1
|
Xiao K, Zhang S, Li C. The complement system and complement-like factors in sea cucumber. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104511. [PMID: 36029917 DOI: 10.1016/j.dci.2022.104511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The complement system is an important part of innate immunity and plays an essential role in immune responses. Complement system consists of a series of proteins, its activation results in opsonization and phagocytosis of pathogens. Although the complement system has been studied extensively in vertebrates, considerably less is known about complement in invertebrates, especially in sea cucumber. Here, we reviewed the complement-like factors including Component 3 (C3), Complement factor B (Bf), Mannan-binding lectin (MBL) and globular Complement component 1q Receptor (gC1qR), which had been found in the complement system of sea cucumber. Furthermore, we compared the features of complement components among marine invertebrates and described the evolution of sea cucumber complement system obviously. This review can offer theoretical basis for disease control of the sea cucumber and will provide new insights into immune system of marine invertebrates. Meantime, the complete framework of sea cucumber complement may benefit the aquaculture industry.
Collapse
Affiliation(s)
- Ke Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Siyuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
2
|
Peng M, Li Z, Niu D, Liu X, Dong Z, Li J. Complement factor B/C2 in molluscs regulates agglutination and illuminates evolution of the Bf/C2 family. FASEB J 2019; 33:13323-13333. [PMID: 31550175 DOI: 10.1096/fj.201901142rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Complement factor B/C2 family (Bf/C2F) proteins are core complement system components in vertebrates that are absent in invertebrates and have been lost by numerous species, raising evolutionary questions. At least 3 duplication events have occurred from Cnidaria (ancestor) to mammals. Type II Bf/C2 genes appeared during separation of Proterostomia and Deuterostomes. The second event occurred during separation of vertebrates and invertebrates, yielding type II-2 Bf/C2. The third event occurred when jawed and jawless fish were separated, eventually producing Bf and C2 genes. Herein, we report the second mollusc Sinonovacula constricta Bf/C2-type gene (ScBf). ScBf is similar to Ruditapes decussatus Bf-like because both lack the first complement control protein module at the N terminus present in mammalian Bf/C2 proteins. Uniquely, the Ser protease (SP) module at the C terminus of ScBf is ∼50 aa longer than in other complement factor B/C2-type (Bf/C2T) proteins, and is Glu-rich. Bf/C2T proteins in molluscs lack the catalytic Ser in the SP module. Surprisingly, ScBf regulates rabbit erythrocyte agglutination, during which it is localized on the erythrocyte surface. Thus, ScBf may mediate the agglutination cascade and may be an upstream regulator of this process. Our findings provide new insight into the origin of the Bf/C2F.-Peng, M., Li, Z., Niu, D., Liu, X., Dong, Z., Li, J. Complement factor B/C2 in molluscs regulates agglutination and illuminates evolution of the Bf/C2 family.
Collapse
Affiliation(s)
- Maoxiao Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Zhi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Donghong Niu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Co-Innovation Centre of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China; and
| | - Xiaojun Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Zhiguo Dong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Co-Innovation Centre of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China; and
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Co-Innovation Centre of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China; and
| |
Collapse
|
3
|
Melillo D, Marino R, Della Camera G, Italiani P, Boraschi D. Assessing Immunological Memory in the Solitary Ascidian Ciona robusta. Front Immunol 2019; 10:1977. [PMID: 31475017 PMCID: PMC6707023 DOI: 10.3389/fimmu.2019.01977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/05/2019] [Indexed: 11/13/2022] Open
Abstract
The immune defensive mechanisms active in the solitary ascidian Ciona robusta include phagocytic and encapsulating activity, largely brought about by phagocytic cells within the haemocyte population, the presence of complement components, which have been molecularly and functionally identified, and expression of a number of immune-related genes and pathways, identified by genome-based homology with vertebrate counterparts. Since C. robusta only displays highly conserved innate immune mechanisms, being devoid of an adaptive immune system, this organism is an excellent model for studying the features of innate memory, i.e., the capacity of the innate immune system to re-programming its responsiveness to potentially dangerous agents upon repeated exposure. In this study, we have developed an in vivo model for assessing the establishment and molecular/functional features of innate memory, by sequentially exposing C. robusta to a priming stimulus (microbial molecules), followed by a period of resting to return to basal conditions, and a challenge with microbial agents in homologous or cross-stimulation. The endpoints of immune activation were a functional activity (phagocytosis) and the molecular profiles of immune-related gene expression. The results show that exposure of C. robusta to microbial agents induces a reaction that primes animals for developing a different (expectedly more protective) response to subsequent challenges, showing the effective establishment of an immune memory. This immune memory relies on the modulation of a number of different mechanisms, some of which are priming-specific, others that are challenge-specific, and others that are non-specific, i.e., are common to all priming/challenge combinations (e.g., up-regulation of the Tnf and Lbp genes). Memory-dependent expression of the humoral immunity-related gene C3ar inversely correlates with memory-dependent variations of phagocytic rate, suggesting that complement activation and phagocytosis are alternative defensive mechanisms in C. robusta. Conversely, memory-dependent expression of the cellular immunity-related gene Cd36 directly correlates with variations of phagocytic rate, suggesting a direct involvement of this gene in the functional regulation of phagocytosis.
Collapse
Affiliation(s)
- Daniela Melillo
- National Research Council (CNR), Institute of Biochemistry and Cell Biology (IBBC), Naples, Italy
| | - Rita Marino
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Giacomo Della Camera
- National Research Council (CNR), Institute of Biochemistry and Cell Biology (IBBC), Naples, Italy
| | - Paola Italiani
- National Research Council (CNR), Institute of Biochemistry and Cell Biology (IBBC), Naples, Italy
| | - Diana Boraschi
- National Research Council (CNR), Institute of Biochemistry and Cell Biology (IBBC), Naples, Italy.,Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
4
|
Franchi N, Ballarin L. Immunity in Protochordates: The Tunicate Perspective. Front Immunol 2017; 8:674. [PMID: 28649250 PMCID: PMC5465252 DOI: 10.3389/fimmu.2017.00674] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Tunicates are the closest relatives of vertebrates, and their peculiar phylogenetic position explains the increasing interest toward tunicate immunobiology. They are filter-feeding organisms, and this greatly influences their defense strategies. The majority of the studies on tunicate immunity were carried out in ascidians. The tunic acts as a first barrier against pathogens and parasites. In addition, the oral siphon and the pharynx represent two major, highly vascularized, immune organs, where circulating hemocytes can sense non-self material and trigger immune responses that, usually, lead to inflammation and phagocytosis. Inflammation involves the recruitment of circulating cytotoxic, phenoloxidase (PO)-containing cells in the infected area, where they degranulate as a consequence of non-self recognition and release cytokines, complement factors, and the enzyme PO. The latter, acting on polyphenol substrata, produces cytotoxic quinones, which polymerize to melanin, and reactive oxygen species, which induce oxidative stress. Both the alternative and the lectin pathways of complement activation converge to activate C3: C3a and C3b are involved in the recruitment of hemocytes and in the opsonization of foreign materials, respectively. The interaction of circulating professional phagocytes with potentially pathogenic foreign material can be direct or mediated by opsonins, either complement dependent or complement independent. Together with cytotoxic cells, phagocytes are active in the encapsulation of large materials. Cells involved in immune responses, collectively called immunocytes, represent a large fraction of hemocytes, and the presence of a cross talk between cytotoxic cells and phagocytes, mediated by secreted humoral factors, was reported. Lectins play a pivotal role as pattern-recognition receptors and opsonizing agents. In addition, variable region-containing chitin-binding proteins, identified in the solitary ascidian Ciona intestinalis, control the settlement and colonization of bacteria in the gut.
Collapse
Affiliation(s)
- Nicola Franchi
- Department of Biology, University of Padova, Padova, Italy
| | | |
Collapse
|
5
|
Li C, Li H, Xiao B, Chen Y, Wang S, Lǚ K, Yin B, Li S, He J. Identification and functional analysis of a TEP gene from a crustacean reveals its transcriptional regulation mediated by NF-κB and JNK pathways and its broad protective roles against multiple pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 70:45-58. [PMID: 28069434 DOI: 10.1016/j.dci.2017.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/02/2017] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
Thioester-containing proteins (TEPs) are present in a wide range of species from deuterostomes to protostomes and are thought to be involved in innate immunity. In the current study, a TEP gene homologous to insect TEPs (iTEP) from the crustacean Litopenaeus vannamei, named LvTEP1, is cloned and functionally characterized. The open reading frame (ORF) of LvTEP1 is 4383 bp in length, encoding a polypeptide of 1460 amino acids with a calculated molecular weight of 161.1 kDa LvTEP1, which is most similar to other TEPs from insects, contains some conserved sequence features, including a N-terminal signal peptide, a canonical thioester (TE) motif, and a C-terminal distinctive cysteine signature. LvTEP1 is expressed in most immune-related tissues, such as intestine, epithelium, and hemocytes, and the mRNA level of LvTEP1 is upregulated in hemocytes after bacterial and viral challenges, indicating its involvement in the shrimp innate immune response. An expression assay in Drosophila S2 cells shows LvTEP1 to be a full-length secretory protein, and processed forms are present in the supernatant. Of note, only the processed form of LvTEP1 protein can bind to both the gram-negative bacterium Vibrio parahaemolyticus and the gram-positive bacterium Staphylococcus aureus in vitro, and its abundance can be induced after bacterial treatment. Moreover, knockdown of LvTEP1 renders shrimps more susceptible to both V. parahaemolyticus and S. aureus, as well as white spot syndrome virus (WSSV) infection, suggesting its essential defensive role against these invading microbes. We also observe that the expression of LvTEP1 is regulated in a manner dependent on both NF-κB and AP-1 transcription factors in naive shrimps and in vitro, suggesting that LvTEP1 could be poised in the body cavity prior to infection and thus play an important role in basal immunity. Taken together, our findings provide some in vitro and in vivo evidence for the involvement of LvTEP1 in shrimp innate immunity and provide some insight into its expression regulation mediated by multiple transcription factors or signaling pathways.
Collapse
Affiliation(s)
- Chaozheng Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| | - Haoyang Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Bang Xiao
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Yonggui Chen
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China
| | - Sheng Wang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Kai Lǚ
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Bin Yin
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Sedong Li
- Fisheries Research Institute of Zhanjiang, Zhanjiang, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| |
Collapse
|
6
|
Nicola F, Loriano B. Morula cells as key hemocytes of the lectin pathway of complement activation in the colonial tunicate Botryllus schlosseri. FISH & SHELLFISH IMMUNOLOGY 2017; 63:157-164. [PMID: 28189764 DOI: 10.1016/j.fsi.2017.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
The complement system is deeply rooted in the evolution of humoral mechanism of innate immunity. In addition to the alternative pathway of complement activation, lectins and associated serine proteases exert important roles in the recognition of non-self and activation of the effectors. In the colonial tunicate Botryllus schlosseri, we identified, characterized and studied the expression of three orthologues of genes involved in the lectin pathway of complement activation of vertebrates, i.e., genes for a mannose-binding lectin (MBL), a ficolin and a mannose-associated serine protease 1 (MASP1). All the genes are transcribed by hemocytes, and specifically by morula cells, the same immunocytes responsible for the transcription of C3 and Bf orthologues. The transcription levels of MASP1 and ficolin orthologues are not affected by zymosan challenge, indicating a constitutive expression of complement system associated serine proteases, whereas the MBL orthologue is up-regulated after 15 min of zymosan exposure. Collectively, our data suggest the presence of a complete lectin activation pathway in Botryllus.
Collapse
Affiliation(s)
- Franchi Nicola
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35100, Padova, Italy.
| | - Ballarin Loriano
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35100, Padova, Italy
| |
Collapse
|
7
|
Myamoto DT, Pidde-Queiroz G, Pedroso A, Gonçalves-de-Andrade RM, van den Berg CW, Tambourgi DV. Characterization of the gene encoding component C3 of the complement system from the spider Loxosceles laeta venom glands: Phylogenetic implications. Immunobiology 2016; 221:953-63. [PMID: 27259372 DOI: 10.1016/j.imbio.2016.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/28/2016] [Accepted: 05/23/2016] [Indexed: 01/02/2023]
Abstract
A transcriptome analysis of the venom glands of the spider Loxosceles laeta, performed by our group, in a previous study (Fernandes-Pedrosa et al., 2008), revealed a transcript with a sequence similar to the human complement component C3. Here we present the analysis of this transcript. cDNA fragments encoding the C3 homologue (Lox-C3) were amplified from total RNA isolated from the venom glands of L. laeta by RACE-PCR. Lox-C3 is a 5178 bps cDNA sequence encoding a 190kDa protein, with a domain configuration similar to human C3. Multiple alignments of C3-like proteins revealed two processing sites, suggesting that Lox-C3 is composed of three chains. Furthermore, the amino acids consensus sequences for the thioester was found, in addition to putative sequences responsible for FB binding. The phylogenetic analysis showed that Lox-C3 belongs to the same group as two C3 isoforms from the spider Hasarius adansoni (Family Salcitidae), showing 53% homology with these. This is the first characterization of a Loxosceles cDNA sequence encoding a human C3 homologue, and this finding, together with our previous finding of the expression of a FB-like molecule, suggests that this spider species also has a complement system. This work will help to improve our understanding of the innate immune system in these spiders and the ancestral structure of C3.
Collapse
Affiliation(s)
- D T Myamoto
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | - G Pidde-Queiroz
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | - A Pedroso
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | | | - C W van den Berg
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - D V Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil.
| |
Collapse
|
8
|
Poole AZ, Kitchen SA, Weis VM. The Role of Complement in Cnidarian-Dinoflagellate Symbiosis and Immune Challenge in the Sea Anemone Aiptasia pallida. Front Microbiol 2016; 7:519. [PMID: 27148208 PMCID: PMC4840205 DOI: 10.3389/fmicb.2016.00519] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/29/2016] [Indexed: 01/04/2023] Open
Abstract
The complement system is an innate immune pathway that in vertebrates, is responsible for initial recognition and ultimately phagocytosis and destruction of microbes. Several complement molecules including C3, Factor B, and mannose binding lectin associated serine proteases (MASP) have been characterized in invertebrates and while most studies have focused on their conserved role in defense against pathogens, little is known about their role in managing beneficial microbes. The purpose of this study was to (1) characterize complement pathway genes in the symbiotic sea anemone Aiptasia pallida, (2) investigate the evolution of complement genes in invertebrates, and (3) examine the potential dual role of complement genes Factor B and MASP in the onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge using qPCR based studies. The results demonstrate that A. pallida has multiple Factor B genes (Ap_Bf-1, Ap_Bf-2a, and Ap_Bf-2b) and one MASP gene (Ap_MASP). Phylogenetic analysis indicates that the evolutionary history of complement genes is complex, and there have been many gene duplications or gene loss events, even within members of the same phylum. Gene expression analyses revealed a potential role for complement in both onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge. Specifically, Ap_Bf-1 and Ap_MASP are significantly upregulated in the light at the onset of symbiosis and in response to challenge with the pathogen Serratia marcescens suggesting that they play a role in the initial recognition of both beneficial and harmful microbes. Ap_Bf-2b in contrast, was generally downregulated during the onset and maintenance of symbiosis and in response to challenge with S. marcescens. Therefore, the exact role of Ap_Bf-2b in response to microbes remains unclear, but the results suggest that the presence of microbes leads to repressed expression. Together, these results indicate functional divergence between Ap_Bf-1 and Ap_Bf-2b, and that Ap_Bf-1 and Ap_MASP may be functioning together in an ancestral hybrid of the lectin and alternative complement pathways. Overall, this study provides information on the role of the complement system in a basal metazoan and its role in host-microbe interactions.
Collapse
Affiliation(s)
- Angela Z Poole
- Department of Integrative Biology, Oregon State UniversityCorvallis, OR, USA; Department of Biology, Western Oregon UniverstiyMonmouth, OR, USA
| | - Sheila A Kitchen
- Department of Integrative Biology, Oregon State University Corvallis, OR, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University Corvallis, OR, USA
| |
Collapse
|
9
|
Characterization of a Gene Coding for the Complement System Component FB from Loxosceles laeta Spider Venom Glands. PLoS One 2016; 11:e0146992. [PMID: 26771533 PMCID: PMC4714745 DOI: 10.1371/journal.pone.0146992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/25/2015] [Indexed: 11/19/2022] Open
Abstract
The human complement system is composed of more than 30 proteins and many of these have conserved domains that allow tracing the phylogenetic evolution. The complement system seems to be initiated with the appearance of C3 and factor B (FB), the only components found in some protostomes and cnidarians, suggesting that the alternative pathway is the most ancient. Here, we present the characterization of an arachnid homologue of the human complement component FB from the spider Loxosceles laeta. This homologue, named Lox-FB, was identified from a total RNA L. laeta spider venom gland library and was amplified using RACE-PCR techniques and specific primers. Analysis of the deduced amino acid sequence and the domain structure showed significant similarity to the vertebrate and invertebrate FB/C2 family proteins. Lox-FB has a classical domain organization composed of a control complement protein domain (CCP), a von Willebrand Factor domain (vWFA), and a serine protease domain (SP). The amino acids involved in Mg2+ metal ion dependent adhesion site (MIDAS) found in the vWFA domain in the vertebrate C2/FB proteins are well conserved; however, the classic catalytic triad present in the serine protease domain is not conserved in Lox-FB. Similarity and phylogenetic analyses indicated that Lox-FB shares a major identity (43%) and has a close evolutionary relationship with the third isoform of FB-like protein (FB-3) from the jumping spider Hasarius adansoni belonging to the Family Salcitidae.
Collapse
|
10
|
Franchi N, Ballarin L. Preliminary characterization of complement in a colonial tunicate: C3, Bf and inhibition of C3 opsonic activity by compstatin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:430-438. [PMID: 24877658 DOI: 10.1016/j.dci.2014.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
The complement system is a fundamental effector mechanism of the innate immunity in both vertebrates and invertebrates. The comprehension of its roots in the evolution is a useful step to understand how the main complement-related proteins had changed in order to adapt to new environmental conditions and life-cycles or, in the case of vertebrates, to interact with the adaptive immunity. Data on organisms evolutionary close to vertebrates, such as tunicates, are of primary importance for a better understanding of the changes in immune responses associated with the invertebrate-vertebrate transition. Here we report on the characterization of C3 and Bf transcripts from the colonial ascidian Botryllus schlosseri (BsC3 and BsBf, respectively), a reliable model organism for immunobiological research, and present a comparative analysis of amino acid sequences of C3s and Bfs suggesting that, in deuterostomes, the structure of these proteins remained largely unchanged. We also present new data on the cells responsible of the expression of BsC3 and BsBf showing that cytotoxic immunocytes are the sole cells where the relative transcripts can be found. Finally, using the C3 specific inhibitor compstatin, we demonstrate the opsonic role of BsC3 in accordance with the idea that promotion of phagocytosis is one of the main function of C3 in metazoans.
Collapse
Affiliation(s)
- Nicola Franchi
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35100 Padova, Italy.
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35100 Padova, Italy
| |
Collapse
|
11
|
Abstract
The mammalian complement system constitutes a highly sophisticated body defense machinery comprising more than 30 components. Research into the evolutionary origin of the complement system has identified a primitive version composed of the central component C3 and two activation proteases Bf and MASP in cnidaria. This suggests that the complement system was established in the common ancestor of eumetazoa more than 500 million years ago. The original activation mechanism of the original complement system is believed to be close to the mammalian lectin and alternative activation pathways, and its main role seems to be opsonization and induction of inflammation. This primitive complement system has been retained by most deuterostomes without major change until the appearance of jawed vertebrates. At this stage, duplication of the C3, Bf and MASP genes as well as recruitment of membrane attack components added the classical and lytic pathways to the primitive complement system, converting it to the modern complement system. In contrast, the complement system was lost multiple times independently in the protostome lineage.
Collapse
Affiliation(s)
- Masaru Nonaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan,
| |
Collapse
|
12
|
Shen Y, Zhang J, Xu X, Fu J, Liu F, Li J. Molecular cloning, characterization and expression of the complement component Bf/C2 gene in grass carp. FISH & SHELLFISH IMMUNOLOGY 2012; 32:789-795. [PMID: 22365989 DOI: 10.1016/j.fsi.2012.01.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/17/2012] [Accepted: 01/31/2012] [Indexed: 05/31/2023]
Abstract
The complement system is an integral part of the host immune system and plays an immunoregulatory role at the interface between the innate and acquired immune responses. Factor B (Bf) serves as the catalytic subunit of complement C3 convertase in the alternative pathway (AP), while in the classical pathway (CP), this function is subjected to C2. In this study, we cloned and characterized the two Bf/C2 genes of grass carp, gcBf/C2A and gcBf/C2B. The gcBf/C2A and gcBf/C2B cDNA sequences are 2259 and 3004 bp in length, and the open reading frames (ORFs) of gcBf/C2A and gcBf/C2B were found to encode peptides of 752 and 837 amino acids, respectively. The genes share 30.7% amino acid identity with each other and 32.4-38.3% and 31.4-33% with the Bf and C2 genes in humans and mice. GcBf/C2A and gcBf/C2B were expressed in a wide range of grass carp tissues, with the highest level of expression of both genes detected in the liver. After a challenge with Aeromonas hydrophila, gcBf/C2A was significantly upregulated, especially at 4 h after infection, and the significantly higher expression of gcBf/C2B (27.3-fold) was found in the head kidney at 24 h post-challenge. The expression of gcBf/C2A was quickly upregulated at 1 day post-hatching and peaked at 5 days post-hatching. The maximum expression of gcBf/C2B was found at 1 day post-hatching. In conclusion, our data enables a better understanding of the physiological function of the Bf/C2 complement genes in vertebrates.
Collapse
Affiliation(s)
- Yubang Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai Ocean University, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
13
|
Cerenius L, Kawabata SI, Lee BL, Nonaka M, Söderhäll K. Proteolytic cascades and their involvement in invertebrate immunity. Trends Biochem Sci 2010; 35:575-83. [PMID: 20541942 DOI: 10.1016/j.tibs.2010.04.006] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 04/14/2010] [Accepted: 04/21/2010] [Indexed: 01/04/2023]
Abstract
Bacteria and other potential pathogens are cleared rapidly from the body fluids of invertebrates by the immediate response of the innate immune system. Proteolytic cascades, following their initiation by pattern recognition proteins, control several such reactions, notably coagulation, melanisation, activation of the Toll receptor and complement-like reactions. However, there is considerable variation among invertebrates and these cascades, although widespread, are not present in all phyla. In recent years, significant progress has been made in identifying and characterizing these cascades in insects. Notably, recent work has identified several connections and shared principles among the different pathways, suggesting that cross-talk between them may be common.
Collapse
Affiliation(s)
- Lage Cerenius
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
14
|
Nonaka M, Satake H. Urochordate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 708:302-10. [DOI: 10.1007/978-1-4419-8059-5_15] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Prado-Alvarez M, Rotllant J, Gestal C, Novoa B, Figueras A. Characterization of a C3 and a factor B-like in the carpet-shell clam, Ruditapes decussatus. FISH & SHELLFISH IMMUNOLOGY 2009; 26:305-315. [PMID: 19073265 DOI: 10.1016/j.fsi.2008.11.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 11/18/2008] [Accepted: 11/20/2008] [Indexed: 05/27/2023]
Abstract
The alternative pathway is considered to be the most ancient route for activation of the complement system. Herein, we report the characterization of C3 and factor B-like proteins in the clam Ruditapes decussatus, termed Rd-C3 and Rd-Bf-like. The Rd-C3 is a three-chain protein, similar to other protoC3 proteins, and the Rd-Bf-like is composed of two complement control protein modules (CCP domains) that differ from other described Bf proteins. The inoculation of clams with live bacteria did not result in induction of these functions, but inhibited the expression of Rd-C3 and Rd-Bf-like.
Collapse
Affiliation(s)
- M Prado-Alvarez
- Instituto de Investigaciones Marinas, CSIC, C/Eduardo Cabello 6, 36208 Vigo, Spain
| | | | | | | | | |
Collapse
|
16
|
Bajoghli B. Evolution of the Groucho/Tle gene family: gene organization and duplication events. Dev Genes Evol 2007; 217:613-8. [PMID: 17624551 DOI: 10.1007/s00427-007-0167-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 06/07/2007] [Indexed: 11/29/2022]
Abstract
The Groucho/Tle family of corepressor proteins has important roles in development and in adult tissue in both Protostomes and Deuterostomes. In Drosophila, a single member of this family has been identified. Unlike in Protostomes, most Deutrostomes contain more than two full-length Tle genes. In this study, I analyse the genomic organization and phylogenetic relationship between the long and short forms of the Groucho/Tle family members in Chordata. The genomic location and sequence similarities suggest that Aes/Grg5 and Tle6/Grg6 arose from duplication of the Tle2 gene; each evolved independently and acquired new functions as negative regulators of the other Tle proteins. Based on these data, a model for Groucho/Tle gene evolution is proposed.
Collapse
Affiliation(s)
- Baubak Bajoghli
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
17
|
Dodds AW, Matsushita M. The phylogeny of the complement system and the origins of the classical pathway. Immunobiology 2007; 212:233-43. [PMID: 17544809 DOI: 10.1016/j.imbio.2006.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 11/14/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
The origins of the complement system have now been traced to near to the beginnings of multi-cellular animal life. Most of the evidence points to the earliest activation mechanism having been more similar to the lectin pathway than to the alternative pathway. C1q, the immunoglobulin recognition molecule of the classical pathway of the vertebrates, has now been shown to predate the development of antibody as it has been found in the lamprey, a jawless fish that lacks an acquired immune system. In this species, C1q acts as a lectin that binds MASPs and activates the C3/C4-like thioester protein of the lamprey complement system. The classical pathway can, therefore, be regarded as a specialised arm of the lectin pathway in which the specificity of C1q for carbohydrate has been recruited to recognise the Fc region of immunoglobulin.
Collapse
Affiliation(s)
- Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | |
Collapse
|
18
|
Nakao M, Kato-Unoki Y, Nakahara M, Mutsuro J, Somamoto T. Diversified Components of the Bony Fish Complement System: More Genes for Robuster Innate Defense? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 586:121-38. [PMID: 16893069 DOI: 10.1007/0-387-34134-x_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
19
|
Pinto MR, Melillo D, Giacomelli S, Sfyroera G, Lambris JD. Ancient origin of the complement system: emerging invertebrate models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 598:372-88. [PMID: 17892225 DOI: 10.1007/978-0-387-71767-8_26] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Rosaria Pinto
- Stazione Zoologica "Anton Dohrn", Laboratory of Cell Biology, Napoli, Italy.
| | | | | | | | | |
Collapse
|
20
|
Shin DH, Webb B, Nakao M, Smith SL. Molecular cloning, structural analysis and expression of complement component Bf/C2 genes in the nurse shark, Ginglymostoma cirratum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:1168-82. [PMID: 17482263 DOI: 10.1016/j.dci.2007.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Revised: 02/05/2007] [Accepted: 03/04/2007] [Indexed: 05/15/2023]
Abstract
Factor B and C2 are serine proteases that provide the catalytic subunits of C3 and C5 convertases of the alternative (AP) and classical (CP) complement pathways. Two Bf/C2 cDNAs, GcBf/C2-1 and -2 (previously referred to as nsBf/C2-A and nsBf/C2-B), were isolated from the nurse shark, Ginglymostoma cirratum. GcBf/C2-1 and -2 are 3364 and 3082bp in length and encode a leader peptide, three CCPs, one VWFA, the serine protease domain and have a putative factor D/C1s/MASP cleavage site. Southern blots show that there might be up to two Bf/C2-like genes for each of the two GcBf/C2 isoforms. GcBf/C2-1 and -2 are constitutively expressed, albeit at different levels, in all nine tissues examined. Expression in erythrocytes is a novel finding. Structural analysis has revealed that the localization of glycosylation sites in the SP domain of both putative proteins indicates that the molecular organization of the shark molecules is more like C2 than factor B. Phylogenetic analysis indicates that GcBf/C2-1 and -2 and TrscBf of Triakis scyllia (another shark species) originated from a common ancestor and share a remote ancestor with Bf and C2 of mammals and bony fish.
Collapse
Affiliation(s)
- Dong-Ho Shin
- Department of Biological Sciences, Florida International University, University Park, Miami, FL 33199, USA
| | | | | | | |
Collapse
|
21
|
Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, Buckley KM, Brockton V, Nair SV, Berney K, Fugmann SD, Anderson MK, Pancer Z, Cameron RA, Smith LC, Rast JP. The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 2006; 300:349-65. [PMID: 17027739 DOI: 10.1016/j.ydbio.2006.08.065] [Citation(s) in RCA: 422] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 08/21/2006] [Accepted: 08/28/2006] [Indexed: 01/01/2023]
Abstract
Echinoderms occupy a critical and largely unexplored phylogenetic vantage point from which to infer both the early evolution of bilaterian immunity and the underpinnings of the vertebrate adaptive immune system. Here we present an initial survey of the purple sea urchin genome for genes associated with immunity. An elaborate repertoire of potential immune receptors, regulators and effectors is present, including unprecedented expansions of innate pathogen recognition genes. These include a diverse array of 222 Toll-like receptor (TLR) genes and a coordinate expansion of directly associated signaling adaptors. Notably, a subset of sea urchin TLR genes encodes receptors with structural characteristics previously identified only in protostomes. A similarly expanded set of 203 NOD/NALP-like cytoplasmic recognition proteins is present. These genes have previously been identified only in vertebrates where they are represented in much lower numbers. Genes that mediate the alternative and lectin complement pathways are described, while gene homologues of the terminal pathway are not present. We have also identified several homologues of genes that function in jawed vertebrate adaptive immunity. The most striking of these is a gene cluster with similarity to the jawed vertebrate Recombination Activating Genes 1 and 2 (RAG1/2). Sea urchins are long-lived, complex organisms and these findings reveal an innate immune system of unprecedented complexity. Whether the presumably intense selective processes that molded these gene families also gave rise to novel immune mechanisms akin to adaptive systems remains to be seen. The genome sequence provides immediate opportunities to apply the advantages of the sea urchin model toward problems in developmental and evolutionary immunobiology.
Collapse
Affiliation(s)
- Taku Hibino
- Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, 2075 Bayview Ave., Room S-126b, Toronto, Ontario, Canada M4N 3M5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nonaka M, Kimura A. Genomic view of the evolution of the complement system. Immunogenetics 2006; 58:701-13. [PMID: 16896831 PMCID: PMC2480602 DOI: 10.1007/s00251-006-0142-1] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 06/19/2006] [Indexed: 12/31/2022]
Abstract
The recent accumulation of genomic information of many representative animals has made it possible to trace the evolution of the complement system based on the presence or absence of each complement gene in the analyzed genomes. Genome information from a few mammals, chicken, clawed frog, a few bony fish, sea squirt, fruit fly, nematoda and sea anemone indicate that bony fish and higher vertebrates share practically the same set of complement genes. This suggests that most of the gene duplications that played an essential role in establishing the mammalian complement system had occurred by the time of the teleost/mammalian divergence around 500 million years ago (MYA). Members of most complement gene families are also present in ascidians, although they do not show a one-to-one correspondence to their counterparts in higher vertebrates, indicating that the gene duplications of each gene family occurred independently in vertebrates and ascidians. The C3 and factor B genes, but probably not the other complement genes, are present in the genome of the cnidaria and some protostomes, indicating that the origin of the central part of the complement system was established more than 1,000 MYA.
Collapse
Affiliation(s)
- Masaru Nonaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Tokyo, Japan.
| | | |
Collapse
|
23
|
Song L, Takamune K, Sugawara Y, Fujii T. cDNA cloning of a mannose-binding lectin-associated serine protease (MASP) gene from hagfish (Eptatretus burgeri). Zoolog Sci 2006; 22:897-904. [PMID: 16141703 DOI: 10.2108/zsj.22.897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hagfish, agnathan cyclostome, is the most primitive extant vertebrate and its complement (C) system seems to be a primordial system in comparison with a well-developed C system in gnathostome vertebrates. From a phylogenic perspective of defense mechanisms, we have isolated complement C3 from the serum of hagfish (Eptatretus burgeri). In this study, we first attempted to identify a hagfish Bf or C2 as a C3 convertase by RT-PCR using degenerative primers designed on the basis of the conserved amino acid stretches among the several kinds of serine proteases. Contrary to our expectation, homology search of cloned RT-PCR product suggested that there was a partial cDNA encoding the homologue of neither Bf nor C2 but a mannose-binding lectin-associated serine protease (MASP). Analyses of a full-length cDNA clone isolated from a hagfish liver cDNA library by using the partial cDNA as a probe indicated that this cDNA encoded hagfish MASP 1. This evidence strongly suggests that the hagfish defends itself against pathogens at least by the complement system composed of lectin pathway.
Collapse
Affiliation(s)
- Liqiu Song
- Department of Health Sciences, Faculty of Human Culture and Science, Prefectural University of Hiroshima, Ujina-Higashi, Hiroshima 734-8558, Japan
| | | | | | | |
Collapse
|
24
|
Pasquier LD. Germline and somatic diversification of immune recognition elements in Metazoa. Immunol Lett 2005; 104:2-17. [PMID: 16388857 DOI: 10.1016/j.imlet.2005.11.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 11/22/2005] [Accepted: 11/22/2005] [Indexed: 12/31/2022]
Abstract
The histories of the immune systems of Metazoa during evolution are envisaged like as many adaptations to the continuous diversification of immune receptors and effectors genes under the pressure of changing environments. A basic diversity of potential immune receptor genes existed in primitive Metazoa. Their subsequent recruitment into immunity, their diversification revolving around the conservation of signaling cascades was paralleled by cell specialization and the introduction of regulatory networks. Polymorphism, duplication and somatic mechanisms of diversification affected independently and still affect different gene families in many phyla, creating a greater variety of immune system exhibiting sometimes little homology but much analogy to one another. Diversity and multiplicity of receptors was generated by duplication and creation of multigene families. Independently in several phyla further diversity is created somatically by alternate splicing, somatic mutation, gene conversion and gene rearrangement. In several instances combinatorial usage of polypeptide chains or genes segments increases the repertoire of the recognition structures. Metazoa had to adapt to the conditions generated by this diversity: the control of expression of multiple genes and the risk of autoimmunity.
Collapse
Affiliation(s)
- Louis Du Pasquier
- University of Basel, Institute of Zoology and Evolutionary Biology, Vesalgassel, CH-4051 Basel, Switzerland.
| |
Collapse
|
25
|
Olinski RP, Lundin LG, Hallböök F. Conserved synteny between the Ciona genome and human paralogons identifies large duplication events in the molecular evolution of the insulin-relaxin gene family. Mol Biol Evol 2005; 23:10-22. [PMID: 16135778 DOI: 10.1093/molbev/msj002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The aims of the study were to outline the sequence of events that gave rise to the vertebrate insulin-relaxin gene family and the chromosomal regions in which they reside. We analyzed the gene content surrounding the human insulin/relaxin genes with respect to what family they belonged to and if the duplication history of investigated families parallels the evolution of the insulin-relaxin family members. Markov Clustering and phylogenetic analysis were used to determine family identity. More than 15% of the genes belonged to families that have paralogs in the regions, defining two sets of quadruplicate paralogy regions. Thereby, the localization of insulin/relaxin genes in humans is in accordance with those regions on human chromosomes 1, 11, 12, 19q (insulin/insulin-like growth factors) and 1, 6p/15q, 9/5, 19p (insulin-like factors/relaxins) were formed during two genome duplications. We compared the human genome with that of Ciona intestinalis, a species that split from the vertebrate lineage before the two suggested genome duplications. Two insulin-like orthologs were discovered in addition to the already described Ci-insulin gene. Conserved synteny between the Ciona regions hosting the insulin-like genes and the two sets of human paralogons implies their common origin. Linkage of the two human paralogons, as seen in human chromosome 1, as well as the two regions hosting the Ciona insulin-like genes suggests that a segmental duplication gave rise to the region prior to the genome doublings. Thus, preserved gene content provides support that genome duplication(s) in addition to segmental and single-gene duplications shaped the genomes of extant vertebrates.
Collapse
Affiliation(s)
- Robert Piotr Olinski
- Unit of Developmental Neuroscience, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|