1
|
Dong S, Zhang B, Huang K, Ying M, Yan J, Niu F, Hu H, Dunn DW, Ren Y, Li B, Zhang P. Balancing selection shapes population differentiation of major histocompatibility complex genes in wild golden snub-nosed monkeys. Curr Zool 2024; 70:596-606. [PMID: 39463695 PMCID: PMC11502152 DOI: 10.1093/cz/zoad043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2024] Open
Abstract
Small and isolated populations face several intrinsic risks, such as genetic drift, inbreeding depression, and reduced gene flow. Thus, patterns of genetic diversity and differentiation have become an important focus of conservation genetics research. The golden snub-nosed monkey Rhinopithecus roxellana, an endangered species endemic to China, has experienced rapid reduction in population size and severe population fragmentation over the past few decades. We measured the patterns of genetic diversity and population differentiation using both neutral microsatellites and adaptive major histocompatibility complex (MHC) genes in 2 R. roxellana populations (DPY and GNG) distributed on the northern and southern slopes of the Qinling Mountains, respectively. Eight MHC-linked haplotypes formed by 5 DQA1 alleles, 5 DQB1 alleles, 5 DRB1 alleles, and 4 DRB2 alleles were detected in the 2 populations. The larger GNG population showed higher genetic variation for both MHC and microsatellites than the smaller DPY population, suggesting an effect of genetic drift on genetic variation. Genetic differentiation index (F ST) outlier analyses, principal coordinate analysis (PCoA), and inferred population genetic structure showed lower genetic differentiation in the MHC variations than microsatellites, suggesting that pathogen-mediated balancing selection, rather than local adaptation, homogenized the MHC genes of both populations. This study indicates that both balancing selection and genetic drift may shape genetic variation and differentiation in small and fragmented populations.
Collapse
Affiliation(s)
- Shixuan Dong
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Bingyi Zhang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Kang Huang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Meijing Ying
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jibing Yan
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Fei Niu
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Hanyu Hu
- Education Department, Xi’an Gaoxin No. 5 High School, Xi’an 710404, China
| | - Derek W Dunn
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yi Ren
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi’an 710032, China
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Pei Zhang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
2
|
Petersen RM, Bergey CM, Roos C, Higham JP. Relationship between genome-wide and MHC class I and II genetic diversity and complementarity in a nonhuman primate. Ecol Evol 2022; 12:e9346. [PMID: 36311412 PMCID: PMC9596323 DOI: 10.1002/ece3.9346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022] Open
Abstract
Although mate choice is expected to favor partners with advantageous genetic properties, the relative importance of genome-wide characteristics, such as overall heterozygosity or kinship, versus specific loci, is unknown. To disentangle genome-wide and locus-specific targets of mate choice, we must first understand congruence in global and local variation within the same individual. This study compares genetic diversity, both absolute and relative to other individuals (i.e., complementarity), assessed across the genome to that found at the major histocompatibility complex (MHC), a hyper-variable gene family integral to immune system function and implicated in mate choice across species. Using DNA from 22 captive olive baboons (Papio anubis), we conducted double digest restriction site-associated DNA sequencing to estimate genome-wide heterozygosity and kinship, and sequenced two class I and two class II MHC loci. We found that genome-wide diversity was not associated with MHC diversity, and that diversity at class I MHC loci was not correlated with diversity at class II loci. Additionally, kinship was a significant predictor of the number of MHC alleles shared between dyads at class II loci. Our results provide further evidence of the strong selective pressures maintaining genetic diversity at the MHC in comparison to other randomly selected sites throughout the genome. Furthermore, our results indicate that class II MHC disassortative mate choice may mediate inbreeding avoidance in this population. Our study suggests that mate choice favoring genome-wide genetic diversity is not always synonymous with mate choice favoring MHC diversity, and highlights the importance of controlling for kinship when investigating MHC-associated mate choice.
Collapse
Affiliation(s)
- Rachel M. Petersen
- Department of AnthropologyNew York UniversityNew YorkNew YorkUSA
- New York Consortium in Evolutionary PrimatologyNew YorkNew YorkUSA
| | - Christina M. Bergey
- Department of Genetics and the Human Genetics Institute of New JerseyRutgers UniversityPiscatawayNew JerseyUSA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics LaboratoryGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| | - James P. Higham
- Department of AnthropologyNew York UniversityNew YorkNew YorkUSA
- New York Consortium in Evolutionary PrimatologyNew YorkNew YorkUSA
| |
Collapse
|
3
|
Buckner JC, Jack KM, Melin AD, Schoof VAM, Gutiérrez-Espeleta GA, Lima MGM, Lynch JW. Major histocompatibility complex class II DR and DQ evolution and variation in wild capuchin monkey species (Cebinae). PLoS One 2021; 16:e0254604. [PMID: 34383779 PMCID: PMC8360539 DOI: 10.1371/journal.pone.0254604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
The major histocompatibility complex (MHC) is an important gene complex contributing to adaptive immunity. Studies of platyrrhine MHC have focused on identifying experimental models of immune system function in the equivalent Human Leukocyte Antigen (HLA). These genes have thus been explored primarily in captive platyrrhine individuals from research colonies. However, investigations of standing MHC variation and evolution in wild populations are essential to understanding its role in immunity, sociality and ecology. Capuchins are a promising model group exhibiting the greatest habitat diversity, widest diet breadth and arguably the most social complexity among platyrrhines, together likely resulting in varied immunological challenges. We use high-throughput sequencing to characterize polymorphism in four Class II DR and DQ exons for the first time in seven capuchin species. We find evidence for at least three copies for DQ genes and at least five for DRB, with possible additional unrecovered diversity. Our data also reveal common genotypes that are inherited across our most widely sampled population, Cebus imitator in Sector Santa Rosa, Costa Rica. Notably, phylogenetic analyses reveal that platyrrhine DQA sequences form a monophyletic group to the exclusion of all Catarrhini sequences examined. This result is inconsistent with the trans-species hypothesis for MHC evolution across infraorders in Primates and provides further evidence for the independent origin of current MHC genetic diversity in Platyrrhini. Identical allele sharing across cebid species, and more rarely genera, however, does underscore the complexity of MHC gene evolution and the need for more comprehensive assessments of allelic diversity and genome structure.
Collapse
Affiliation(s)
- Janet C. Buckner
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, United States of America
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States of America
- * E-mail: (JCB); (JWL)
| | - Katharine M. Jack
- Department of Anthropology, Tulane University, New Orleans, LA, United States of America
| | - Amanda D. Melin
- Department of Anthropology & Archaeology and Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Valérie A. M. Schoof
- Bilingual Biology Program, Glendon College, York University, Toronto, ON, Canada
| | | | - Marcela G. M. Lima
- Laboratory of Conservation Biogeography and Macroecology, Federal University of Pará, Belém, PA, Brazil
| | - Jessica W. Lynch
- Institute for Society and Genetics, University of California, Los Angeles, CA, United States of America
- Department of Anthropology, University of California, Los Angeles, CA, United States of America
- * E-mail: (JCB); (JWL)
| |
Collapse
|
4
|
Zhang P, Huang K, Zhang B, Dunn DW, Chen D, Li F, Qi X, Guo S, Li B. High polymorphism in MHC-DRB genes in golden snub-nosed monkeys reveals balancing selection in small, isolated populations. BMC Evol Biol 2018. [PMID: 29534675 PMCID: PMC5851093 DOI: 10.1186/s12862-018-1148-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Maintaining variation in immune genes, such as those of the major histocompatibility complex (MHC), is important for individuals in small, isolated populations to resist pathogens and parasites. The golden snub-nosed monkey (Rhinopithecus roxellana), an endangered primate endemic to China, has experienced a rapid reduction in numbers and severe population fragmentation over recent years. For this study, we measured the DRB diversity among 122 monkeys from three populations in the Qinling Mountains, and estimated the relative importance of different agents of selection in maintaining variation of DRB genes. Results We identified a total of 19 DRB sequences, in which five alleles were novel. We found high DRB variation in R. roxellana and three branches of evidence suggesting that balancing selection has contributed to maintaining MHC polymorphism over the long term in this species: i) different patterns of both genetic diversity and population differentiation were detected at MHC and neutral markers; ii) an excess of non-synonymous substitutions compared to synonymous substitutions at antigen binding sites, and maximum-likelihood-based random-site models, showed significant positive selection; and iii) phylogenetic analyses revealed a pattern of trans-species evolution for DRB genes. Conclusions High levels of DRB diversity in these R. roxellana populations may reflect strong selection pressure in this species. Patterns of genetic diversity and population differentiation, positive selection, as well as trans-species evolution, suggest that pathogen-mediated balancing selection has contributed to maintaining MHC polymorphism in R. roxellana over the long term. This study furthers our understanding of the role pathogen-mediated balancing selection has in maintaining variation in MHC genes in small and fragmented populations of free-ranging vertebrates. Electronic supplementary material The online version of this article (10.1186/s12862-018-1148-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pei Zhang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Kang Huang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Bingyi Zhang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Derek W Dunn
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Dan Chen
- Middle School Affiliated to Northwest University, Xi'an, China
| | - Fan Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaoguang Qi
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Songtao Guo
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China. .,Xi'an Branch of Chinese Academy of Science, Xi'an, China.
| |
Collapse
|
5
|
Grogan KE, McGinnis GJ, Sauther ML, Cuozzo FP, Drea CM. Next-generation genotyping of hypervariable loci in many individuals of a non-model species: technical and theoretical implications. BMC Genomics 2016; 17:204. [PMID: 26957424 PMCID: PMC4782575 DOI: 10.1186/s12864-016-2503-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/18/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Across species, diversity at the Major Histocompatibility Complex (MHC) is critical to disease resistance and population health; however, use of MHC diversity to quantify the genetic health of populations has been hampered by the extreme variation found in MHC genes. Next generation sequencing (NGS) technology generates sufficient data to genotype even the most diverse species, but workflows for distinguishing artifacts from alleles are still under development. We used NGS to evaluate the MHC diversity of over 300 captive and wild ring-tailed lemurs (Lemur catta: Primates: Mammalia). We modified a published workflow to address errors that arise from deep sequencing individuals and tested for evidence of selection at the most diverse MHC genes. RESULTS In addition to evaluating the accuracy of 454 Titanium and Ion Torrent PGM for genotyping large populations at hypervariable genes, we suggested modifications to improve current methods of allele calling. Using these modifications, we genotyped 302 out of 319 individuals, obtaining an average sequencing depth of over 1000 reads per amplicon. We identified 55 MHC-DRB alleles, 51 of which were previously undescribed, and provide the first sequences of five additional MHC genes: DOA, DOB, DPA, DQA, and DRA. The additional five MHC genes had one or two alleles each with little sequence variation; however, the 55 MHC-DRB alleles showed a high dN/dS ratio and trans-species polymorphism, indicating a history of positive selection. Because each individual possessed 1-7 MHC-DRB alleles, we suggest that ring-tailed lemurs have four, putatively functional, MHC-DRB copies. CONCLUSIONS In the future, accurate genotyping methods for NGS data will be critical to assessing genetic variation in non-model species. We recommend that future NGS studies increase the proportion of replicated samples, both within and across platforms, particularly for hypervariable genes like the MHC. Quantifying MHC diversity within non-model species is the first step to assessing the relationship of genetic diversity at functional loci to individual fitness and population viability. Owing to MHC-DRB diversity and copy number, ring-tailed lemurs may serve as an ideal model for estimating the interaction between genetic diversity, fitness, and environment, especially regarding endangered species.
Collapse
Affiliation(s)
- Kathleen E Grogan
- University Program in Ecology, Duke University, Durham, NC, USA.
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.
- Emory University, Room 2006 O. Wayne Rollins Research Center, 1510 Clifton Rd NE, Atlanta, GA, 30322, USA.
| | | | - Michelle L Sauther
- Department of Anthropology, University of Colorado-Boulder, Boulder, CO, USA
| | - Frank P Cuozzo
- Department of Anthropology, University of North Dakota, Grand Forks, ND, USA
| | - Christine M Drea
- University Program in Ecology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, USA
| |
Collapse
|
6
|
Marshall HD, Langille BL, Hann CA, Whitney HG. Patterns of MHC-DRB1 polymorphism in a post-glacial island canid, the Newfoundland red fox (Vulpes vulpes deletrix), suggest balancing selection at species and population timescales. Immunogenetics 2016; 68:381-9. [PMID: 26894280 PMCID: PMC4842217 DOI: 10.1007/s00251-016-0907-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/04/2016] [Indexed: 11/29/2022]
Abstract
As the only native insular Newfoundland canid between the extinction of the wolf in the 1930s and the recent arrival of coyotes, the red fox (Vulpes vulpes deletrix Bangs 1898) poses interesting questions about genetic distinctiveness and the post-glacial colonization history of the island’s depauperate mammalian fauna. Here, we characterized genetic variability at the major histocompatibility complex (MHC) class II DR β1 domain (DRB1) locus in 28 red foxes from six sampling localities island-wide and compared it with mitochondrial control region (CR) diversity and DRB1 diversity in other canids. Our goals were to describe novel DRB1 alleles in a new canid population and to make inferences about the role of selection in maintaining their diversity. As in numerous studies of vertebrates, we found an order-of-magnitude higher nucleotide diversity at the DRB1 locus compared with the CR and significantly positive nonsynonymous-to-synonymous substitution ratios, indicative of selection in the distant past. Although the evidence is weaker, the Ewens-Watterson test of neutrality and the geographical distribution of variation compared with the CR suggest a role for selection over the evolutionary timescale of populations. We report the first genetic data from the DRB1 locus in the red fox and establish baseline information regarding immunogenetic variation in this island canid population which should inform continued investigations of population demography, adaptive genetic diversity, and wildlife disease in red foxes and related species.
Collapse
Affiliation(s)
- H Dawn Marshall
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3X9, Canada.
| | - Barbara L Langille
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3X9, Canada
| | - Crystal A Hann
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3X9, Canada
| | - Hugh G Whitney
- Animal Health Division, Forestry and Agrifoods Agency, Box 7400, St. John's, Newfoundland, A1E 3Y5, Canada
| |
Collapse
|
7
|
Huang ZQ, Sun XM, Dai JJ, Gu ML, Ye YS, Yao YF, Jiang RJ, Ma KL. Sequence diversity of the MHC Ⅱ DRB gene in Chinese tree shrews (Tupaia belangeri chinensis). BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Wroblewski EE, Norman PJ, Guethlein LA, Rudicell RS, Ramirez MA, Li Y, Hahn BH, Pusey AE, Parham P. Signature Patterns of MHC Diversity in Three Gombe Communities of Wild Chimpanzees Reflect Fitness in Reproduction and Immune Defense against SIVcpz. PLoS Biol 2015; 13:e1002144. [PMID: 26020813 PMCID: PMC4447270 DOI: 10.1371/journal.pbio.1002144] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/02/2015] [Indexed: 11/19/2022] Open
Abstract
Major histocompatibility complex (MHC) class I molecules determine immune responses to viral infections. These polymorphic cell-surface glycoproteins bind peptide antigens, forming ligands for cytotoxic T and natural killer cell receptors. Under pressure from rapidly evolving viruses, hominoid MHC class I molecules also evolve rapidly, becoming diverse and species-specific. Little is known of the impact of infectious disease epidemics on MHC class I variant distributions in human populations, a context in which the chimpanzee is the superior animal model. Population dynamics of the chimpanzees inhabiting Gombe National Park, Tanzania have been studied for over 50 years. This population is infected with SIVcpz, the precursor of human HIV-1. Because HLA-B is the most polymorphic human MHC class I molecule and correlates strongly with HIV-1 progression, we determined sequences for its ortholog, Patr-B, in 125 Gombe chimpanzees. Eleven Patr-B variants were defined, as were their frequencies in Gombe's three communities, changes in frequency with time, and effect of SIVcpz infection. The growing populations of the northern and central communities, where SIVcpz is less prevalent, have stable distributions comprising a majority of low-frequency Patr-B variants and a few high-frequency variants. Driving the latter to high frequency has been the fecundity of immigrants to the northern community, whereas in the central community, it has been the fecundity of socially dominant individuals. In the declining population of the southern community, where greater SIVcpz prevalence is associated with mortality and emigration, Patr-B variant distributions have been changing. Enriched in this community are Patr-B variants that engage with natural killer cell receptors. Elevated among SIVcpz-infected chimpanzees, the Patr-B*06:03 variant has striking structural and functional similarities to HLA-B*57, the human allotype most strongly associated with delayed HIV-1 progression. Like HLA-B*57, Patr-B*06:03 correlates with reduced viral load, as assessed by detection of SIVcpz RNA in feces.
Collapse
Affiliation(s)
- Emily E. Wroblewski
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (EEW); (PP)
| | - Paul J. Norman
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lisbeth A. Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rebecca S. Rudicell
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
- Sanofi, Cambridge, Massachusetts, United States of America
| | - Miguel A. Ramirez
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yingying Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anne E. Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (EEW); (PP)
| |
Collapse
|
9
|
Müller N, Ostner J, Schülke O, Walter L. Towards the non-invasive assessment of MHC genotype in wild primates: analysis of wild Assamese macaque MHC-DRB from fecal samples. Am J Primatol 2013; 76:230-8. [PMID: 24151109 DOI: 10.1002/ajp.22225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/04/2013] [Accepted: 09/17/2013] [Indexed: 12/11/2022]
Abstract
The major histocompatibility complex (MHC) plays an important role in the immune response and may thus crucially affect an individual's fitness, relevant also for studies on evolutionary ecology and wildlife conservation. Detailed knowledge on the genomic organization, polymorphism and diversity of the MHC has a narrow taxonomic focus though and among macaques is only available for rhesus and long-tailed macaques-the species most commonly kept for biomedical research. The lack of data on wild populations is largely due to the difficulty of obtaining blood or tissue samples necessary for genotyping approaches. Here, we aimed at analyzing MHC-DRB from non-invasively collected fecal samples in wild Assamese macaques (Macaca assamensis), utilizing the MHC-DRB-STR (D6S2878) microsatellite marker. Due to the fecal DNA source incomplete genotypes occurred, which may be improved in the future by method refinement. We detected 28 distinct DRB-STR lengths in 43 individuals with individual genotypes containing 1-9 MHC-DRB-STRs and defined four haplotypes segregating between families in Mendelian fashion. Our results indicate that variability and diversity of MHC-DRB in Assamese macaques is comparable to that of other macaque species and importantly, that fecal samples can be used for non-invasive analysis of MHC genes after refinement of the applied methods, opening a number of opportunities for MHC research on natural populations.
Collapse
Affiliation(s)
- Nadine Müller
- Social Evolution in Primates Group, Courant Research Center Evolution of Social Behavior, Georg-August University Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
10
|
The Major Histocompatibility Complex and Primate Behavioral Ecology: New Tools and Future Questions. INT J PRIMATOL 2013. [DOI: 10.1007/s10764-013-9700-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Li B, Xu Y, Ma J. Allelic characterization of the second DRB locus of major histocompatibility complex class II in Ussuri sika deer (Cervus nippon hortulorum): highlighting the trans-species evolution of DRB alleles within Cervidae. Anim Cells Syst (Seoul) 2013. [DOI: 10.1080/19768354.2013.826280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
12
|
Osborne AJ, Zavodna M, Chilvers BL, Robertson BC, Negro SS, Kennedy MA, Gemmell NJ. Extensive variation at MHC DRB in the New Zealand sea lion (Phocarctos hookeri) provides evidence for balancing selection. Heredity (Edinb) 2013; 111:44-56. [PMID: 23572124 PMCID: PMC3692317 DOI: 10.1038/hdy.2013.18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 12/20/2012] [Accepted: 01/28/2013] [Indexed: 11/09/2022] Open
Abstract
Marine mammals are often reported to possess reduced variation of major histocompatibility complex (MHC) genes compared with their terrestrial counterparts. We evaluated diversity at two MHC class II B genes, DQB and DRB, in the New Zealand sea lion (Phocarctos hookeri, NZSL) a species that has suffered high mortality owing to bacterial epizootics, using Sanger sequencing and haplotype reconstruction, together with next-generation sequencing. Despite this species' prolonged history of small population size and highly restricted distribution, we demonstrate extensive diversity at MHC DRB with 26 alleles, whereas MHC DQB is dimorphic. We identify four DRB codons, predicted to be involved in antigen binding, that are evolving under adaptive evolution. Our data suggest diversity at DRB may be maintained by balancing selection, consistent with the role of this locus as an antigen-binding region and the species' recent history of mass mortality during a series of bacterial epizootics. Phylogenetic analyses of DQB and DRB sequences from pinnipeds and other carnivores revealed significant allelic diversity, but little phylogenetic depth or structure among pinniped alleles; thus, we could neither confirm nor refute the possibility of trans-species polymorphism in this group. The phylogenetic pattern observed however, suggests some significant evolutionary constraint on these loci in the recent past, with the pattern consistent with that expected following an epizootic event. These data may help further elucidate some of the genetic factors underlying the unusually high susceptibility to bacterial infection of the threatened NZSL, and help us to better understand the extent and pattern of MHC diversity in pinnipeds.
Collapse
Affiliation(s)
- A J Osborne
- Centre for Reproduction and Genomics, Department of Anatomy, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
13
|
Lenz TL, Eizaguirre C, Kalbe M, Milinski M. EVALUATING PATTERNS OF CONVERGENT EVOLUTION AND TRANS-SPECIES POLYMORPHISM AT MHC IMMUNOGENES IN TWO SYMPATRIC STICKLEBACK SPECIES. Evolution 2013; 67:2400-12. [DOI: 10.1111/evo.12124] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/26/2013] [Indexed: 01/15/2023]
Affiliation(s)
- Tobias L. Lenz
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Str 2 24306 Plön Germany
| | - Christophe Eizaguirre
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Str 2 24306 Plön Germany
- Department of Evolutionary Ecology of Marine Fishes; GEOMAR
- Helmholtz Center for Ocean Research; Düsternbrooker Weg 20 24105 Kiel Germany
| | - Martin Kalbe
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Str 2 24306 Plön Germany
| | - Manfred Milinski
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Str 2 24306 Plön Germany
| |
Collapse
|
14
|
Evidence for evolutionary convergence at MHC in two broadly distributed mesocarnivores. Immunogenetics 2011; 64:289-301. [DOI: 10.1007/s00251-011-0588-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/31/2011] [Indexed: 12/21/2022]
|
15
|
Li L, Zhou X, Chen X. Characterization and evolution of MHC class II B genes in Ardeid birds. J Mol Evol 2011; 72:474-83. [PMID: 21590337 DOI: 10.1007/s00239-011-9446-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 04/29/2011] [Indexed: 01/18/2023]
Abstract
Major histocompatibility complex (MHC) is a multi-gene family that is very suitable to investigate a wide range of open questions in evolutionary ecology. In this study, we characterized two expressed MHC class II B genes (DAB1 and DAB2) in the Grey Heron (Aves: Ardea cinerea). We further developed the primer pairs to amplify and sequence two MHC class II B loci in ten ardeid birds. Phylogenetic analysis revealed that different parts of the genes showed different evolutionary patterns. The exon 2 sequences tended to cluster two gene-specific lineages. In each lineage, exon 2 sequences from several species showed closer relationships than sequences within species, and two shared identical alleles were found between species (Egretta sacra and Nycticorax nycticorax; Egretta garzetta and Bubulcus ibis), supporting the hypothesis of trans-species polymorphism. In contrast, the species-specific intron 2 plus partial exon 3 tree suggested that DAB1 and DAB2 were subject to concerted evolution. GENECONV analyses showed the gene exchange played an important role in the ardeid MHC evolution.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems School of Life Sciences, Xiamen University, Siming, China
| | | | | |
Collapse
|
16
|
Garamszegi LZ, Nunn CL. Parasite-mediated evolution of the functional part of the MHC in primates. J Evol Biol 2010; 24:184-95. [PMID: 21091566 DOI: 10.1111/j.1420-9101.2010.02156.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The major histocompatibility complex (MHC) is a key model of genetic polymorphism, but the mechanisms underlying its extreme variability are debated. Most hypotheses for MHC diversity focus on pathogen-driven selection and predict that MHC polymorphism evolves under the pressure of a diverse parasite fauna. Several studies reported that certain alleles offer protection against certain parasites, yet it remains unclear whether variation in parasite pressure more generally covaries with allelic diversity and rates of molecular evolution of MHC across species. We tested this prediction in a comparative study of 41 primate species. We characterized polymorphism of the exon 2 of DRB region of the MHC class II. Our phylogenetic analyses controlled for the potential effects of neutral mutation rate, population size, geographic origin and body mass and revealed that nematode species richness associates positively with nonsynonymous nucleotide substitution rate at the functional part of the molecule. We failed to find evidence for allelic diversity being strongly related to parasite species richness. Continental distribution was a strong predictor of both allelic diversity and substitution rate, with higher values in Malagasy and Neotropical primates. These results indicate that parasite pressure can influence the different estimates of MHC polymorphism, whereas geography plays an independent role in the natural history of MHC.
Collapse
Affiliation(s)
- L Z Garamszegi
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, Seville, Spain.
| | | |
Collapse
|
17
|
Xu HL, Wang YT, Cheng AC, Yao YF, Ni QY, Zeng W, Bi FJ, Yang ZX, Chen XY. [Polymorphism of MHC-DPB1 gene exon 2 in rhesus macaques (Macaca mulatta)]. YI CHUAN = HEREDITAS 2010; 32:588-98. [PMID: 20566463 DOI: 10.3724/sp.j.1005.2010.00588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Rhesus macaque (Macaca mulatta) has long been used as an experimental model animal for biomedical research and was under the key state protection (class II) from Chinese government. In order to facilitate the use of Chinese rhesus macaques in biomedical research and their protection based on better understanding of the major mistocompability complex (MHC) genes in these macaques, the exon 2 of Mamu-DPB1 genes were determined in 106 wild rhesus macaques using DGGE, cloning and sequencing. A total of 21 Mamu-DPB1 alleles were obtained, of which 15 alleles were novel sequences that had not been documented previously. Mamu-DPB1 30 was the most frequent allele in the whole large population comprising all 106 rhesus macaque individuals (0.1120) and in Xiaojin population (0.1120), Mamu-DPB1 04 in Heishui (0.1702), -DPB1 32 in Bazhong (0.1613), -DPB1 30 in Hanyuan (0.1120), and -DPB1 04 in Jiulong (0.1139). The alignment of the amino acids sequences showed that 12 variable sites were species-specific, of which 9 sites occurred in the putative amino acids sequences of the 15 novel Mamu-DPB1 alleles. Trans-species polymorphism was observed on the phylogenetic tree based on the DPB1 alleles of rhesus macaques and cynomolgus (Macaca fascicularis). In addition, these results also demonstrated that significant genetic differentiation has occurred between Chinese and Indian rhesus macaque population.
Collapse
Affiliation(s)
- Huai-Liang Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Castillo S, Srithayakumar V, Meunier V, Kyle CJ. Characterization of major histocompatibility complex (MHC) DRB exon 2 and DRA exon 3 fragments in a primary terrestrial rabies vector (Procyon lotor). PLoS One 2010; 5:e12066. [PMID: 20706587 PMCID: PMC2919397 DOI: 10.1371/journal.pone.0012066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 07/08/2010] [Indexed: 12/04/2022] Open
Abstract
The major histocompatibility complex (MHC) presents a unique system to explore links between genetic diversity and pathogens, as diversity within MHC is maintained in part by pathogen driven selection. While the majority of wildlife MHC studies have investigated species that are of conservation concern, here we characterize MHC variation in a common and broadly distributed species, the North American raccoon (Procyon lotor). Raccoons host an array of broadly distributed wildlife diseases (e.g., canine distemper, parvovirus and raccoon rabies virus) and present important human health risks as they persist in high densities and in close proximity to humans and livestock. To further explore how genetic variation influences the spread and maintenance of disease in raccoons we characterized a fragment of MHC class II DRA exon 3 (250bp) and DRB exon 2 (228 bp). MHC DRA was found to be functionally monomorphic in the 32 individuals screened; whereas DRB exon 2 revealed 66 unique alleles among the 246 individuals screened. Between two and four alleles were observed in each individual suggesting we were amplifying a duplicated DRB locus. Nucleotide differences between DRB alleles ranged from 1 to 36 bp (0.4–15.8% divergence) and translated into 1 to 21 (1.3–27.6% divergence) amino acid differences. We detected a significant excess of nonsynonymous substitutions at the peptide binding region (P = 0.005), indicating that DRB exon 2 in raccoons has been influenced by positive selection. These data will form the basis of continued analyses into the spatial and temporal relationship of the raccoon rabies virus and the immunogenetic response in its primary host.
Collapse
Affiliation(s)
- Sarrah Castillo
- Environmental and Life Sciences Gradate Program, Trent University, Peterborough, Ontario, Canada.
| | | | | | | |
Collapse
|
19
|
Huchard E, Knapp LA, Wang J, Raymond M, Cowlishaw G. MHC, mate choice and heterozygote advantage in a wild social primate. Mol Ecol 2010; 19:2545-61. [PMID: 20492522 DOI: 10.1111/j.1365-294x.2010.04644.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Preferences for mates carrying dissimilar genes at the major histocompatibility complex (MHC) may help animals increase offspring pathogen resistance or avoid inbreeding. Such preferences have been reported across a range of vertebrates, but have rarely been investigated in social species other than humans. We investigated mate choice and MHC dynamics in wild baboons (Papio ursinus). MHC Class II DRB genes and 16 microsatellite loci were genotyped across six groups (199 individuals). Based on the survey of a key segment of the gene-rich MHC, we found no evidence of mate choice for MHC dissimilarity, diversity or rare MHC genotypes. First, MHC dissimilarity did not differ from random expectation either between parents of the same offspring or between immigrant males and females from the same troop. Second, female reproductive success was not influenced by MHC diversity or genotype frequency. Third, population genetic structure analysis revealed equally high genotypic differentiation among troops, and comparable excess heterozygosity within troops for juveniles, at both Mhc-DRB and neutral loci. Nevertheless, the age structure of Mhc-DRB heterozygosity suggested higher longevity for heterozygotes, which should favour preferences for MHC dissimilarity. We propose that high levels of within-group outbreeding, resulting from group-living and sex-biased dispersal, might weaken selection for MHC-disassortative mate choice.
Collapse
Affiliation(s)
- Elise Huchard
- CNRS-UMR5554, Place Eugène Bataillon, CC 065, 34 095 Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
20
|
Huchard E, Raymond M, Benavides J, Marshall H, Knapp LA, Cowlishaw G. A female signal reflects MHC genotype in a social primate. BMC Evol Biol 2010; 10:96. [PMID: 20374634 PMCID: PMC2858743 DOI: 10.1186/1471-2148-10-96] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 04/07/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Males from many species are believed to advertise their genetic quality through striking ornaments that attract mates. Yet the connections between signal expression, body condition and the genes associated with individual quality are rarely elucidated. This is particularly problematic for the signals of females in species with conventional sex roles, whose evolutionary significance has received little attention and is poorly understood. Here we explore these questions in the sexual swellings of female primates, which are among the most conspicuous of mammalian sexual signals and highly variable in size, shape and colour. We investigated the relationships between two components of sexual swellings (size and shape), body condition, and genes of the Major Histocompatibility Complex (MHC) in a wild baboon population (Papio ursinus) where males prefer large swellings. RESULTS Although there was no effect of MHC diversity on the sexual swelling components, one specific MHC supertype (S1) was associated with poor body condition together with swellings of small size and a particular shape. The variation in swelling characteristics linked with the possession of supertype S1 appeared to be partially mediated by body condition and remained detectable when taking into account the possession of other supertypes. CONCLUSIONS These findings suggest a pathway from immunity genes to sexual signals via physical condition for the first time in females. They further indicate that mechanisms of sexual selection traditionally assigned to males can also operate in females.
Collapse
Affiliation(s)
- Elise Huchard
- Institut des Sciences de l'Evolution, Université Montpellier 2, Place Eugène Bataillon, CC 065, 34 095 Montpellier cedex 05, France
- CNRS-UMR5554, Place Eugène Bataillon, CC 065, 34 095 Montpellier cedex 05, France
- Department of Behavioural Ecology and Sociobiology, Deutsches Primatenzentrum, Kellnerweg 4, 37077 Göttingen, Germany
| | - Michel Raymond
- Institut des Sciences de l'Evolution, Université Montpellier 2, Place Eugène Bataillon, CC 065, 34 095 Montpellier cedex 05, France
- CNRS-UMR5554, Place Eugène Bataillon, CC 065, 34 095 Montpellier cedex 05, France
| | - Julio Benavides
- Institut des Sciences de l'Evolution, Université Montpellier 2, Place Eugène Bataillon, CC 065, 34 095 Montpellier cedex 05, France
- CNRS-UMR5554, Place Eugène Bataillon, CC 065, 34 095 Montpellier cedex 05, France
| | - Harry Marshall
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Leslie A Knapp
- Department of Biological Anthropology, University of Cambridge, Downing Street, Cambridge CB2 3DZ, UK
| | - Guy Cowlishaw
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| |
Collapse
|
21
|
Knapp LA. Single nucleotide polymorphism screening with denaturing gradient gel electrophoresis. Methods Mol Biol 2009; 578:137-51. [PMID: 19768591 DOI: 10.1007/978-1-60327-411-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Denaturing gradient gel electrophoresis (DGGE) is a powerful technique for identifying DNA sequence-based differences. The method relies on the fact that double-stranded DNA molecules have unique denaturation rates that are based upon the specific nucleotide composition of the DNA sequence(s). While DGGE is typically used to screen for polymorphisms that vary by multiple nucleotides, it is equally useful for screening single nucleotide polymorphisms (SNPs). For most applications, it is possible to use computer software in advance to determine if SNPs can be differentiated using DGGE. The software can also model the effect of attaching a GC-rich clamp to the PCR primer to improve detection of SNPs. Once feasibility has been confirmed, a perpendicular DGGE can be used to identify the optimal denaturing gradient for the sequences of interest. Parallel gels can then be used to screen large numbers of samples at one time, eliminating the need for cloning and sequencing or direct sequencing of PCR products. This chapter provides step-by-step instructions on the use of DGGE and illustrates its application for detection of SNPs, as well as multiple nucleotide polymorphisms, in the major histocompatibility complex.
Collapse
Affiliation(s)
- Leslie A Knapp
- Primate Immunogenetics and Molecular Ecology Research Group, Department of Biological Anthropology, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Huchard E, Alvergne A, Féjan D, Knapp LA, Cowlishaw G, Raymond M. More than friends? Behavioural and genetic aspects of heterosexual associations in wild chacma baboons. Behav Ecol Sociobiol 2009. [DOI: 10.1007/s00265-009-0894-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Sequence polymorphism and evolution of three cetacean MHC genes. J Mol Evol 2009; 69:260-75. [PMID: 19693422 DOI: 10.1007/s00239-009-9272-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 07/21/2009] [Accepted: 08/02/2009] [Indexed: 12/24/2022]
Abstract
Sequence variability at three major histocompatibility complex (MHC) genes (DQB, DRA, and MHC-I) of cetaceans was investigated in order to get an overall understanding of cetacean MHC evolution. Little sequence variation was detected at the DRA locus, while extensive and considerable variability were found at the MHC-I and DQB loci. Phylogenetic reconstruction and sequence comparison revealed extensive sharing of identical MHC alleles among different species at the three MHC loci examined. Comparisons of phylogenetic trees for these MHC loci with the trees reconstructed only based on non-PBR sites revealed that allelic similarity/identity possibly reflected common ancestry and were not due to adaptive convergence. At the same time, trans-species evolution was also evidenced that the allelic diversity of the three MHC loci clearly pre-dated species divergence events according to the relaxed molecular clock. It may be the forces of balancing selection acting to maintain the high sequence variability and identical alleles in trans-specific manner at the MHC-I and DQB loci.
Collapse
|
24
|
Chege GK, Thomas R, Shephard EG, Meyers A, Bourn W, Williamson C, Maclean J, Gray CM, Rybicki EP, Williamson AL. A prime-boost immunisation regimen using recombinant BCG and Pr55(gag) virus-like particle vaccines based on HIV type 1 subtype C successfully elicits Gag-specific responses in baboons. Vaccine 2009; 27:4857-66. [PMID: 19520196 DOI: 10.1016/j.vaccine.2009.05.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 05/13/2009] [Accepted: 05/21/2009] [Indexed: 12/11/2022]
Abstract
Mycobacterium bovis BCG is considered an attractive live bacterial vaccine vector. In this study, we investigated the immune response of baboons to a primary vaccination with recombinant BCG (rBCG) constructs expressing the gag gene from a South African HIV-1 subtype C isolate, and a boost with HIV-1 subtype C Pr55(gag) virus-like particles (Gag VLPs). Using an interferon enzyme-linked immunospot assay, we show that although these rBCG induced only a weak or an undetectable HIV-1 Gag-specific response on their own, they efficiently primed for a Gag VLP boost, which strengthened and broadened the immune responses. These responses were predominantly CD8+ T cell-mediated and recognised similar epitopes as those targeted by humans with early HIV-1 subtype C infection. In addition, a Gag-specific humoral response was elicited. These data support the development of HIV-1 vaccines based on rBCG and Pr55(gag) VLPs.
Collapse
Affiliation(s)
- Gerald K Chege
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, South Africa
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Garamszegi LZ, de Groot NG, Bontrop RE. Correlated evolution of nucleotide substitution rates and allelic variation in Mhc-DRB lineages of primates. BMC Evol Biol 2009; 9:73. [PMID: 19361342 PMCID: PMC2674423 DOI: 10.1186/1471-2148-9-73] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 04/12/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) is a key model of genetic polymorphism. Selection pressure by pathogens or other microevolutionary forces may result in a high rate of non-synonymous substitutions at the codons specifying the contact residues of the antigen binding sites (ABS), and the maintenance of extreme MHC allelic variation at the population/species level. Therefore, selection forces favouring MHC variability for any reason should cause a correlated evolution between substitution rates and allelic polymorphism. To investigate this prediction, we characterised nucleotide substitution rates and allelic polymorphism (i.e. the number of alleles detected in relation to the number of animals screened) of several Mhc class II DRB lineages in 46 primate species, and tested for a correlation between them. RESULTS First, we demonstrate that species-specific and lineage-specific evolutionary constraints favour species- and lineage-dependent substitution rate at the codons specifying the ABS contact residues (i.e. certain species and lineages can be characterised by high substitution rate, while others have low rate). Second, we show that although the degree of the non-synonymous substitution rate at the ABS contact residues was systematically higher than the degree of the synonymous substitution rate, these estimates were strongly correlated when we controlled for species-specific and lineage-specific effects, and also for the fact that different studies relied on different sample size. Such relationships between substitution rates of different types could even be extended to the non-contact residues of the molecule. Third, we provide statistical evidence that increased substitution rate along a MHC gene may lead to allelic variation, as a high substitution rate can be observed in those lineages in which many alleles are maintained. Fourth, we show that the detected patterns were independent of phylogenetic constraints. When we used phylogenetic models that control for similarity between species, due to common descent, and focused on variations within a single lineage (DRB1*03), the positive relationship between different substitution rates and allelic polymorphisms was still robust. Finally, we found the same effects to emerge in the analyses that eliminated within-species variation in MHC traits by using strictly single population-level studies. However, in a set of contrasting analyses, in which we focused on the non-functional DRB6 locus, the correlation between substitution rates and allelic variation was not prevalent. CONCLUSION Our results indicate that positive selection for the generation of allelic polymorphism acting on the functional part of the protein has consequences for the nucleotide substitution rate along the whole exon 2 sequence of the Mhc-DRB gene. Additionally, we proved that an increased substitution rate can promote allelic variation within lineages. Consequently, the evolution of different characteristics of genetic polymorphism is not independent.
Collapse
Affiliation(s)
- László Z Garamszegi
- Department of Biology, University of Antwerp, Campus Drie Eiken Universiteitsplein 1, B-2610 Wilrijk, Belgium
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, c/Americo Vespucio, s/n, 41092, Sevilla, Spain
| | - Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, PO Box 3306, 2280 GH Rijswijk, the Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, PO Box 3306, 2280 GH Rijswijk, the Netherlands
| |
Collapse
|
26
|
Lenz TL, Eizaguirre C, Becker S, Reusch TBH. RSCA genotyping of MHC for high-throughput evolutionary studies in the model organism three-spined stickleback Gasterosteus aculeatus. BMC Evol Biol 2009; 9:57. [PMID: 19291291 PMCID: PMC2662802 DOI: 10.1186/1471-2148-9-57] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 03/16/2009] [Indexed: 11/26/2022] Open
Abstract
Background In all jawed vertebrates, highly polymorphic genes of the major histocompatibility complex (MHC) encode antigen presenting molecules that play a key role in the adaptive immune response. Their polymorphism is composed of multiple copies of recently duplicated genes, each possessing many alleles within populations, as well as high nucleotide divergence between alleles of the same species. Experimental evidence is accumulating that MHC polymorphism is a result of balancing selection by parasites and pathogens. In order to describe MHC diversity and analyse the underlying mechanisms that maintain it, a reliable genotyping technique is required that is suitable for such highly variable genes. Results We present a genotyping protocol that uses Reference Strand-mediated Conformation Analysis (RSCA), optimised for recently duplicated MHC class IIB genes that are typical for many fish and bird species, including the three-spined stickleback, Gasterosteus aculeatus. In addition we use a comprehensive plasmid library of MHC class IIB alleles to determine the nucleotide sequence of alleles represented by RSCA allele peaks. Verification of the RSCA typing by cloning and sequencing demonstrates high congruency between both methods and provides new insight into the polymorphism of classical stickleback MHC genes. Analysis of the plasmid library additionally reveals the high resolution and reproducibility of the RSCA technique. Conclusion This new RSCA genotyping protocol offers a fast, but sensitive and reliable way to determine the MHC allele repertoire of three-spined sticklebacks. It therefore provides a valuable tool to employ this highly polymorphic and adaptive marker in future high-throughput studies of host-parasite co-evolution and ecological speciation in this emerging model organism.
Collapse
Affiliation(s)
- Tobias L Lenz
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany.
| | | | | | | |
Collapse
|
27
|
Comparative genetics of a highly divergent DRB microsatellite in different macaque species. Immunogenetics 2008; 60:737-48. [PMID: 18956179 PMCID: PMC4629986 DOI: 10.1007/s00251-008-0333-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/29/2008] [Indexed: 12/11/2022]
Abstract
The DRB region of the major histocompatibility complex (MHC) of cynomolgus and rhesus macaques is highly plastic, and extensive copy number variation together with allelic polymorphism makes it a challenging enterprise to design a typing protocol. All intact DRB genes in cynomolgus monkeys (Mafa) appear to possess a compound microsatellite, DRB-STR, in intron 2, which displays extensive length polymorphism. Therefore, this STR was studied in a large panel of animals, comprising pedigreed families as well. Sequencing analysis resulted in the detection of 60 Mafa-DRB exon 2 sequences that were unambiguously linked to the corresponding microsatellite. Its length is often allele specific and follows Mendelian segregation. In cynomolgus and rhesus macaques, the nucleotide composition of the DRB-STR is in concordance with the phylogeny of exon 2 sequences. As in humans and rhesus monkeys, this protocol detects specific combinations of different DRB-STR lengths that are unique for each haplotype. In the present panel, 22 Mafa-DRB region configurations could be defined, which exceeds the number detected in a comparable cohort of Indian rhesus macaques. The results suggest that, in cynomolgus monkeys, even more frequently than in rhesus macaques, new haplotypes are generated by recombination-like events. Although both macaque species are known to share several identical DRB exon 2 sequences, the lengths of the corresponding microsatellites often differ. Thus, this method allows not only fast and accurate DRB haplotyping but may also permit discrimination between highly related macaque species.
Collapse
|
28
|
Huchard E, Weill M, Cowlishaw G, Raymond M, Knapp LA. Polymorphism, haplotype composition, and selection in the Mhc-DRB of wild baboons. Immunogenetics 2008; 60:585-98. [DOI: 10.1007/s00251-008-0319-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 06/30/2008] [Indexed: 11/25/2022]
|
29
|
Xu S, Chen B, Zhou K, Yang G. High similarity at three MHC loci between the baiji and finless porpoise: Trans-species or convergent evolution? Mol Phylogenet Evol 2008; 47:36-44. [DOI: 10.1016/j.ympev.2007.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/28/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
|
30
|
Otting N, de Vos-Rouweler AJM, Heijmans CMC, de Groot NG, Doxiadis GGM, Bontrop RE. MHC class I A region diversity and polymorphism in macaque species. Immunogenetics 2007; 59:367-75. [PMID: 17334754 PMCID: PMC1914291 DOI: 10.1007/s00251-007-0201-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 02/01/2007] [Indexed: 12/04/2022]
Abstract
The HLA-A locus represents a single copy gene that displays abundant allelic polymorphism in the human population, whereas, in contrast, a nonhuman primate species such as the rhesus macaque (Macaca mulatta) possesses multiple HLA-A-like (Mamu-A) genes, which parade varying degrees of polymorphism. The number and combination of transcribed Mamu-A genes present per chromosome display diversity in a population of Indian animals. At present, it is not clearly understood whether these different A region configurations are evolutionarily stable entities. To shed light on this issue, rhesus macaques from a Chinese population and a panel of cynomolgus monkeys (Macaca fascicularis) were screened for various A region-linked variations. Comparisons demonstrated that most A region configurations are old entities predating macaque speciation, whereas most allelic variation (>95%) is of more recent origin. The latter situation contrasts the observations of the major histocompatibility complex class II genes in rhesus and cynomolgus macaques, which share a high number of identical alleles (>30%) as defined by exon 2 sequencing.
Collapse
Affiliation(s)
- Nel Otting
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands.
| | | | | | | | | | | |
Collapse
|