1
|
Riesgo A, Santodomingo N, Koutsouveli V, Kumala L, Leger MM, Leys SP, Funch P. Molecular machineries of ciliogenesis, cell survival, and vasculogenesis are differentially expressed during regeneration in explants of the demosponge Halichondria panicea. BMC Genomics 2022; 23:858. [PMID: 36581804 PMCID: PMC9798719 DOI: 10.1186/s12864-022-09035-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/21/2022] [Indexed: 12/30/2022] Open
Abstract
Sponges are interesting animal models for regeneration studies, since even from dissociated cells, they are able to regenerate completely. In particular, explants are model systems that can be applied to many sponge species, since small fragments of sponges can regenerate all elements of the adult, including the oscula and the ability to pump water. The morphological aspects of regeneration in sponges are relatively well known, but the molecular machinery is only now starting to be elucidated for some sponge species. Here, we have used an explant system of the demosponge Halichondria panicea to understand the molecular machinery deployed during regeneration of the aquiferous system. We sequenced the transcriptomes of four replicates of the 5-day explant without an osculum (NOE), four replicates of the 17-18-day explant with a single osculum and pumping activity (PE) and also four replicates of field-collected individuals with regular pumping activity (PA), and performed differential gene expression analysis. We also described the morphology of NOE and PE samples using light and electron microscopy. Our results showed a highly disorganised mesohyl and disarranged aquiferous system in NOE that is coupled with upregulated pathways of ciliogenesis, organisation of the ECM, and cell proliferation and survival. Once the osculum is formed, genes involved in "response to stimulus in other organisms" were upregulated. Interestingly, the main molecular machinery of vasculogenesis described in vertebrates was activated during the regeneration of the aquiferous system. Notably, vasculogenesis markers were upregulated when the tissue was disorganised and about to start forming canals (NOE) and angiogenic stimulators and ECM remodelling machineries were differentially expressed once the aquiferous system was in place (PE and PA). Our results are fundamental to better understanding the molecular mechanisms involved in the formation of the aquiferous system in sponges, and its similarities with the early onset of blood-vessel formation in animal evolution.
Collapse
Affiliation(s)
- Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Calle José Gutiérrez Abascal 2, 28006, Madrid, Spain.
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW5 7BD, UK.
| | - Nadia Santodomingo
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW5 7BD, UK
- Department of Earth Sciences, Oxford University, South Parks Road, Oxford, OX1 3AN, UK
| | - Vasiliki Koutsouveli
- Marine Symbioses Research Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, D-24105, Kiel, Germany
| | - Lars Kumala
- Nordcee, Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
- Marine Biological Research Center, University of Southern Denmark, Hindsholmvej 11, 5300, Kerteminde, Denmark
| | - Michelle M Leger
- Institute of Evolutionary Biology (CSIC-UPF), Paseo Marítimo de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2R3, Canada
| | - Peter Funch
- Department of Biology, Aarhus University, Ny Munkegade, 114-116, Aarhus C, Denmark
| |
Collapse
|
2
|
The Challenge of the Sponge Suberites domuncula (Olivi, 1792) in the Presence of a Symbiotic Bacterium and a Pathogen Bacterium. Genes (Basel) 2019; 10:genes10070485. [PMID: 31248009 PMCID: PMC6678784 DOI: 10.3390/genes10070485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
Sponges, which are in close contact with numerous bacteria in prey/predator, symbiotic and pathogenic relationships, must provide an appropriate response in such situations. This starts with a discriminating recognition of the partner either by a physical contact or through secreted molecules or both. We investigated the expression of the Toll-like receptor, Caspase 3/7, Tumor Necrosis Factor receptor-associated factor 6, Bcl-2 homology protein-2 and macrophage expressed genes of axenic sponge cells in the presence of a symbiotic bacterium (Endozoicomonas sp. Hex311), a pathogen bacterium (Pseudoalteromonas sp. 1A1), their exoproducts and lipopolysaccharides. The vast majority of answers are in line with what could be observed with the symbiotic bacterium. The pathogenic bacterium seems to profit from the eukaryotic cell: suppression of the production of the antibacterial compound, inhibition of the apoptosis caspase-dependent pathway, deregulation of bacterial recognition. This work contributes new scientific knowledge in the field of immunology and apoptosis in early branching metazoan harboring within its tissue and cells a large number of symbiotic bacteria.
Collapse
|
3
|
Sereno D, Müller WE, Bausen M, Elkhooly TA, Markl JS, Wiens M. An evolutionary perspective on the role of mesencephalic astrocyte-derived neurotrophic factor (MANF): At the crossroads of poriferan innate immune and apoptotic pathways. Biochem Biophys Rep 2017; 11:161-173. [PMID: 28955781 PMCID: PMC5614693 DOI: 10.1016/j.bbrep.2017.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/17/2017] [Accepted: 02/27/2017] [Indexed: 11/30/2022] Open
Abstract
The mesencephalic astrocyte-derived neurotrophic factor (MANF) belongs to a recently discovered family of neurotrophic factors. MANF can be secreted but is generally resident within the endoplasmic reticulum (ER) in neuronal and non-neuronal cells, where it is involved in the ER stress response with pro-survival effects. Here we report the discovery of the MANF homolog SDMANF in the sponge Suberites domuncula. The basal positioning of sponges (phylum Porifera) in the animal tree of life offers a unique vantage point on the early evolution of the metazoan-specific genetic toolkit and molecular pathways. Since sponges lack a conventional nervous system, SDMANF presents an enticing opportunity to investigate the evolutionary ancient role of these neurotrophic factors. SDMANF shares considerable sequence similarity with its metazoan homologs. It also comprises a putative protein binding domain with sequence similarities to the Bcl-2 family of apoptotic regulators. In Suberites, SDMANF is expressed in the vicinity of bacteriocytes, where it co-localizes with the toll-like receptor SDTLR. In transfected human cells, SDMANF was detected in both the organelle protein fraction and the cell culture medium. The intracellular SDMANF protein level was up-regulated in response to both a Golgi/ER transport inhibitor and bacterial lipopolysaccharides (LPS). Upon LPS challenge, transfected cells revealed a decreased caspase-3 activity and increased cell viability with no inducible Bax expression compared to the wild type. These results suggest a deep evolutionary original cytoprotective role of MANF, at the crossroads of innate immune and apoptotic pathways, of which a neurotrophic function might have arisen later in metazoan evolution.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthias Wiens
- Institute for Physiological Chemistry, University Medical Center, Johannes Gutenberg-University, Duesbergweg 6, D-55128 Mainz, Germany
| |
Collapse
|
4
|
Gardères J, Henry J, Bernay B, Ritter A, Zatylny-Gaudin C, Wiens M, Müller WEG, Le Pennec G. Cellular effects of bacterial N-3-Oxo-dodecanoyl-L-Homoserine lactone on the sponge Suberites domuncula (Olivi, 1792): insights into an intimate inter-kingdom dialogue. PLoS One 2014; 9:e97662. [PMID: 24858701 PMCID: PMC4032237 DOI: 10.1371/journal.pone.0097662] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/22/2014] [Indexed: 11/30/2022] Open
Abstract
Sponges and bacteria have lived together in complex consortia for 700 million years. As filter feeders, sponges prey on bacteria. Nevertheless, some bacteria are associated with sponges in symbiotic relationships. To enable this association, sponges and bacteria are likely to have developed molecular communication systems. These may include molecules such as N-acyl-L-homoserine lactones, produced by Gram-negative bacteria also within sponges. In this study, we examined the role of N-3-oxododecanoyl-L-homoserine lactone (3-oxo-C12-HSL) on the expression of immune and apoptotic genes of the host sponge Suberites domuncula. This molecule seemed to inhibit the sponge innate immune system through a decrease of the expression of genes coding for proteins sensing the bacterial membrane: a Toll-Like Receptor and a Toll-like Receptor Associated Factor 6 and for an anti-bacterial perforin-like molecule. The expression of the pro-apoptotic caspase-like 3/7 gene decreased as well, whereas the level of mRNA of anti-apoptotic genes Bcl-2 Homolog Proteins did not change. Then, we demonstrated the differential expression of proteins in presence of this 3-oxo-C12-HSL using 3D sponge cell cultures. Proteins involved in the first steps of the endocytosis process were highlighted using the 2D electrophoresis protein separation and the MALDI-TOF/TOF protein characterization: α and β subunits of the lysosomal ATPase, a cognin, cofilins-related proteins and cytoskeleton proteins actin, α tubulin and α actinin. The genetic expression of some of these proteins was subsequently followed. We propose that the 3-oxo-C12-HSL may participate in the tolerance of the sponge apoptotic and immune systems towards the presence of bacteria. Besides, the sponge may sense the 3-oxo-C12-HSL as a molecular evidence of the bacterial presence and/or density in order to regulate the populations of symbiotic bacteria in the sponge. This study is the first report of a bacterial secreted molecule acting on sponge cells and regulating the symbiotic relationship.
Collapse
Affiliation(s)
- Johan Gardères
- Université de Bretagne-Sud, Laboratoire de Biotechnologie et de Chimie Marines, EA 3884, Institut Universitaire Européen de la Mer, Lorient, France
| | - Joël Henry
- Laboratoire des Mollusques Marins et des Ecosystèmes associés, CNRS INEE FRE 3484, Université de Caen Basse-Normandie, Caen, France
| | - Benoit Bernay
- Post Genomic Platform PROTEOGEN, SF ICORE 4206, Université de Caen Basse-Normandie, Caen, France
| | - Andrès Ritter
- Pontificia Universidad Católica de Chile - Departamento de Ecología Facultad de Ciencias Biológicas - Santiago - Chile
| | - Céline Zatylny-Gaudin
- Laboratoire des Mollusques Marins et des Ecosystèmes associés, CNRS INEE FRE 3484, Université de Caen Basse-Normandie, Caen, France
| | - Matthias Wiens
- European Research Council Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E. G. Müller
- European Research Council Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Gaël Le Pennec
- Université de Bretagne-Sud, Laboratoire de Biotechnologie et de Chimie Marines, EA 3884, Institut Universitaire Européen de la Mer, Lorient, France
- * E-mail:
| |
Collapse
|
5
|
Hoat TX, Nakayashiki H, Yang Q, Tosa Y, Mayama S. Molecular cloning of the apoptosis-related calcium-binding protein AsALG-2 in Avena sativa. MOLECULAR PLANT PATHOLOGY 2013; 14:222-9. [PMID: 23083467 PMCID: PMC6638752 DOI: 10.1111/j.1364-3703.2012.00844.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Victorin, the host-selective toxin produced by the fungus Cochliobolus victoriae, induces programmed cell death (PCD) in victorin-sensitive oat lines with characteristic features of animal apoptosis, such as mitochondrial permeability transition, chromatin condensation, nuclear DNA laddering and rRNA/mRNA degradation. In this study, we characterized a calcium-binding protein, namely AsALG-2, which might have a role in the victorin-induced PCD. AsALG-2 is homologous to the Apoptosis-Linked Gene ALG-2 identified in mammalian cells. Northern blot analysis revealed that the accumulation of AsALG-2 transcripts increased during victorin-induced PCD, but not during necrotic cell death. Salicylic acid, chitosan and chitin strongly activated the expression of general defence response genes, such as PR-10; however, neither induced cell death nor the accumulation of AsALG-2 mRNA. Pharmacological studies indicated that victorin-induced DNA laddering and AsALG-2 expression were regulated through similar pathways. The calcium channel blocker, nifedipine, moderately inhibited the accumulation of AsALG-2 mRNA during cell death. Trifluoperazine (calmodulin antagonist) and K252a (serine-threonine kinase inhibitor) reduced the victorin-induced phytoalexin accumulation, but did not prevent the victorin-induced DNA laddering or accumulation of AsALG-2 mRNA. Taken together, our investigations suggest that there is a calcium-mediated signalling pathway in animal and plant PCD in common.
Collapse
Affiliation(s)
- Trinh Xuan Hoat
- Laboratory of Plant Pathology, Graduate School of Science and Technology, Kobe University, Rokkodai, Nada-ku, Kobe, Japan.
| | | | | | | | | |
Collapse
|
6
|
Martinand-Mari C, Vacelet J, Nickel M, Wörheide G, Mangeat P, Baghdiguian S. Cell death and renewal during prey capture and digestion in the carnivorous sponge Asbestopluma hypogea (Porifera: Poecilosclerida). J Exp Biol 2012; 215:3937-43. [DOI: 10.1242/jeb.072371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
The sponge Asbestopluma hypogea is unusual among sponges due to its peculiar carnivorous feeding habit. During various stages of its nutrition cycle, the sponge is subjected to spectacular morphological modifications. Starved animals are characterized by many elongated filaments which are crucial for the sponge to capture prey. After capture, and during the digestion process, these filaments actively regress before being regenerated during a subsequent period of starvation. Here, we demonstrate that these morphological events repose on a highly dynamic cellular turnover implying a coordinated sequence of programmed cell death (apoptosis and autophagy), cell proliferation and cell migration. A candidate niche for cell renewal by stem cell proliferation and differentiation was identified at the base of the sponge peduncle, characterized by surpassing levels of BrdU/EdU incorporation. Therefore, BrdU/EdU positive-cells of the peduncle base are candidate motile cells responsible for the regeneration of the prey-capturing main sponge body, i.e. the dynamic filaments. Altogether, our results demonstrate that dynamic of cell renewal in sponge appears to be regulated by cellular mechanisms as multiple and complex as those already identified in bilaterian metazoans.
Collapse
|
7
|
Müller WEG, Wang X, Binder M, von Lintig J, Wiens M, Schröder HC. Differential expression of the demosponge (Suberites domuncula) carotenoid oxygenases in response to light: protection mechanism against the self-produced toxic protein (Suberitine). Mar Drugs 2012; 10:177-199. [PMID: 22363229 PMCID: PMC3280542 DOI: 10.3390/md10010177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/05/2012] [Accepted: 01/09/2012] [Indexed: 11/16/2022] Open
Abstract
The demosponge Suberites domuncula has been described to contain high levels of a proteinaceous toxin, Suberitine, that displays haemolytic activityIn the present study this 7-8 kDa polypeptide has been isolated and was shown to exhibit also cytotoxic effects on cells of the same species. Addition of retinal, a recently identified metabolite of β-carotene that is abundantly present in S. domuncula was found to reduce both the haemolytic and the cell toxic activity of Suberitine at a molar ratio of 1:1. Spectroscopic analyses revealed that the interaction between β-carotene and Suberitine can be ascribed to a reversible energy transfer reaction. The enzyme that synthesises retinal in the sponge system is the β,β-carotene-15,15'-dioxygenase [carotene dioxygenase]. In order to clarify if this enzyme is the only β-carotene-metabolizing enzyme a further oxygenase had been identified and cloned, the (related) carotenoid oxygenase. In contrast to the dioxygenase, the carotenoid oxygenase could not degrade β-carotene or lycopene in Escherichia coli strains that produced these two carotenoids; therefore it had been termed related-carotenoid oxygenase. Exposure of primmorphs to light of different wavelengths from the visible spectrum resulted after 3 days in a strong upregulation of the dioxygenase in those 3D-cell aggregates that had been incubated with β-carotene. The strongest effect is seen with blue light at a maximum around 490 nm. It is concluded that the toxin Suberitine is non-covalently modified by retinal, the cleavage product from β-carotene via the enzyme carotene dioxygenase, a light inducible oxygenase. Hence, this study highlights that in S. domuncula the bioactive metabolite, retinal, has the property to detoxify its homologous toxin.
Collapse
Affiliation(s)
- Werner E. G. Müller
- ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; (X.W.); (M.B.); (M.W.); (H.C.S.)
| | - Xiaohong Wang
- ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; (X.W.); (M.B.); (M.W.); (H.C.S.)
- National Research Center for Geoanalysis, 26 Baiwanzhuang Dajie, Beijing 100037, China
| | - Michael Binder
- ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; (X.W.); (M.B.); (M.W.); (H.C.S.)
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44160, USA;
| | - Matthias Wiens
- ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; (X.W.); (M.B.); (M.W.); (H.C.S.)
| | - Heinz C. Schröder
- ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; (X.W.); (M.B.); (M.W.); (H.C.S.)
| |
Collapse
|
8
|
Rozas EE, Albano RM, Lôbo-Hajdu G, Müller WE, Schröder HC, Custódio MR. Isolation and cultivation of fungal strains from in vitro cell cultures of two marine sponges (Porifera: Halichondrida and Haplosclerida). Braz J Microbiol 2011; 42:1560-8. [PMID: 24031790 PMCID: PMC3768729 DOI: 10.1590/s1517-838220110004000043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/30/2011] [Accepted: 05/16/2011] [Indexed: 11/21/2022] Open
Abstract
Despite the large number of reports describing sponge-microbe associations, limited knowledge is available about associated fungi and their relationships with the hosts. In this work, specific fungal strains were obtained directly from in vitro sponge cell cultures (primmorphs) and single sponge cells (cytospins) and compared with those obtained from whole tissue preparations. A total of 27 fungal strains were isolated from the marine sponges Hymeniacidon heliophila and Haliclona melana. Fifteen strains, nine from H. heliophila and six from H. melana, were obtained from whole tissue and were considered as possible mesohyl associated or transient fungi. Twelve strains were isolated from in vitro sponge cell cultures (primmorphs) and were, therefore, considered as cell associated. From these, five different strains were obtained from H. heliophila isolated cells, while five were identified from cytospins and two from primmorphs of H. melana. The fungal strains obtained from cell cultures from both sponge species were different, and none of them were detected in the whole tissue preparations of the same species. Nine H. heliophila and seven H. melana strains shows low similarity with the sequences available in public databases and belong to potentially new species. This is the first report of fungi isolated directly from sponge cells, which allowed the observation and selection of specific strains that probably would not be obtained by usual culture dependent techniques.
Collapse
Affiliation(s)
- Enrique E. Rozas
- Centro de Energia, Ambiente e Biodiversidade, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brasil
- Departamento de Fisiologia Geral, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Rodolpho M. Albano
- Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Gisele Lôbo-Hajdu
- Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Werner E.G. Müller
- Institut für Physiologische Chemie, Abt. Angewandte Molekularbiologie, Johannes Gutenberg-Universität, Mainz, Germany
| | - Heinz-C. Schröder
- Institut für Physiologische Chemie, Abt. Angewandte Molekularbiologie, Johannes Gutenberg-Universität, Mainz, Germany
| | - Márcio R. Custódio
- Departamento de Fisiologia Geral, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
9
|
Abstract
The precise, regional execution of programmed cell death is required for the proper patterning and sculpting of the embryonic primordium during animal development. In addition, cell death that is not directly involved in sculpting is also widely observed. The most abundant morphological form of programmed cell death in developing animals is apoptosis, and identification of the apoptotic genetic pathways has enabled the study of apoptosis' regulation and roles during development. Genetic and bio-imaging studies have permitted the study of the active roles of cell death in development and organismal homeostasis.
Collapse
Affiliation(s)
- Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, and CREST, JST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
10
|
Lack of p21 expression links cell cycle control and appendage regeneration in mice. Proc Natl Acad Sci U S A 2010; 107:5845-50. [PMID: 20231440 DOI: 10.1073/pnas.1000830107] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Animals capable of regenerating multiple tissue types, organs, and appendages after injury are common yet sporadic and include some sponge, hydra, planarian, and salamander (i.e., newt and axolotl) species, but notably such regenerative capacity is rare in mammals. The adult MRL mouse strain is a rare exception to the rule that mammals do not regenerate appendage tissue. Certain commonalities, such as blastema formation and basement membrane breakdown at the wound site, suggest that MRL mice may share other features with classical regenerators. As reported here, MRL fibroblast-like cells have a distinct cell-cycle (G2/M accumulation) phenotype and a heightened basal and wound site DNA damage/repair response that is also common to classical regenerators and mammalian embryonic stem cells. Additionally, a neutral and alkaline comet assay displayed a persistent level of intrinsic DNA damage in cells derived from the MRL mouse. Similar to mouse ES cells, the p53-target p21 was not expressed in MRL ear fibroblasts. Because the p53/p21 axis plays a central role in the DNA damage response and cell cycle control, we directly tested the hypothesis that p21 down-regulation could functionally induce a regenerative response in an appendage of an otherwise nonregenerating mouse strain. Using the ear hole closure phenotype, a genetically mapped and reliable quantitative indicator of regeneration in the MRL mouse, we show that the unrelated Cdkn1a(tmi/Tyj)/J p21(-/-) mouse (unlike the B6129SF2/J WT control) closes ear holes similar to MRL mice, providing a firm link between cell cycle checkpoint control and tissue regeneration.
Collapse
|
11
|
Hemond M, Rothstein TL, Wagner G. Fas apoptosis inhibitory molecule contains a novel beta-sandwich in contact with a partially ordered domain. J Mol Biol 2009; 386:1024-37. [PMID: 19168072 DOI: 10.1016/j.jmb.2009.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 01/03/2009] [Accepted: 01/06/2009] [Indexed: 11/17/2022]
Abstract
Fas apoptosis inhibitory molecule (FAIM) is a soluble cytosolic protein inhibitor of programmed cell death and is found in organisms throughout the animal kingdom. A short isoform of FAIM is expressed in all tissue types, while an alternatively spliced long isoform is specifically expressed in the brain. Here, the short isoform is shown to consist of two independently folding domains in contact with each other. The NMR solution structure of the C-terminal domain of murine FAIM is solved in isolation and revealed to be a novel protein fold, a noninterleaved seven-stranded beta-sandwich. The structure and sequence reveal several residues that are likely to be involved in functionally significant interactions with the N-terminal domain or other binding partners. Chemical shift perturbation is used to elucidate contacts made between the N-terminal domain and the C-terminal domain.
Collapse
Affiliation(s)
- Michael Hemond
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
12
|
Müller WEG, Wang X, Schröder HC. Paleoclimate and Evolution: Emergence of Sponges During the Neoproterozoic. BIOSILICA IN EVOLUTION, MORPHOGENESIS, AND NANOBIOTECHNOLOGY 2009; 47:55-77. [DOI: 10.1007/978-3-540-88552-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Elliott GRD, Leys SP. Coordinated contractions effectively expel water from the aquiferous system of a freshwater sponge. J Exp Biol 2007; 210:3736-48. [DOI: 10.1242/jeb.003392] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
SUMMARY
In response to mechanical stimuli the freshwater sponge Ephydatia muelleri (Demospongiae, Haplosclerida, Spongillidae) carries out a series of peristaltic-like contractions that is effective in expelling clumps of waste material from the aquiferous system. Rates of contraction depend on the region of tissue they are propagating through: 0.3–1 μm s–1 in the peripheral canals, 1–4 μm s–1 in central canals, and 6–122 μm s–1 in the osculum. Faster events include twitches of the entire sponge choanosome and contraction of the sheet-like apical pinacoderm that forms the outer surface of the animal. Contraction events are temporally and spatially coordinated. Constriction of the tip of the osculum leads to dilation of excurrent canals; fields of ostia in the apical pinacoderm close in unison just prior to contraction of the choanosome, apical pinacoderm and osculum. Relaxation returns the osculum, canals and the apical pinacoderm to their normal state, and three such coordinated `inflation–contraction'responses typically follow a single stimulus. Cells in the mesohyl arrest crawling as a wave of contraction passes, suggesting an extracellular signal may pass between cells. Bundles of actin filaments traverse endopinacocytes of the apical pinacoderm. Actin-dense plaques join actin bundles in adjacent pinacocytes to form continuous tracts spanning the whole sponge. The orchestrated and highly repeatable series of contractions illustrates that cellular sponges are capable of coordinated behavioural responses even in the absence of neurons and true muscle. Propagation of the events through the pinacocytes also illustrates the presence of a functional epithelium in cellular sponges. These results suggest that control over a hydrostatic skeleton evolved prior to the origin of nerves and true muscle.
Collapse
Affiliation(s)
- Glen R. D. Elliott
- Department of Biological Sciences, University of Alberta, Edmonton,Alberta T6G 2E9, Canada
| | - Sally P. Leys
- Department of Biological Sciences, University of Alberta, Edmonton,Alberta T6G 2E9, Canada
| |
Collapse
|
14
|
Differential effect of allorecognition loci on phenotype in Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa). Genetics 2007; 177:2101-7. [PMID: 17947438 DOI: 10.1534/genetics.107.075689] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The allorecognition complex of Hydractinia symbiolongicarpus is a chromosomal interval containing two loci, alr1 and alr2, that controls fusion between genetically distinct colonies. Recombination between these two loci has been associated with a heterogeneous class of phenotypes called transitory fusion. A large-scale backcross was performed to generate a population of colonies (N = 106) with recombination breakpoints within the allorecognition complex. Two distinct forms of transitory fusion were correlated with reciprocal recombination products, suggesting that alr1 and alr2 contributed differentially to the allorecognition response. Specifically, type I transitory fusion is associated with rapid and persistent separation of allogeneic tissues, whereas type II transitory fusion generates a patchwork of continuously fusing and separating tissues.
Collapse
|
15
|
Sabella C, Faszewski E, Himic L, Colpitts KM, Kaltenbach J, Burger MM, Fernàndez-Busquets X. Cyclosporin A Suspends Transplantation Reactions in the Marine SpongeMicrociona prolifera. THE JOURNAL OF IMMUNOLOGY 2007; 179:5927-35. [DOI: 10.4049/jimmunol.179.9.5927] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Wiens M, Belikov SI, Kaluzhnaya OV, Schröder HC, Hamer B, Perovic-Ottstadt S, Borejko A, Luthringer B, Müller IM, Müller WEG. Axial (apical-basal) expression of pro-apoptotic and pro-survival genes in the lake baikal demosponge Lubomirskia baicalensis. DNA Cell Biol 2006; 25:152-64. [PMID: 16569194 DOI: 10.1089/dna.2006.25.152] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Like in all other Metazoa, also in sponges (Porifera) proliferation, differentiation, and death of cells are controlled by apoptotic processes, thus allowing the establishment of a Bauplan (body plan). The demosponge Lubomirskia baicalensis from the Lake Baikal is especially suitable to assess the role of the apoptotic molecules, since its grade of construction is highly elaborated into an encrusting base and branches composed of modules lined up along the apical-basal axis. The four cDNAs, ALG-2, BAK, MA-3, and Bcl-2, were isolated from this sponge species. The expression levels of these genes follow characteristic gradients. While the proapoptotic genes are highly expressed at the base of the branches and comparably low at the top, the pro-survival gene follows an opposite gradient. Parallel with the tuned expression of these genes, the activities of the apoptosis-executing enzymes caspase-8 (IETDase activity) and caspase-3 (DEVDase activity) are lowest at the top of the branch and highest at their base. This characteristic expression/activity pattern of the genes/enzymes, which had been determined in a few specimens, collected from an unpolluted, natural site, appears reversed in specimens collected from an anthropogenically polluted site. These findings indicate the involvement of apoptotic proteins in the axis formation (branches) in L. baicalensis.
Collapse
Affiliation(s)
- Matthias Wiens
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wiens M, Müller WE. Cell death in Porifera: molecular players in the game of apoptotic cell death in living fossils. CAN J ZOOL 2006. [DOI: 10.1139/z05-165] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis represents the morphological manifestation of programmed cell death and, paradoxically at first sight, it is a prerequisite for metazoan life. Thus, apoptosis is responsible for the demise of cells during many physiological processes. It is also accountable for the death of cells following exposure to countless stimuli. Therefore, it is obvious that apoptosis must be regulated by a complex network of various molecular signaling pathways. Research during the past 20 years has led to the identification of major functional groups of molecules involved in apoptotic pathways. These include members of the Bcl-2 superfamily, members of the TNF family, caspases, and their activators. Yet, the evolutionary conservation of those elements of the apoptotic machinery was only established from nematode to man. Sponges (phylum Porifera) are characterized by a remarkable regeneration capacity and longevity. Furthermore, they represent the phylogenetically oldest still extant metazoan taxon. Thus, research on these living fossils opens a window to the past, to the dawn of metazoan life. It allows us to trace the evolution of programmed cell death and its core components. This review summarizes the key findings and concepts which have emerged from studies of apoptosis in Porifera.
Collapse
|
18
|
Aouacheria A, Brunet F, Gouy M. Phylogenomics of Life-Or-Death Switches in Multicellular Animals: Bcl-2, BH3-Only, and BNip Families of Apoptotic Regulators. Mol Biol Evol 2005; 22:2395-416. [PMID: 16093567 DOI: 10.1093/molbev/msi234] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this report, we conducted a comprehensive survey of Bcl-2 family members, a divergent group of proteins that regulate programmed cell death by an evolutionarily conserved mechanism. Using comparative sequence analysis, we found novel sequences in mammals, nonmammalian vertebrates, and in a number of invertebrates. We then asked what conclusions could be drawn from phyletic distribution, intron/exon structures, sequence/structure relationships, and phylogenetic analyses within the updated Bcl-2 family. First, multidomain members having a sequence pattern consistent with the conservation of the Bcl-X(L)/Bax/Bid topology appear to be restricted to multicellular animals and may share a common ancestry. Next, BNip proteins, which were originally identified based on their ability to bind to E1B 19K/Bcl-2 proteins, form three independent monophyletic branches with different evolutionary history. Lastly, a set of Bcl-2 homology 3-only proteins with unrelated secondary structures seems to have evolved after the origin of Metazoa and exhibits diverse expansion after speciation during vertebrate evolution.
Collapse
Affiliation(s)
- Abdel Aouacheria
- Laboratoire de Biométrie et Biologie Evolutive, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France.
| | | | | |
Collapse
|