AmpliHLA is a human-specific version, it performs HLA typing by comparing sequenced variants against human reference alleles from the IMGT/HLA database. Here we describe four genotyping protocols: the first two use amplicon sequencing data to genotype the MHC genes of a passerine bird and human respectively; the third and fourth present the HLA typing of a human cell line starting from RNA and exome sequencing data respectively.
Collapse
Affiliation(s)
- Alvaro Sebastian
- Sixth Researcher, Poznan, Poland. .,Instituto Aragonés de Empleo (INAEM), Zaragoza, Spain. .,Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Magdalena Migalska
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | | |
Collapse
|
5
|
Rico Y, Ethier DM, Davy CM, Sayers J, Weir RD, Swanson BJ, Nocera JJ, Kyle CJ. Spatial patterns of immunogenetic and neutral variation underscore the conservation value of small, isolated American badger populations. Evol Appl 2016; 9:1271-1284. [PMID: 27877205 PMCID: PMC5108218 DOI: 10.1111/eva.12410] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/14/2016] [Indexed: 12/29/2022] Open
Abstract
Small and isolated populations often exhibit low genetic diversity due to drift and inbreeding, but may simultaneously harbour adaptive variation. We investigate spatial distributions of immunogenetic variation in American badger subspecies (Taxidea taxus), as a proxy for evaluating their evolutionary potential across the northern extent of the species' range. We compared genetic structure of 20 microsatellites and the major histocompatibility complex (MHC DRB exon 2) to evaluate whether small, isolated populations show low adaptive polymorphism relative to large and well-connected populations. Our results suggest that gene flow plays a prominent role in shaping MHC polymorphism across large spatial scales, while the interplay between gene flow and selection was stronger towards the northern peripheries. The similarity of MHC alleles within subspecies relative to their neutral genetic differentiation suggests that adaptive divergence among subspecies can be maintained despite ongoing gene flow along subspecies boundaries. Neutral genetic diversity was low in small relative to large populations, but MHC diversity within individuals was high in small populations. Despite reduced neutral genetic variation, small and isolated populations harbour functional variation that likely contribute to the species evolutionary potential at the northern range. Our findings suggest that conservation approaches should focus on managing adaptive variation across the species range rather than protecting subspecies per se.
Collapse
Affiliation(s)
- Yessica Rico
- Forensic Science DepartmentTrent UniversityPeterboroughONCanada
- Natural Resources DNA Profiling and Forensics CentreTrent UniversityPeterboroughONCanada
- Present address: CONACYTInstituto de Ecología A.C.Centro Regional del BajíoAvenida Lázaro Cárdenas 253PátzcuaroMichoacán61600México
| | - Danielle M. Ethier
- Ontario Badger ProjectGuelphONCanada
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| | - Christina M. Davy
- Forensic Science DepartmentTrent UniversityPeterboroughONCanada
- Natural Resources DNA Profiling and Forensics CentreTrent UniversityPeterboroughONCanada
| | | | - Richard D. Weir
- Ecosystems Protection & Sustainability BranchMinistry of EnvironmentVictoriaBCCanada
| | | | - Joseph J. Nocera
- Wildlife Research and Monitoring SectionMinistry of Natural Resources & ForestryPeterboroughONCanada
| | - Christopher J. Kyle
- Forensic Science DepartmentTrent UniversityPeterboroughONCanada
- Natural Resources DNA Profiling and Forensics CentreTrent UniversityPeterboroughONCanada
| |
Collapse
|
6
|
Mable BK, Kilbride E, Viney ME, Tinsley RC. Copy number variation and genetic diversity of MHC Class IIb alleles in an alien population of Xenopus laevis. Immunogenetics 2015; 67:591-603. [PMID: 26329765 PMCID: PMC4572066 DOI: 10.1007/s00251-015-0860-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/10/2015] [Indexed: 12/23/2022]
Abstract
Xenopus laevis (the African clawed frog), which originated through hybridisation and whole genome duplication, has been used as a model for genetics and development for many years, but surprisingly little is known about immune gene variation in natural populations. The purpose of this study was to use an isolated population of X. laevis that was introduced to Wales, UK in the past 50 years to investigate how variation at the MHC compares to that at other loci, following a severe population bottleneck. Among 18 individuals, we found nine alleles based on exon 2 sequences of the Class IIb region (which includes the peptide binding region). Individuals carried from one to three of the loci identified from previous laboratory studies. Genetic variation was an order of magnitude higher at the MHC compared with three single-copy nuclear genes, but all loci showed high levels of heterozygosity and nucleotide diversity and there was not an excess of homozygosity or decrease in diversity over time that would suggest extensive inbreeding in the introduced population. Tajima’s D was positive for all loci, which is consistent with a bottleneck. Moreover, comparison with published sequences identified the source of the introduced population as the Western Cape region of South Africa, where most commercial suppliers have obtained their stocks. These factors suggest that despite founding by potentially already inbred individuals, the alien population in Wales has maintained substantial genetic variation at both adaptively important and neutral genes.
Collapse
Affiliation(s)
- Barbara K Mable
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Elizabeth Kilbride
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mark E Viney
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| | - Richard C Tinsley
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| |
Collapse
|
7
|
Dirscherl H, McConnell SC, Yoder JA, de Jong JLO. The MHC class I genes of zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:11-23. [PMID: 24631581 PMCID: PMC4031684 DOI: 10.1016/j.dci.2014.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 05/17/2023]
Abstract
Major histocompatibility complex (MHC) molecules play a central role in the immune response and in the recognition of non-self. Found in all jawed vertebrate species, including zebrafish and other teleosts, MHC genes are considered the most polymorphic of all genes. In this review we focus on the multi-faceted diversity of zebrafish MHC class I genes, which are classified into three sequence lineages: U, Z, and L. We examine the polygenic, polymorphic, and haplotypic diversity of the zebrafish MHC class I genes, discussing known and postulated functional differences between the different class I lineages. In addition, we provide the first comprehensive nomenclature for the L lineage genes in zebrafish, encompassing at least 15 genes, and characterize their sequence properties. Finally, we discuss how recent findings have shed new light on the remarkably diverse MHC loci of this species.
Collapse
Affiliation(s)
- Hayley Dirscherl
- Department of Molecular Biomedical Sciences, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; The Joint Biomedical Engineering Graduate Program, University of North Carolina-North Carolina State University, Raleigh, NC, USA
| | - Sean C McConnell
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, KCBD 5120, Chicago, IL 60637, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Jill L O de Jong
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, KCBD 5120, Chicago, IL 60637, USA.
| |
Collapse
|
8
|
Zhao M, Wang Y, Shen H, Li C, Chen C, Luo Z, Wu H. Evolution by selection, recombination, and gene duplication in MHC class I genes of two Rhacophoridae species. BMC Evol Biol 2013; 13:113. [PMID: 23734729 PMCID: PMC3684511 DOI: 10.1186/1471-2148-13-113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 05/29/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Comparison of major histocompatibility complex (MHC) genes across vertebrate species can reveal molecular mechanisms underlying the evolution of adaptive immunity-related proteins. As the first terrestrial tetrapods, amphibians deserve special attention because of their exposure to probably increased spectrum of microorganisms compared with ancestral aquatic fishes. Knowledge regarding the evolutionary patterns and mechanisms associated with amphibian MHC genes remains limited. The goal of the present study was to isolate MHC class I genes from two Rhacophoridae species (Rhacophorus omeimontis and Polypedates megacephalus) and examine their evolution. RESULTS We identified 27 MHC class I alleles spanning the region from exon 2 to 4 in 38 tree frogs. The available evidence suggests that these 27 sequences all belong to classical MHC class I (MHC Ia) genes. Although several anuran species only display one MHC class Ia locus, at least two or three loci were observed in P. megacephalus and R. omeimontis, indicating that the number of MHC class Ia loci varies among anuran species. Recombination events, which mainly involve the entire exons, played an important role in shaping the genetic diversity of the 27 MHC class Ia alleles. In addition, signals of positive selection were found in Rhacophoridae MHC class Ia genes. Amino acid sites strongly suggested by program to be under positive selection basically accorded with the putative antigen binding sites deduced from crystal structure of human HLA. Phylogenetic relationships among MHC class I alleles revealed the presence of trans-species polymorphisms. CONCLUSIONS In the two Rhacophoridae species (1) there are two or three MHC class Ia loci; (2) recombination mainly occurs between the entire exons of MHC class Ia genes; (3) balancing selection, gene duplication and recombination all contribute to the diversity of MHC class Ia genes. These findings broaden our knowledge on the evolution of amphibian MHC systems.
Collapse
Affiliation(s)
- Mian Zhao
- Molecular and Behavioural Ecology Research Group, College of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan 430079, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Pinto RD, Randelli E, Buonocore F, Pereira PJB, dos Santos NMS. Molecular cloning and characterization of sea bass (Dicentrarchus labrax, L.) MHC class I heavy chain and β2-microglobulin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:234-254. [PMID: 23116964 DOI: 10.1016/j.dci.2012.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 06/01/2023]
Abstract
In this work, the gene and cDNA of sea bass (Dicentrarchus labrax) β2-microglobulin (Dila-β2m) and several cDNAs of MHC class I heavy chain (Dila-UA) were characterized. While Dila-β2m is single-copy, numerous Dila-UA transcripts were identified per individual with variability at the peptide-binding domain (PBD), but also with unexpected diversity from the connective peptide (CP) through the 3' untranslated region (UTR). Phylogenetic analysis segregates Dila-β2m and Dila-UA into each subfamily cluster, placing them in the fish class and branching Dila-MHC-I with lineage U. The α1 domains resemble those of the recently proposed L1 trans-species lineage. Although no Dila-specific α1, α2 or α3 sub-lineages could be observed, two highly distinct sub-lineages were identified at the CP/TM/CYT regions. The three-dimensional homology model of sea bass MHC-I complex is consistent with other characterized vertebrate structures. Furthermore, basal tissue-specific expression profiles were determined for both molecules, and expression of β2m was evaluated after poly I:C stimulus. Results suggest these molecules are orthologues of other β2m and teleost classical MHC-I and their basic structure is evolutionarily conserved, providing relevant information for further studies on antigen presentation in this fish species.
Collapse
Affiliation(s)
- Rute D Pinto
- Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, Porto, Portugal.
| | | | | | | | | |
Collapse
|
10
|
The research of W.E. Mayer (1953-2012): a spectrum of immune systems. Immunogenetics 2012; 64:849-54. [PMID: 23053060 DOI: 10.1007/s00251-012-0654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 09/23/2012] [Indexed: 10/27/2022]
Abstract
Over a period of some 20 years, Werner Eugen Mayer played a significant role in establishing a framework for molecular studies of Mhc genes in multiple vertebrates. His work largely concerned gene isolation, sequencing, and related bioinformatic analyses both for the Mhc and for immune system genes of about 200 species, ranging from apes, monkeys, rodents, and marsupials, through to birds, bony fishes, and lampreys. In addition to his exploration of diverse Mhc genes, Werner is remembered for playing a critical role in the development of two important insights into the evolution of immune systems. His was among the first published DNA sequence-based descriptions of trans-species evolution of Mhc alleles, including the first description of the long-lived polymorphisms shared by humans and chimpanzees. This research opened the way for using Mhc polymorphisms in demographic analyses. The second important insight in which he played a prominent role involved the characterization of immune cells and their expressed genes in the lamprey, a jawless vertebrate. His findings helped to indicate the considerable degree to which extant immune mechanisms were co-opted in the creation of the adaptive immune system of jawed vertebrates.
Collapse
|
11
|
Nonaka MI, Aizawa K, Mitani H, Bannai HP, Nonaka M. Retained orthologous relationships of the MHC Class I genes during euteleost evolution. Mol Biol Evol 2011; 28:3099-112. [PMID: 21613237 DOI: 10.1093/molbev/msr139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Major histocompatibility complex (MHC) class I molecules play a pivotal role in immune defense system, presenting the antigen peptides to cytotoxic CD8+ T lymphocytes. Most vertebrates possess multiple MHC class I loci, but the analysis of their evolutionary relationships between distantly related species has difficulties because genetic events such as gene duplication, deletion, recombination, and/or conversion have occurred frequently in these genes. Human MHC class I genes have been conserved only within the primates for up to 46-66 My. Here, we performed comprehensive analysis of the MHC class I genes of the medaka fish, Oryzias latipes, and found that they could be classified into four groups of ancient origin. In phylogenetic analysis using these genes and the classical and nonclassical class I genes of other teleost fishes, three extracellular domains of the class I genes showed quite different evolutionary histories. The α1 domains generated four deeply diverged lineages corresponding to four medaka class I groups with high bootstrap values. These lineages were shared with salmonid and/or other acanthopterygian class I genes, unveiling the orthologous relationships between the classical MHC class I genes of medaka and salmonids, which diverged approximately 260 Ma. This suggested that the lineages must have diverged in the early days of the euteleost evolution and have been maintained for a long time in their genome. In contrast, the α3 domains clustered by species or fish groups, regardless of classical or nonclassical gene types, suggesting that this domain was homogenized in each species during prolonged evolution, possibly retaining the potential for CD8 binding even in the nonclassical genes. On the other hand, the α2 domains formed no apparent clusters with the α1 lineages or with species, suggesting that they were diversified partly by interlocus gene conversion, and that the α1 and α2 domains evolved separately. Such evolutionary mode is characteristic to the teleost MHC class I genes and might have contributed to the long-term conservation of the α1 domain.
Collapse
Affiliation(s)
- Mayumi I Nonaka
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
12
|
Evolutionary analysis of two classical MHC class I loci of the medaka fish, Oryzias latipes: haplotype-specific genomic diversity, locus-specific polymorphisms, and interlocus homogenization. Immunogenetics 2010; 62:319-32. [PMID: 20174921 DOI: 10.1007/s00251-010-0426-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 02/01/2010] [Indexed: 10/19/2022]
Abstract
The major histocompatibility complex (MHC) region of the teleost medaka (Oryzias latipes) contains two classical class I loci, UAA and UBA, whereas most lower vertebrates possess or express a single locus. To elucidate the allelic diversification and evolutionary relationships of these loci, we compared the BAC-based complete genomic sequences of the MHC class I region of three medaka strains and the PCR-based cDNA sequences of two more strains and two wild individuals, representing nine haplotypes. These were derived from two geographically distinct medaka populations isolated for four to five million years. Comparison of the genomic sequences showed a marked diversity in the region encompassing UAA and UBA even between the strains derived from the same population, and also showed an ancient divergence of these loci. cDNA analysis indicated that the peptide-binding domains of both UAA and UBA are highly polymorphic and that most of the polymorphisms were established in a locus-specific manner before the divergence of the two populations. Interallelic recombination between exons 2 and 3 encoding these domains was observed. The second intron of the UAA genes contains a highly conserved region with a palindromic sequence, suggesting that this region contributed to the recombination events. In contrast, the alpha3 domain is extremely homogenized not only within each locus but also between UAA and UBA regardless of populations. Two lineages of the transmembrane and cytoplasmic regions are also shared by UAA and UBA, suggesting that these two loci evolved with intimate genetic interaction through gene conversion or unequal crossing over.
Collapse
|
13
|
Rakus KŁ, Wiegertjes GF, Adamek M, Siwicki AK, Lepa A, Irnazarow I. Resistance of common carp (Cyprinus carpio L.) to Cyprinid herpesvirus-3 is influenced by major histocompatibility (MH) class II B gene polymorphism. FISH & SHELLFISH IMMUNOLOGY 2009; 26:737-743. [PMID: 19328856 DOI: 10.1016/j.fsi.2009.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 03/05/2009] [Accepted: 03/06/2009] [Indexed: 05/27/2023]
Abstract
The role of MH class II B (Cyca-DAB1-like) genes in resistance of common carp (Cyprinus carpio L.) to Cyprinid herpesvirus-3 (CyHV-3), also known as koi herpesvirus (KHV) was analysed. The material consisted of 934 fish from six carp crosses. Fish were challenged with CyHV-3 at an age of 7 and 10 months. During challenge experiments the peak of mortality caused by CyHV-3 was observed at days 8-12 p.i. and the overall cumulative mortality reached 79.9%. Among six Cyca-DAB1-like genotypes, revealed by PCR-RF-SSCP analysis, one genotype (E) was found associated with higher resistance to CyHV-3. Three other genotypes (B, H and J) could be linked to higher susceptibility to CyHV-3. Analysis of the alleles that compose the Cyca-DAB1-like genotypes linked one particular allele (Cyca-DAB1*05) to significantly increased, and two alleles (Cyca-DAB1*02 and Cyca-DAB1*06) to significantly decreased resistance to CyHV-3. Our data indicate that MH class II B genes could be used as potential genetic markers in breeding of common carp for resistance to this virus.
Collapse
Affiliation(s)
- Krzysztof Ł Rakus
- Polish Academy of Sciences, Institute of Ichthyobiology & Aquaculture in Gołysz, Zaborze, Chybie, Poland.
| | | | | | | | | | | |
Collapse
|
14
|
LAMPERT KP, FISCHER P, SCHARTL M. Major histocompatibility complex variability in the clonal Amazon molly,Poecilia formosa: is copy number less important than genotype? Mol Ecol 2009; 18:1124-36. [DOI: 10.1111/j.1365-294x.2009.04097.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Yang TY, Hao HF, Jia ZH, Chen WH, Xia C. Characterisation of grass carp (Ctenopharyngodon idellus) MHC class I domain lineages. FISH & SHELLFISH IMMUNOLOGY 2006; 21:583-91. [PMID: 16857387 DOI: 10.1016/j.fsi.2006.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 02/17/2006] [Accepted: 03/10/2006] [Indexed: 05/10/2023]
Abstract
In order to characterise grass carp MHC class I (Ctid-MHC I) sequences, 26 Ctid-MHC I genes were cloned from 12 individuals and their alpha domain lineages were analysed. Simultaneously, a quantitative reverse transcription-polymerase chain reaction (Q-RT-PCR) assay was developed to detect Ctid-MHC I tissue-specific expression. The results suggested that Ctid-MHC I could be divided into eight lineages (Ctid-NA-Ctid-NH). Based on whether they contained the motif of eight key amino acids (YYRTKWYY), Ctid-MHC I lineages were divided into two groups [Ctid-MHC I (8(+)) and Ctid-MHC I (8(-))]. The expression analysis showed that the Ctid-MHC I locus/loci appeared in the kidney, gill, intestine, heart, spleen, liver, and brain. A GenBank homology BLAST was performed independently with each alpha domain, and Ctid-MHC I alpha1, alpha2, and alpha3 were categorised into two (V and IX), five (II, IV-VII), and four (IV-VII) domain lineages, respectively. Based on the alphabetic labelling system created in our earlier studies, one alpha1 (IX), four alpha2 (IV-VII), and unique alpha3 (V-VII) domain lineages were observed in grass carp and across the teleostean species.
Collapse
Affiliation(s)
- Tian-Yao Yang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | | | | | | | | |
Collapse
|
16
|
Kelley J, Walter L, Trowsdale J. Comparative genomics of major histocompatibility complexes. Immunogenetics 2004; 56:683-95. [PMID: 15605248 DOI: 10.1007/s00251-004-0717-7] [Citation(s) in RCA: 278] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
The major histocompatibility complex (MHC) is a gene dense region found in all jawed vertebrates examined to date. The MHC contains a high percentage of immune genes, in particular genes involved in antigen presentation, which are generally highly polymorphic. The region plays an important role in disease resistance. The clustering of MHC genes could be advantageous for co-evolution or regulation, and its study in many species is desirable. Even though some linkage of MHC genes is apparent in all gnathostomes, the genomic organization can differ greatly by species, suggesting rapid evolution of MHC genes after divergence from a common ancestor. Previous reviews of comparative MHC organization have been written when relatively fragmentary sequence and mapping data were available on many species. This review compares maps of MHC gene orders in commonly studied species, where extensive sequencing has been performed.
Collapse
Affiliation(s)
- James Kelley
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | | | | |
Collapse
|
17
|
Ellis S. The cattle major histocompatibility complex: is it unique? Vet Immunol Immunopathol 2004; 102:1-8. [PMID: 15451610 DOI: 10.1016/j.vetimm.2004.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 05/25/2004] [Accepted: 06/09/2004] [Indexed: 11/25/2022]
Abstract
Major histocompatibility complex (MHC) class I genes encode highly polymorphic molecules that are expressed on virtually every cell type, and have been identified in all but the most primitive vertebrates. They play a number of crucial roles in the immune response to infectious disease. Most information regarding MHC genes has been generated from humans and mice but, because of the great variability found in the MHC system, it is not always possible to extrapolate from these to other species. Many strategies have evolved to maximise the ability of the MHC to protect individuals and populations against pathogens. Cattle MHC class I genes exhibit a number of unusual features. Evidence from mapping studies, haplotype and phylogenetic analyses suggests the presence of six classical class I loci, in contrast to the more usual two or three, and these are expressed in various combinations of one, two or three on different haplotypes. Although it remains difficult to assign alleles to loci, it appears that none of the loci are expressed on all haplotypes. There is currently limited information relating to polymorphism, but various approaches suggest diversity is high, and may vary between breeds/populations. Functional consequences of variable MHC haplotype composition are discussed. Identifying unique features of the MHC in cattle will lead to new insights into evolution of the immune system.
Collapse
Affiliation(s)
- Shirley Ellis
- Immunology and Pathology Division, MHC Group, Institute for Animal Health, Compton RG20 7NN, UK.
| |
Collapse
|
18
|
Kurtz J, Kalbe M, Aeschlimann PB, Häberli MA, Wegner KM, Reusch TBH, Milinski M. Major histocompatibility complex diversity influences parasite resistance and innate immunity in sticklebacks. Proc Biol Sci 2004; 271:197-204. [PMID: 15058398 PMCID: PMC1691569 DOI: 10.1098/rspb.2003.2567] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proteins of the major histocompatibility complex (MHC) play a central role in the presentation of antigens to the adaptive immune system. The MHC also influences the odour-based choice of mates in humans and several animal taxa. It has recently been shown that female three-spined sticklebacks (Gasterosteus aculeatus) aim at a moderately high MHC diversity in their offspring when choosing a mate. Do they optimize the immune systems of their offspring? Using three-spined sticklebacks that varied in their individual numbers of MHC class IIB molecules, we tested, experimentally, whether allelic diversity at the MHC influences parasite resistance and immune parameters. We found that sticklebacks with low MHC diversity suffered more from parasite infection after experimental exposure to Schistocephalus solidus tapeworms and Glugea anomala microsporidians. They also showed the highest proportion of granulocytes and the strongest respiratory burst reaction, which are correlates of innate immunity. This indicates a strong activity of the innate immune system after challenge by parasites when MHC diversity is suboptimal. Individuals with very high allelic diversity at the MHC seemed inferior to those with moderately high diversity. Such a pattern is consistent with theoretical expectations of an optimal balance between the number of recognizable antigens and self-tolerance.
Collapse
Affiliation(s)
- Joachim Kurtz
- Department of Evolutionary Ecology, Max Planck Institute of Limnology, August-Thienemann-Strasse 2, 24306 Plön, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Kikuno R, Sato A, Mayer WE, Shintani S, Aoki T, Klein J. Clustering of C-Type Lectin Natural Killer Receptor-Like Loci in the Bony Fish Oreochromis niloticus. Scand J Immunol 2004; 59:133-42. [PMID: 14871289 DOI: 10.1111/j.0300-9475.2004.01372.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The genome of the cichlid (teleost) fish Oreochromis niloticus contains a set of genes which encode group V C-type lectin proteins homologous to the mammalian NKG2/CD94 family of natural killer (NK) cell receptors. To determine the genomic organization of these killer cell-like receptor (KLR) genes, an O. niloticus BAC library was screened with a cDNA probe derived previously from an expressed sequence tag of the related cichlid species Paralabidochromis chilotes. Four distinct KLR-bearing BAC clones were analysed, three of which could be assembled into a contig. One of the clones was sequenced in its entirety, whereas the others were partially sequenced to identify the KLR loci borne by them. Altogether, 28 distinct KLR loci were identified, of which at least 26 occupy a single chromosomal region, the KLR complex. One half of the loci appear to be occupied by pseudogenes. Compared to the human NK cell receptor complex, the Oreochromis KLR complex is more compact and, apart from transposons, appears to contain only KLR loci. The gene density of the complex is one KLR locus per 18 kb of sequence. All the KLR loci constituting the complex are derived from a single most recent common ancestor, which is estimated to have existed 7.7 million years ago. The 180 kb of the determined sequence is a mosaic of blocks of similar segments reflecting a complex history of duplications, deletions and rearrangements. The transposons found in the sequenced part belong to the TC1, Xena, CR1 and TX1 families.
Collapse
Affiliation(s)
- R Kikuno
- The First Laboratory for Human Gene Research, Department of Human Gene Research, Kazusa DNA Research Institute, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Kruiswijk CP, Hermsen TT, Westphal AH, Savelkoul HFJ, Stet RJM. A novel functional class I lineage in zebrafish (Danio rerio), carp (Cyprinus carpio), and large barbus (Barbus intermedius) showing an unusual conservation of the peptide binding domains. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:1936-47. [PMID: 12165519 DOI: 10.4049/jimmunol.169.4.1936] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Species from all major jawed vertebrate taxa possess linked polymorphic class I and II genes located in an MHC. The bony fish are exceptional with class I and II genes located on different linkage groups. Zebrafish (Danio rerio), common carp (Cyprinus carpio), and barbus (Barbus intermedius) represent highly divergent cyprinid genera. The genera Danio and Cyprinus diverged 50 million years ago, while Cyprinus and Barbus separated 30 million years ago. In this study, we report the first complete protein-coding class I ZE lineage cDNA sequences with high similarity between the three cyprinid species. Two unique complete protein-coding cDNA sequences were isolated in zebrafish, Dare-ZE*0101 and Dare-ZE*0102, one in common carp, Cyca-ZE*0101, and six in barbus, Bain-ZE*0101, Bain-ZE*0102, Bain-ZE*0201, Bain-ZE*0301, Bain-ZE*0401, and Bain-ZE*0402. Deduced amino acid sequences indicate that these sequences encode bonafide class I proteins. In addition, the presence of conserved potential peptide anchoring residues, exon-intron organization, ubiquitous expression, and polymorphism generated by positive selection on putative peptide binding residues support a classical nature of class I ZE lineage genes. Phylogenetic analyses revealed clustering of the ZE lineage clade with nonclassical cyprinid class I Z lineage clade away from classical cyprinid class I genes, suggesting a common ancestor of these nonclassical genes as observed for mammalian class I genes. Data strongly support the classical nature of these ZE lineage genes that evolved in a trans-species fashion with lineages being maintained for up to 100 million years as estimated by divergence time calculations.
Collapse
Affiliation(s)
- Corine P Kruiswijk
- Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|