1
|
Vasoya D, Tzelos T, Benedictus L, Karagianni AE, Pirie S, Marr C, Oddsdóttir C, Fintl C, Connelley T. High-Resolution Genotyping of Expressed Equine MHC Reveals a Highly Complex MHC Structure. Genes (Basel) 2023; 14:1422. [PMID: 37510326 PMCID: PMC10379315 DOI: 10.3390/genes14071422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The Major Histocompatibility Complex (MHC) genes play a key role in a number of biological processes, most notably in immunological responses. The MHCI and MHCII genes incorporate a complex set of highly polymorphic and polygenic series of genes, which, due to the technical limitations of previously available technologies, have only been partially characterized in non-model but economically important species such as the horse. The advent of high-throughput sequencing platforms has provided new opportunities to develop methods to generate high-resolution sequencing data on a large scale and apply them to the analysis of complex gene sets such as the MHC. In this study, we developed and applied a MiSeq-based approach for the combined analysis of the expressed MHCI and MHCII repertoires in cohorts of Thoroughbred, Icelandic, and Norwegian Fjord Horses. The approach enabled us to generate comprehensive MHCI/II data for all of the individuals (n = 168) included in the study, identifying 152 and 117 novel MHCI and MHCII sequences, respectively. There was limited overlap in MHCI and MHCII haplotypes between the Thoroughbred and the Icelandic/Norwegian Fjord horses, showcasing the variation in MHC repertoire between genetically divergent breeds, and it can be inferred that there is much more MHC diversity in the global horse population. This study provided novel insights into the structure of the expressed equine MHC repertoire and highlighted unique features of the MHC in horses.
Collapse
Affiliation(s)
- Deepali Vasoya
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Thomas Tzelos
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| | - Lindert Benedictus
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Anna Eleonora Karagianni
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Scott Pirie
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Celia Marr
- Rossdales Equine Hospital, Cotton End Road, Exning, Newmarket CD8 7NN, UK
| | - Charlotta Oddsdóttir
- The Institute for Experimental Pathology at Keldur, University of Iceland Keldnavegur 3, 112 Reykjavík, Iceland
| | - Constanze Fintl
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Timothy Connelley
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| |
Collapse
|
2
|
Sadeghi R, Moradi-Shahrbabak M, Miraei Ashtiani SR, Miller DC, Antczak DF. MHC haplotype diversity in Persian Arabian horses determined using polymorphic microsatellites. Immunogenetics 2017; 70:305-315. [PMID: 29170799 DOI: 10.1007/s00251-017-1039-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/19/2017] [Indexed: 01/15/2023]
Abstract
Previous research on the equine major histocompatibility complex (MHC) demonstrated strong correlations between haplotypes defined by polymorphic intra-MHC microsatellites and haplotypes defined using classical serology. Here, we estimated MHC diversity in a sample of 124 Arabian horses from an endangered strain native to Iran (Persian Asil Arabians), using a validated 10-marker microsatellite panel. In a group of 66 horses related as parent-offspring pairs or half-sibling groups, we defined 51 MHC haplotypes, 49 of which were new. In 47 of the remaining 58 unrelated horses, we could assign one previously identified MHC haplotype, and by default, we gave provisional haplotype status to the remaining constellation of microsatellite alleles. In these horses, we found 21 haplotypes that we had previously defined and 31 provisional haplotypes, two of which had been identified in an earlier study. This gave a total of 78 new MHC haplotypes. The final 11 horses were MHC heterozygotes that we could not phase using information from any of the previously validated or provisional haplotypes. However, we could determine that these horses carried a total of 22 different undefined haplotypes. In the overall population sample, we detected three homozygous horses and one maternally inherited recombinant from 21 informative segregations. Virtually all of the horses tested were MHC heterozygotes, and most unrelated horses (98%) were heterozygous for rare microsatellite-defined haplotypes found less than three times in the sampled horses. This is evidence for a very high level of MHC haplotype variation in the Persian Asil Arabian horse.
Collapse
Affiliation(s)
- R Sadeghi
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Animal Science, University of Tehran, Karaj, 4111, Iran
| | | | | | - D C Miller
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Douglas F Antczak
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Yao S, Liu J, Qi J, Chen R, Zhang N, Liu Y, Wang J, Wu Y, Gao GF, Xia C. Structural Illumination of Equine MHC Class I Molecules Highlights Unconventional Epitope Presentation Manner That Is Evolved in Equine Leukocyte Antigen Alleles. THE JOURNAL OF IMMUNOLOGY 2016; 196:1943-54. [DOI: 10.4049/jimmunol.1501352] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 12/03/2015] [Indexed: 01/20/2023]
|
4
|
Kydd JH, Case R, Minke J, Audonnet JC, Wagner B, Antczak DF. Immediate-early protein of equid herpesvirus type 1 as a target for cytotoxic T-lymphocytes in the Thoroughbred horse. J Gen Virol 2014; 95:1783-1789. [PMID: 24836672 DOI: 10.1099/vir.0.065888-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cytotoxic T-lymphocytes (CTLs) are associated with protective immunity against disease caused by equid herpesvirus type 1 (EHV-1). However, the EHV-1 target proteins for CTLs are poorly defined. This limits the development of vaccine candidates designed to stimulate strong CTL immunity. Here, classical CTL assays using lymphocytes from horses of three defined MHC class I types that experienced natural infection with EHV-1 and a modified vaccinia virus construct containing an EHV-1 gene encoding the immediate-early (IE) protein are reported. Horses homozygous for the equine leukocyte antigen (ELA)-A2 haplotype, but not the ELA-A5 haplotype, produced MHC-restricted CTL responses against the IE protein. Previously, horses homozygous for the ELA-A3 haplotype also mounted CTL responses against the IE protein. Both haplotypes are common in major horse breeds, including the Thoroughbred. Thus, the IE protein is an attractive candidate molecule for future studies of T-cell immunity to EHV-1 in the horse.
Collapse
Affiliation(s)
- Julia H Kydd
- Animal Health Trust, Lanwades Park, Kennett, Newmarket, Suffolk CB8 7UU, UK
| | - Ruth Case
- Animal Health Trust, Lanwades Park, Kennett, Newmarket, Suffolk CB8 7UU, UK
| | - Julius Minke
- Merial SAS, R&D, 254 rue Marcel Merieux, Lyon, France
| | | | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, NY 14853, USA
| | - Douglas F Antczak
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, NY 14853, USA
| |
Collapse
|
5
|
Kydd JH, Slater J, Osterrieder N, Lunn DP, Antczak DF, Azab W, Balasuriya U, Barnett C, Brosnahan M, Cook C, Damiani A, Elton D, Frampton A, Gilkerson J, Goehring L, Horohov D, Maxwell L, Minke J, Morley P, Nauwynck H, Newton R, Perkins G, Pusterla N, Soboll-Hussey G, Traub-Dargatz J, Townsend H, Van de walle GR, Wagner B. Third International Havemeyer Workshop on Equine Herpesvirus type 1. Equine Vet J 2012; 44:513-7. [DOI: 10.1111/j.2042-3306.2012.00604.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|