1
|
Shen K, Shen L, Wang J, Jiang Z, Shen B. Understanding Amino Acid Mutations in Hepatitis B Virus Proteins for Rational Design of Vaccines and Drugs. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 99:131-53. [DOI: 10.1016/bs.apcsb.2015.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
2
|
Koch CP, Pillong M, Hiss JA, Schneider G. Computational Resources for MHC Ligand Identification. Mol Inform 2013; 32:326-36. [PMID: 27481589 DOI: 10.1002/minf.201300042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/04/2013] [Indexed: 01/16/2023]
Abstract
Advances in the high-throughput determination of functional modulators of major histocompatibility complex (MHC) and improved computational predictions of MHC ligands have rendered the rational design of immunomodulatory peptides feasible. Proteome-derived peptides and 'reverse vaccinology' by computational means will play a driving role in future vaccine design. Here we review the molecular mechanisms of the MHC mediated immune response, present the computational approaches that have emerged in this area of biotechnology, and provide an overview of publicly available computational resources for predicting and designing new peptidic MHC ligands.
Collapse
Affiliation(s)
- Christian P Koch
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Wolfgang-Pauli-Str. 10, 8093 Zürich, Switzerland
| | - Max Pillong
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Wolfgang-Pauli-Str. 10, 8093 Zürich, Switzerland
| | - Jan A Hiss
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Wolfgang-Pauli-Str. 10, 8093 Zürich, Switzerland
| | - Gisbert Schneider
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Wolfgang-Pauli-Str. 10, 8093 Zürich, Switzerland.
| |
Collapse
|
3
|
Binkowski TA, Marino SR, Joachimiak A. Predicting HLA class I non-permissive amino acid residues substitutions. PLoS One 2012; 7:e41710. [PMID: 22905104 PMCID: PMC3414483 DOI: 10.1371/journal.pone.0041710] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/27/2012] [Indexed: 12/20/2022] Open
Abstract
Prediction of peptide binding to human leukocyte antigen (HLA) molecules is essential to a wide range of clinical entities from vaccine design to stem cell transplant compatibility. Here we present a new structure-based methodology that applies robust computational tools to model peptide-HLA (p-HLA) binding interactions. The method leverages the structural conservation observed in p-HLA complexes to significantly reduce the search space and calculate the system’s binding free energy. This approach is benchmarked against existing p-HLA complexes and the prediction performance is measured against a library of experimentally validated peptides. The effect on binding activity across a large set of high-affinity peptides is used to investigate amino acid mismatches reported as high-risk factors in hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- T Andrew Binkowski
- Biosciences Division, Argonne National Laboratory, Midwest Center for Structural Genomics, Argonne, Illinois, United States of America
| | | | | |
Collapse
|
4
|
Bordner AJ. Towards universal structure-based prediction of class II MHC epitopes for diverse allotypes. PLoS One 2010; 5:e14383. [PMID: 21187956 PMCID: PMC3004863 DOI: 10.1371/journal.pone.0014383] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/30/2010] [Indexed: 01/10/2023] Open
Abstract
The binding of peptide fragments of antigens to class II MHC proteins is a crucial step in initiating a helper T cell immune response. The discovery of these peptide epitopes is important for understanding the normal immune response and its misregulation in autoimmunity and allergies and also for vaccine design. In spite of their biomedical importance, the high diversity of class II MHC proteins combined with the large number of possible peptide sequences make comprehensive experimental determination of epitopes for all MHC allotypes infeasible. Computational methods can address this need by predicting epitopes for a particular MHC allotype. We present a structure-based method for predicting class II epitopes that combines molecular mechanics docking of a fully flexible peptide into the MHC binding cleft followed by binding affinity prediction using a machine learning classifier trained on interaction energy components calculated from the docking solution. Although the primary advantage of structure-based prediction methods over the commonly employed sequence-based methods is their applicability to essentially any MHC allotype, this has not yet been convincingly demonstrated. In order to test the transferability of the prediction method to different MHC proteins, we trained the scoring method on binding data for DRB1*0101 and used it to make predictions for multiple MHC allotypes with distinct peptide binding specificities including representatives from the other human class II MHC loci, HLA-DP and HLA-DQ, as well as for two murine allotypes. The results showed that the prediction method was able to achieve significant discrimination between epitope and non-epitope peptides for all MHC allotypes examined, based on AUC values in the range 0.632-0.821. We also discuss how accounting for peptide binding in multiple registers to class II MHC largely explains the systematically worse performance of prediction methods for class II MHC compared with those for class I MHC based on quantitative prediction performance estimates for peptide binding to class II MHC in a fixed register.
Collapse
Affiliation(s)
- Andrew J Bordner
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America.
| |
Collapse
|
5
|
Bordner AJ, Mittelmann HD. MultiRTA: a simple yet reliable method for predicting peptide binding affinities for multiple class II MHC allotypes. BMC Bioinformatics 2010; 11:482. [PMID: 20868497 PMCID: PMC2957400 DOI: 10.1186/1471-2105-11-482] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Accepted: 09/24/2010] [Indexed: 12/26/2022] Open
Abstract
Background The binding of peptide fragments of antigens to class II MHC is a crucial step in initiating a helper T cell immune response. The identification of such peptide epitopes has potential applications in vaccine design and in better understanding autoimmune diseases and allergies. However, comprehensive experimental determination of peptide-MHC binding affinities is infeasible due to MHC diversity and the large number of possible peptide sequences. Computational methods trained on the limited experimental binding data can address this challenge. We present the MultiRTA method, an extension of our previous single-type RTA prediction method, which allows the prediction of peptide binding affinities for multiple MHC allotypes not used to train the model. Thus predictions can be made for many MHC allotypes for which experimental binding data is unavailable. Results We fit MultiRTA models for both HLA-DR and HLA-DP using large experimental binding data sets. The performance in predicting binding affinities for novel MHC allotypes, not in the training set, was tested in two different ways. First, we performed leave-one-allele-out cross-validation, in which predictions are made for one allotype using a model fit to binding data for the remaining MHC allotypes. Comparison of the HLA-DR results with those of two other prediction methods applied to the same data sets showed that MultiRTA achieved performance comparable to NetMHCIIpan and better than the earlier TEPITOPE method. We also directly tested model transferability by making leave-one-allele-out predictions for additional experimentally characterized sets of overlapping peptide epitopes binding to multiple MHC allotypes. In addition, we determined the applicability of prediction methods like MultiRTA to other MHC allotypes by examining the degree of MHC variation accounted for in the training set. An examination of predictions for the promiscuous binding CLIP peptide revealed variations in binding affinity among alleles as well as potentially distinct binding registers for HLA-DR and HLA-DP. Finally, we analyzed the optimal MultiRTA parameters to discover the most important peptide residues for promiscuous and allele-specific binding to HLA-DR and HLA-DP allotypes. Conclusions The MultiRTA method yields competitive performance but with a significantly simpler and physically interpretable model compared with previous prediction methods. A MultiRTA prediction webserver is available at http://bordnerlab.org/MultiRTA.
Collapse
Affiliation(s)
- Andrew J Bordner
- Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ 85259, USA.
| | | |
Collapse
|
6
|
McNamara LA, He Y, Yang Z. Using epitope predictions to evaluate efficacy and population coverage of the Mtb72f vaccine for tuberculosis. BMC Immunol 2010; 11:18. [PMID: 20353587 PMCID: PMC2862017 DOI: 10.1186/1471-2172-11-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 03/30/2010] [Indexed: 03/05/2023] Open
Abstract
Background The Mtb72f subunit vaccine for tuberculosis, currently in clinical trials, is hoped to provide improved protection compared to the current BCG vaccine. It is not clear, however, whether Mtb72f would be equally protective in the different human populations suffering from a high burden of tuberculosis. Previous work by Hebert and colleagues demonstrated that the PPE18 protein of Mtb72f had significant variability in a sample of clinical M. tuberculosis isolates. However, whether this variation might impact the efficacy of Mtb72f in the context of the microbial and host immune system interactions remained to be determined. The present study assesses Mtb72f's predicted efficacy in people with different DRB1 genotypes to predict whether the vaccine will protect against diverse clinical strains of M. tuberculosis in a diverse host population. Results We evaluated the binding of epitopes in the vaccine to different alleles of the human DRB1 Class II MHC protein using freely available epitope prediction programs and compared protein sequences from clinical isolates to the sequences included in the Mtb72f vaccine. This analysis predicted that the Mtb72f vaccine would be less effective for several DRB1 genotypes, due either to limited vaccine epitope binding to the DRB1 proteins or to binding primarily by unconserved PPE18 epitopes. Furthermore, we found that these less-protective DRB1 alleles are found at a very high frequency in several populations with a high burden of tuberculosis. Conclusion Although the Mtb72f vaccine candidate has shown promise in animal and clinical trials thus far, it may not be optimally effective in some genotypic backgrounds. Due to variation in both M. tuberculosis protein sequences and epitope-binding capabilities of different HLA alleles, certain human populations with a high burden of tuberculosis may not be optimally protected by the Mtb72f vaccine. The efficacy of the Mtb72f vaccine should be further examined in these particular populations to determine whether additional protective measures might be necessary for these regions.
Collapse
Affiliation(s)
- Lucy A McNamara
- Department of Epidemiology University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
7
|
Bordner AJ, Mittelmann HD. Prediction of the binding affinities of peptides to class II MHC using a regularized thermodynamic model. BMC Bioinformatics 2010; 11:41. [PMID: 20089173 PMCID: PMC2828437 DOI: 10.1186/1471-2105-11-41] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 01/20/2010] [Indexed: 12/25/2022] Open
Abstract
Background The binding of peptide fragments of extracellular peptides to class II MHC is a crucial event in the adaptive immune response. Each MHC allotype generally binds a distinct subset of peptides and the enormous number of possible peptide epitopes prevents their complete experimental characterization. Computational methods can utilize the limited experimental data to predict the binding affinities of peptides to class II MHC. Results We have developed the Regularized Thermodynamic Average, or RTA, method for predicting the affinities of peptides binding to class II MHC. RTA accounts for all possible peptide binding conformations using a thermodynamic average and includes a parameter constraint for regularization to improve accuracy on novel data. RTA was shown to achieve higher accuracy, as measured by AUC, than SMM-align on the same data for all 17 MHC allotypes examined. RTA also gave the highest accuracy on all but three allotypes when compared with results from 9 different prediction methods applied to the same data. In addition, the method correctly predicted the peptide binding register of 17 out of 18 peptide-MHC complexes. Finally, we found that suboptimal peptide binding registers, which are often ignored in other prediction methods, made significant contributions of at least 50% of the total binding energy for approximately 20% of the peptides. Conclusions The RTA method accurately predicts peptide binding affinities to class II MHC and accounts for multiple peptide binding registers while reducing overfitting through regularization. The method has potential applications in vaccine design and in understanding autoimmune disorders. A web server implementing the RTA prediction method is available at http://bordnerlab.org/RTA/.
Collapse
|
8
|
Toussaint NC, Kohlbacher O. Towards in silico design of epitope-based vaccines. Expert Opin Drug Discov 2009; 4:1047-60. [PMID: 23480396 DOI: 10.1517/17460440903242283] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Epitope-based vaccines (EVs) make use of immunogenic peptides (epitopes) to trigger an immune response. Due to their manifold advantages, EVs have recently been attracting growing interest. The success of an EV is determined by the choice of epitopes used as a basis. However, the experimental discovery of candidate epitopes is expensive in terms of time and money. Furthermore, for the final choice of epitopes various immunological requirements have to be considered. METHODS Numerous in silico approaches exist that can guide the design of EVs. In particular, computational methods for MHC binding prediction have already become standard tools in immunology. Apart from binding prediction and prediction of antigen processing, methods for epitope design and selection have been suggested. We review these in silico approaches for epitope discovery and selection along with their strengths and weaknesses. Finally, we discuss some of the obvious problems in the design of EVs. CONCLUSION State-of-the-art in silico approaches to MHC binding prediction yield high accuracies. However, a more thorough understanding of the underlying biological processes and significant amounts of experimental data will be required for the validation and improvement of in silico approaches to the remaining aspects of EV design.
Collapse
Affiliation(s)
- Nora C Toussaint
- Eberhard Karls University, Center for Bioinformatics Tübingen, Division for Simulation of Biological Systems, 72076 Tübingen, Germany +49 7071 2970458 ; +49 7071 295152 ;
| | | |
Collapse
|
9
|
Lin HH, Zhang GL, Tongchusak S, Reinherz EL, Brusic V. Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinformatics 2008; 9 Suppl 12:S22. [PMID: 19091022 PMCID: PMC2638162 DOI: 10.1186/1471-2105-9-s12-s22] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Initiation and regulation of immune responses in humans involves recognition of peptides presented by human leukocyte antigen class II (HLA-II) molecules. These peptides (HLA-II T-cell epitopes) are increasingly important as research targets for the development of vaccines and immunotherapies. HLA-II peptide binding studies involve multiple overlapping peptides spanning individual antigens, as well as complete viral proteomes. Antigen variation in pathogens and tumor antigens, and extensive polymorphism of HLA molecules increase the number of targets for screening studies. Experimental screening methods are expensive and time consuming and reagents are not readily available for many of the HLA class II molecules. Computational prediction methods complement experimental studies, minimize the number of validation experiments, and significantly speed up the epitope mapping process. We collected test data from four independent studies that involved 721 peptide binding assays. Full overlapping studies of four antigens identified binding affinity of 103 peptides to seven common HLA-DR molecules (DRB1*0101, 0301, 0401, 0701, 1101, 1301, and 1501). We used these data to analyze performance of 21 HLA-II binding prediction servers accessible through the WWW. RESULTS Because not all servers have predictors for all tested HLA-II molecules, we assessed a total of 113 predictors. The length of test peptides ranged from 15 to 19 amino acids. We tried three prediction strategies - the best 9-mer within the longer peptide, the average of best three 9-mer predictions, and the average of all 9-mer predictions within the longer peptide. The best strategy was the identification of a single best 9-mer within the longer peptide. Overall, measured by the receiver operating characteristic method (AROC), 17 predictors showed good (AROC > 0.8), 41 showed marginal (AROC > 0.7), and 55 showed poor performance (AROC < 0.7). Good performance predictors included HLA-DRB1*0101 (seven), 1101 (six), 0401 (three), and 0701 (one). The best individual predictor was NETMHCIIPAN, closely followed by PROPRED, IEDB (Consensus), and MULTIPRED (SVM). None of the individual predictors was shown to be suitable for prediction of promiscuous peptides. Current predictive capabilities allow prediction of only 50% of actual T-cell epitopes using practical thresholds. CONCLUSION The available HLA-II servers do not match prediction capabilities of HLA-I predictors. Currently available HLA-II prediction servers offer only a limited prediction accuracy and the development of improved predictors is needed for large-scale studies, such as proteome-wide epitope mapping. The requirements for accuracy of HLA-II binding predictions are stringent because of the substantial effect of false positives.
Collapse
Affiliation(s)
- Hong Huang Lin
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
10
|
El-Manzalawy Y, Dobbs D, Honavar V. Predicting linear B-cell epitopes using string kernels. J Mol Recognit 2008; 21:243-55. [PMID: 18496882 PMCID: PMC2683948 DOI: 10.1002/jmr.893] [Citation(s) in RCA: 507] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The identification and characterization of B‐cell epitopes play an important role in vaccine design, immunodiagnostic tests, and antibody production. Therefore, computational tools for reliably predicting linear B‐cell epitopes are highly desirable. We evaluated Support Vector Machine (SVM) classifiers trained utilizing five different kernel methods using fivefold cross‐validation on a homology‐reduced data set of 701 linear B‐cell epitopes, extracted from Bcipep database, and 701 non‐epitopes, randomly extracted from SwissProt sequences. Based on the results of our computational experiments, we propose BCPred, a novel method for predicting linear B‐cell epitopes using the subsequence kernel. We show that the predictive performance of BCPred (AUC = 0.758) outperforms 11 SVM‐based classifiers developed and evaluated in our experiments as well as our implementation of AAP (AUC = 0.7), a recently proposed method for predicting linear B‐cell epitopes using amino acid pair antigenicity. Furthermore, we compared BCPred with AAP and ABCPred, a method that uses recurrent neural networks, using two data sets of unique B‐cell epitopes that had been previously used to evaluate ABCPred. Analysis of the data sets used and the results of this comparison show that conclusions about the relative performance of different B‐cell epitope prediction methods drawn on the basis of experiments using data sets of unique B‐cell epitopes are likely to yield overly optimistic estimates of performance of evaluated methods. This argues for the use of carefully homology‐reduced data sets in comparing B‐cell epitope prediction methods to avoid misleading conclusions about how different methods compare to each other. Our homology‐reduced data set and implementations of BCPred as well as the APP method are publicly available through our web‐based server, BCPREDS, at: http://ailab.cs.iastate.edu/bcpreds/. Copyright © 2008 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yasser El-Manzalawy
- Artificial Intelligence Laboratory, Iowa State University, Ames, IA 50010, USA.
| | | | | |
Collapse
|
11
|
Lara J, Wohlhueter RM, Dimitrova Z, Khudyakov YE. Artificial neural network for prediction of antigenic activity for a major conformational epitope in the hepatitis C virus NS3 protein. Bioinformatics 2008; 24:1858-64. [DOI: 10.1093/bioinformatics/btn339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
12
|
Lin HH, Ray S, Tongchusak S, Reinherz EL, Brusic V. Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research. BMC Immunol 2008; 9:8. [PMID: 18366636 PMCID: PMC2323361 DOI: 10.1186/1471-2172-9-8] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 03/16/2008] [Indexed: 11/11/2022] Open
Abstract
Background Protein antigens and their specific epitopes are formulation targets for epitope-based vaccines. A number of prediction servers are available for identification of peptides that bind major histocompatibility complex class I (MHC-I) molecules. The lack of standardized methodology and large number of human MHC-I molecules make the selection of appropriate prediction servers difficult. This study reports a comparative evaluation of thirty prediction servers for seven human MHC-I molecules. Results Of 147 individual predictors 39 have shown excellent, 47 good, 33 marginal, and 28 poor ability to classify binders from non-binders. The classifiers for HLA-A*0201, A*0301, A*1101, B*0702, B*0801, and B*1501 have excellent, and for A*2402 moderate classification accuracy. Sixteen prediction servers predict peptide binding affinity to MHC-I molecules with high accuracy; correlation coefficients ranging from r = 0.55 (B*0801) to r = 0.87 (A*0201). Conclusion Non-linear predictors outperform matrix-based predictors. Most predictors can be improved by non-linear transformations of their raw prediction scores. The best predictors of peptide binding are also best in prediction of T-cell epitopes. We propose a new standard for MHC-I binding prediction – a common scale for normalization of prediction scores, applicable to both experimental and predicted data. The results of this study provide assistance to researchers in selection of most adequate prediction tools and selection criteria that suit the needs of their projects.
Collapse
Affiliation(s)
- Hong Huang Lin
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
13
|
Gowthaman U, Agrewala JN. In SilicoTools for Predicting Peptides Binding to HLA-Class II Molecules: More Confusion than Conclusion. J Proteome Res 2008; 7:154-63. [DOI: 10.1021/pr070527b] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
A probabilistic meta-predictor for the MHC class II binding peptides. Immunogenetics 2007; 60:25-36. [PMID: 18092156 DOI: 10.1007/s00251-007-0266-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 11/21/2007] [Indexed: 12/27/2022]
Abstract
Several computational methods for the prediction of major histocompatibility complex (MHC) class II binding peptides embodying different strengths and weaknesses have been developed. To provide reliable prediction, it is important to design a system that enables the integration of outcomes from various predictors. The construction of a meta-predictor of this type based on a probabilistic approach is introduced in this paper. The design permits the easy incorporation of results obtained from any number of individual predictors. It is demonstrated that this integrated method outperforms six state-of-the-art individual predictors based on computational studies using MHC class II peptides from 13 HLA alleles and three mouse MHC alleles obtained from the Immune Epitope Database and Analysis Resource. It is concluded that this integrative approach provides a clearly enhanced reliability of prediction. Moreover, this computational framework can be directly extended to MHC class I binding predictions.
Collapse
|
15
|
Ray S, Kepler TB. Amino acid biophysical properties in the statistical prediction of peptide-MHC class I binding. Immunome Res 2007; 3:9. [PMID: 17967170 PMCID: PMC2186325 DOI: 10.1186/1745-7580-3-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 10/29/2007] [Indexed: 11/10/2022] Open
Abstract
Background A key step in the development of an adaptive immune response to pathogens or vaccines is the binding of short peptides to molecules of the Major Histocompatibility Complex (MHC) for presentation to T lymphocytes, which are thereby activated and differentiate into effector and memory cells. The rational design of vaccines consists in part in the identification of appropriate peptides to effect this process. There are several algorithms currently in use for making such predictions, but these are limited to a small number of MHC molecules and have good but imperfect prediction power. Results We have undertaken an exploration of the power gained by taking advantage of a natural representation of the amino acids in terms of their biophysical properties. We used several well-known statistical classifiers using either a naive encoding of amino acids by name or an encoding by biophysical properties. In all cases, the encoding by biophysical properties leads to substantially lower misclassification error. Conclusion Representation of amino acids using a few important bio-physio-chemical property provide a natural basis for representing peptides and greatly improves peptide-MHC class I binding prediction.
Collapse
Affiliation(s)
- Surajit Ray
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA.
| | | |
Collapse
|