1
|
Gentry CM. Updates on the Pathogenesis of Canine and Feline Atopic Dermatitis: Part 1, History, Breed Prevalence, Genetics, Allergens, and the Environment. Vet Clin North Am Small Anim Pract 2024:S0195-5616(24)00105-0. [PMID: 39732548 DOI: 10.1016/j.cvsm.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Canine atopic dermatitis (cAD) and feline atopic skin syndrome are inflammatory and pruritic skin diseases with both environmental and genetic factors. Genetic factors may include barrier defects and a predisposition to mount T helper 2 lymphocyte immune response when allergens are encountered. These diseases have repeatable patterns of skin and ear inflammation and commonly lead to Staphylococcal and Malassezia skin and ear infections. Early life environmental factors and an indoor lifestyle may increase the risk of cAD. The most ubiquitous environmental allergen is house dust mite with pollens, molds, foods, and Malassezia yeast potentially playing a role in affected individuals.
Collapse
Affiliation(s)
- Christina M Gentry
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 408 Raymond Stotzer Parkway, College Station, TX 77845, USA.
| |
Collapse
|
2
|
Hensel P, Saridomichelakis M, Eisenschenk M, Tamamoto-Mochizuki C, Pucheu-Haston C, Santoro D. Update on the role of genetic factors, environmental factors and allergens in canine atopic dermatitis. Vet Dermatol 2024; 35:15-24. [PMID: 37840229 DOI: 10.1111/vde.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/14/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Canine atopic dermatitis (cAD) is a common, complex and multifactorial disease involving, among others, genetic predisposition, environmental factors and allergic sensitisation. OBJECTIVE This review summarises the current evidence on the role of genetic and environmental factors and allergic sensitisation in the pathogenesis of cAD since the last review by ICADA in 2015. MATERIALS AND METHODS Online citation databases and proceedings from international meetings on genetic factors, environmental factors and allergens relevant to cAD that had been published between 2015 and 2022 were reviewed. RESULTS Despite intensive research efforts, the detailed genetic background predisposing to cAD and the effect of a wide range of environmental factors still need more clarification. Genome-wide association studies and investigations on genetic biomarkers, such as microRNAs, have provided some new information. Environmental factors appear to play a major role. Lifestyle, especially during puppyhood, appears to have an important impact on the developing immune system. Factors such as growing up in a rural environment, large size of family, contact with other animals, and a nonprocessed meat-based diet may reduce the risk for subsequent development of cAD. It appears that Toxocara canis infection may have a protective effect against Dermatophagoides farinae-induced cAD. House dust mites (D. farinae and D. pteronyssinus) remain the most common allergen group to which atopic dogs react. Currently, the major allergens related to D. farinae in dogs include Der f 2, Der f 15, Der f 18 and Zen 1. CONCLUSIONS AND CLINICAL RELEVANCE Canine atopic dermatitis remains a complex, genetically heterogeneous disease that is influenced by multiple environmental factors. Further, well-designed studies are necessary to shed more light on the role of genetics, environmental factors and major allergens in the pathogenesis of cAD.
Collapse
Affiliation(s)
| | | | | | - Chie Tamamoto-Mochizuki
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Cherie Pucheu-Haston
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Domenico Santoro
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Tengvall K, Sundström E, Wang C, Bergvall K, Wallerman O, Pederson E, Karlsson Å, Harvey ND, Blott SC, Olby N, Olivry T, Brander G, Meadows JRS, Roosje P, Leeb T, Hedhammar Å, Andersson G, Lindblad-Toh K. Bayesian model and selection signature analyses reveal risk factors for canine atopic dermatitis. Commun Biol 2022; 5:1348. [PMID: 36482174 PMCID: PMC9731970 DOI: 10.1038/s42003-022-04279-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Canine atopic dermatitis is an inflammatory skin disease with clinical similarities to human atopic dermatitis. Several dog breeds are at increased risk for developing this disease but previous genetic associations are poorly defined. To identify additional genetic risk factors for canine atopic dermatitis, we here apply a Bayesian mixture model adapted for mapping complex traits and a cross-population extended haplotype test to search for disease-associated loci and selective sweeps in four dog breeds at risk for atopic dermatitis. We define 15 associated loci and eight candidate regions under selection by comparing cases with controls. One associated locus is syntenic to the major genetic risk locus (Filaggrin locus) in human atopic dermatitis. One selection signal in common type Labrador retriever cases positions across the TBC1D1 gene (body weight) and one signal of selection in working type German shepherd controls overlaps the LRP1B gene (brain), near the KYNU gene (psoriasis). In conclusion, we identify candidate genes, including genes belonging to the same biological pathways across multiple loci, with potential relevance to the pathogenesis of canine atopic dermatitis. The results show genetic similarities between dog and human atopic dermatitis, and future across-species genetic comparisons are hereby further motivated.
Collapse
Affiliation(s)
- Katarina Tengvall
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Elisabeth Sundström
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Chao Wang
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kerstin Bergvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ola Wallerman
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Eric Pederson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Åsa Karlsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Naomi D Harvey
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - Sarah C Blott
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - Natasha Olby
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Thierry Olivry
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - Gustaf Brander
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Petra Roosje
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Outerbridge CA, Jordan TJ. Current Knowledge on Canine Atopic Dermatitis: Pathogenesis and Treatment. ADVANCES IN SMALL ANIMAL CARE 2021; 2:101-115. [PMID: 35721364 PMCID: PMC9204668 DOI: 10.1016/j.yasa.2021.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Catherine A. Outerbridge
- Department of Medicine and Epidemiology School of Veterinary Medicine, University of California, Davis, Davis, CA 95691, USA
- Corresponding author. Department of Medicine and Epidemiology School of Veterinary Medicine, University of California, Davis, Davis, CA 95691, USA,
| | - Tyler J.M. Jordan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606, USA
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, 115 Mason Farm Road, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Abstract
Human filaggrin (FLG) plays a key role in epidermal barrier function, and loss-of-function mutations of its gene are primarily responsible for the development of human atopic dermatitis (AD). FLG expression is also reduced in the epidermis of atopic patients, due to the transcriptional effect of Th2 type cytokines. Canine atopic dermatitis (CAD) is a prevalent skin disease that shares many clinical and pathogenic features with its human homologue. The aim of this review is discuss current knowledge on canine filaggrin (Flg) in both healthy and atopic dogs, as compared to the human protein. Although the molecular structures of the two proteins, as deduced from the sequences of their gene, are different, their sites of expression and their proteolytic processing in the normal epidermis are similar. Concerning the expression of Flg in CAD, conflicting results have been published at the mRNA level and little accurate information is available at the protein level. It derives from a large precursor, named profilaggrin (proFLG), formed by several FLG units and stored in keratohyalin granules of the stratum granulosum. Canine and human proFLG sequences display little amino acid similarity (33% as shown using the Basic Local Alignment Search Tool (BLAST)) except at the level of the S100 homologous part of the N-terminus (75%). Genetic studies in the dog are at an early stage and are limited by the variety of breeds and the small number of cases included. Many questions remain unanswered about the involvement of Flg in CAD pathogenesis.
Collapse
Affiliation(s)
- Daniel Combarros
- UDEAR, Université de Toulouse, INSERM UPS, Toulouse, France.,Université de Toulouse, ENVT, Toulouse, France
| | - Marie-Christine Cadiergues
- UDEAR, Université de Toulouse, INSERM UPS, Toulouse, France.,Université de Toulouse, ENVT, Toulouse, France
| | - Michel Simon
- UDEAR, Université de Toulouse, INSERM UPS, Toulouse, France
| |
Collapse
|
6
|
Nuttall TJ, Marsella R, Rosenbaum MR, Gonzales AJ, Fadok VA. Update on pathogenesis, diagnosis, and treatment of atopic dermatitis in dogs. J Am Vet Med Assoc 2020; 254:1291-1300. [PMID: 31067173 DOI: 10.2460/javma.254.11.1291] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Improved understanding of the pathogenesis of atopic dermatitis in dogs has led to more effective treatment plans, including skin barrier repair and new targeted treatments for management of allergy-associated itch and inflammation. The intent of this review article is to provide an update on the etiologic rationale behind current recommendations that emphasize a multimodal approach for the management of atopic dermatitis in dogs. Increasing knowledge of this complex disease process will help direct future treatment options.
Collapse
|
7
|
Hemida M, Vuori KA, Salin S, Moore R, Anturaniemi J, Hielm-Björkman A. Identification of modifiable pre- and postnatal dietary and environmental exposures associated with owner-reported canine atopic dermatitis in Finland using a web-based questionnaire. PLoS One 2020; 15:e0225675. [PMID: 32469869 PMCID: PMC7259748 DOI: 10.1371/journal.pone.0225675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
A cross-sectional hypothesis generating study was performed to investigate modifiable exposures such as whether feeding pattern (a non-processed meat based diet, NPMD, or an ultra-processed carbohydrate based diet, UPCD), certain environmental factors and their timing of exposure might be associated with the development of canine atopic dermatitis (CAD). Also, genetic and demographic factors were tested for associations with CAD. The data was collected from the validated internet-based DogRisk food frequency questionnaire in Finland. A total of 2236 dogs were eligible for the study (the owners reported 406 cases and 1830 controls). Our main interest was to analyze modifiable early risk factors of CAD, focusing on nutritional and environmental factors. We tested four early life periods; prenatal, neonatal, early postnatal and late postnatal periods. Twenty-two variables were tested for associations with CAD using logistic regression analysis. From the final models we identified novel dietary associations with CAD: the NPMD during the prenatal and early postnatal periods had a significant negative association with the incidence of CAD in adult dogs (age above 1 year). Oppositely, UPCD was associated with a significantly higher risk for CAD incidence. Other variables that were associated with a significantly lower risk for CAD were maternal deworming during pregnancy, sunlight exposure during early postnatal period, normal body condition score during the early postnatal period, the puppy being born within the same family that it would stay in, and spending time on a dirt or grass surface from 2 to 6 months. Also, the genetic factors regarding maternal history of CAD, allergy-prone breeds and more than 50% white-colored coat all showed a significant positive association with CAD incidence in agreement with previous findings. Although no causality can be established, feeding NPMD early in life seemed to be protective against CAD, while UPCD could be considered a risk factor. Prospective intervention studies are needed to establish the causal effects of the protective role of NPMD on prevalence of CAD during the fetal and early postnatal life.
Collapse
Affiliation(s)
- Manal Hemida
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Kristiina A. Vuori
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Siru Salin
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Robin Moore
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Anturaniemi
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Hielm-Björkman
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Dias IE, Pinto PO, Barros LC, Viegas CA, Dias IR, Carvalho PP. Mesenchymal stem cells therapy in companion animals: useful for immune-mediated diseases? BMC Vet Res 2019; 15:358. [PMID: 31640767 PMCID: PMC6805418 DOI: 10.1186/s12917-019-2087-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells are multipotent cells, with capacity for self-renewal and differentiation into tissues of mesodermal origin. These cells are possible therapeutic agents for autoimmune disorders, since they present remarkable immunomodulatory ability.The increase of immune-mediated diseases in veterinary medicine has led to a growing interest in the research of these disorders and their medical treatment. Conventional immunomodulatory drug therapy such as glucocorticoids or other novel therapies such as cyclosporine or monoclonal antibodies are associated with numerous side effects that limit its long-term use, leading to the need for developing new therapeutic strategies that can be more effective and safe.The aim of this review is to provide a critical overview about the therapeutic potential of these cells in the treatment of some autoimmune disorders (canine atopic dermatitis, feline chronic gingivostomatitis, inflammatory bowel disease and feline asthma) compared with their conventional treatment.Mesenchymal stem cell-based therapy in autoimmune diseases has been showing that this approach can ameliorate clinical signs or even cause remission in most animals, with the exception of canine atopic dermatitis in which little to no improvement was observed.Although mesenchymal stem cells present a promising future in the treatment of most of these disorders, the variability in the outcomes of some clinical trials has led to the current controversy among authors regarding their efficacy. Mesenchymal stem cell-based therapy is currently requiring a deeper and detailed analysis that allows its standardization and better adaptation to the intended therapeutic results, in order to overcome current limitations in future trials.
Collapse
Affiliation(s)
- Inês Esteves Dias
- CIVG - Vasco da Gama Research Center, Vasco da Gama University School, Av. José R. Sousa Fernandes 197, Campus Universitário - Bloco B, Lordemão, 3020-210 Coimbra, Portugal
| | - Pedro Olivério Pinto
- CIVG - Vasco da Gama Research Center, Vasco da Gama University School, Av. José R. Sousa Fernandes 197, Campus Universitário - Bloco B, Lordemão, 3020-210 Coimbra, Portugal
- Coimbra University Veterinary Hospital, Av. José R. Sousa Fernandes 197, 3020-210 Coimbra, Portugal
| | - Luís Carlos Barros
- CIVG - Vasco da Gama Research Center, Vasco da Gama University School, Av. José R. Sousa Fernandes 197, Campus Universitário - Bloco B, Lordemão, 3020-210 Coimbra, Portugal
| | - Carlos Antunes Viegas
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Isabel Ribeiro Dias
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Pedro Pires Carvalho
- CIVG - Vasco da Gama Research Center, Vasco da Gama University School, Av. José R. Sousa Fernandes 197, Campus Universitário - Bloco B, Lordemão, 3020-210 Coimbra, Portugal
- Vetherapy, 479 St, San Francisco, CA 94103 USA
| |
Collapse
|
9
|
Agler CS, Friedenberg S, Olivry T, Meurs KM, Olby NJ. Genome-wide association analysis in West Highland White Terriers with atopic dermatitis. Vet Immunol Immunopathol 2019; 209:1-6. [PMID: 30885300 DOI: 10.1016/j.vetimm.2019.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/16/2018] [Accepted: 01/16/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common disease of dogs and humans. In both species, the interplay of genetic and environmental factors affect disease expression. In dogs with AD, differences in the breed studied and in their geographical origin have led to heterogeneity in genetic association and while different loci have been identified, a causative genetic mutation has not. We hypothesized that AD could be mapped in a large cohort of rigorously phenotyped, geographically restricted West Highland White Terriers (WHWT), a breed with a high prevalence of the disease. OBJECTIVES A) Collect phenotypes and DNA from a large cohort of WHWT born in the USA. B) Perform a genome-wide association study (GWAS) for AD in these dogs to identify associated regions and genes of interest. C) Sequence genes of interest to identify pathologic variants. METHODS We collected DNA from 96 WHWT with AD and 87 controls from the same breed. DNA was isolated and dogs were genotyped using the Illumina CanineHD BeadChip. A GWAS was performed using EMMAX and associated regions were examined for genes of interest. Genes with possible relevance to AD were examined more closely in two affected and two normal WHWT using next-generation sequencing. Variants in these genes that were unique to the two affected WHWT were compared to a database of variants derived from whole genome sequencing of 200 non-WHWT dogs across 33 additional breeds. RESULTS The GWAS identified a 2.7 Mb genomic region on CFA3 that included 37 genes. There was a missense variant in the F2R gene in both affected dogs but this variant was also found in 35 dogs in 9 breeds in the database of whole genome sequences for whom the phenotype regarding atopic dermatitis was unknown. CONCLUSIONS Atopic dermatitis in WHWT is associated with a region on CFA3 that contains several candidate genes. Of these, a homozygous variant in the F2R gene present in multiple breeds that also suffer from AD warrants further evaluation.
Collapse
Affiliation(s)
- Cary S Agler
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - Steven Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Thierry Olivry
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA; Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - Kate M Meurs
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA; Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - Natasha J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA; Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.
| |
Collapse
|
10
|
Jensen-Jarolim E, Herrmann I, Panakova L, Janda J. Allergic and Atopic Eczema in Humans and Their Animals. Comp Med 2017. [DOI: 10.1007/978-3-319-47007-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
van Steenbeek FG, Hytönen MK, Leegwater PAJ, Lohi H. The canine era: the rise of a biomedical model. Anim Genet 2016; 47:519-27. [PMID: 27324307 DOI: 10.1111/age.12460] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 12/29/2022]
Abstract
Since the annotation of its genome a decade ago, the dog has proven to be an excellent model for the study of inherited diseases. A large variety of spontaneous simple and complex phenotypes occur in dogs, providing physiologically relevant models to corresponding human conditions. In addition, gene discovery is facilitated in clinically less heterogeneous purebred dogs with closed population structures because smaller study cohorts and fewer markers are often sufficient to expose causal variants. Here, we review the development of genomic resources from microsatellites to whole-genome sequencing and give examples of successful findings that have followed the technological progress. The increasing amount of whole-genome sequence data warrants better functional annotation of the canine genome to more effectively utilise this unique model to understand genetic contributions in morphological, behavioural and other complex traits.
Collapse
Affiliation(s)
- F G van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3508 TD, Utrecht, the Netherlands.
| | - M K Hytönen
- Research Programs Unit, Molecular Neurology, Department of Veterinary Biosciences 00014, Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
| | - P A J Leegwater
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3508 TD, Utrecht, the Netherlands
| | - H Lohi
- Research Programs Unit, Molecular Neurology, Department of Veterinary Biosciences 00014, Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Hoffman AM, Dow SW. Concise Review: Stem Cell Trials Using Companion Animal Disease Models. Stem Cells 2016; 34:1709-29. [PMID: 27066769 DOI: 10.1002/stem.2377] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/26/2016] [Indexed: 12/13/2022]
Abstract
Studies to evaluate the therapeutic potential of stem cells in humans would benefit from more realistic animal models. In veterinary medicine, companion animals naturally develop many diseases that resemble human conditions, therefore, representing a novel source of preclinical models. To understand how companion animal disease models are being studied for this purpose, we reviewed the literature between 2008 and 2015 for reports on stem cell therapies in dogs and cats, excluding laboratory animals, induced disease models, cancer, and case reports. Disease models included osteoarthritis, intervertebral disc degeneration, dilated cardiomyopathy, inflammatory bowel diseases, Crohn's fistulas, meningoencephalomyelitis (multiple sclerosis-like), keratoconjunctivitis sicca (Sjogren's syndrome-like), atopic dermatitis, and chronic (end-stage) kidney disease. Stem cells evaluated in these studies included mesenchymal stem-stromal cells (MSC, 17/19 trials), olfactory ensheathing cells (OEC, 1 trial), or neural lineage cells derived from bone marrow MSC (1 trial), and 16/19 studies were performed in dogs. The MSC studies (13/17) used adipose tissue-derived MSC from either allogeneic (8/13) or autologous (5/13) sources. The majority of studies were open label, uncontrolled studies. Endpoints and protocols were feasible, and the stem cell therapies were reportedly safe and elicited beneficial patient responses in all but two of the trials. In conclusion, companion animals with naturally occurring diseases analogous to human conditions can be recruited into clinical trials and provide realistic insight into feasibility, safety, and biologic activity of novel stem cell therapies. However, improvements in the rigor of manufacturing, study design, and regulatory compliance will be needed to better utilize these models. Stem Cells 2016;34:1709-1729.
Collapse
Affiliation(s)
- Andrew M Hoffman
- Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts, USA
| | - Steven W Dow
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
13
|
Bizikova P, Pucheu-Haston CM, Eisenschenk MNC, Marsella R, Nuttall T, Santoro D. Review: Role of genetics and the environment in the pathogenesis of canine atopic dermatitis. Vet Dermatol 2015; 26:95-e26. [DOI: 10.1111/vde.12198] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Petra Bizikova
- Department of Clinical Sciences; College of Veterinary Medicine; North Carolina State University; 1060 William Moore Drive Raleigh NC 27606 USA
| | - Cherie M. Pucheu-Haston
- Department of Veterinary Clinical Sciences; School of Veterinary Medicine; Louisiana State University; 1909 Skip Bertman Drive Baton Rouge LA 70803 USA
| | | | - Rosanna Marsella
- Department of Small Animal Clinical Sciences; College of Veterinary Medicine; University of Florida; 2015 SW 16th Avenue Gainesville FL 32610 USA
| | - Tim Nuttall
- Royal (Dick) School of Veterinary Studies; Easter Bush Veterinary Centre; University of Edinburgh; Roslin EH25 9RG UK
| | - Domenico Santoro
- Department of Small Animal Clinical Sciences; College of Veterinary Medicine; University of Florida; 2015 SW 16th Avenue Gainesville FL 32610 USA
| |
Collapse
|
14
|
Santoro D, Marsella R, Pucheu-Haston CM, Eisenschenk MNC, Nuttall T, Bizikova P. Review: Pathogenesis of canine atopic dermatitis: skin barrier and host-micro-organism interaction. Vet Dermatol 2015; 26:84-e25. [DOI: 10.1111/vde.12197] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Domenico Santoro
- Department of Small Animal Clinical Sciences; College of Veterinary Medicine; University of Florida; 2015 SW 16th Avenue Gainesville FL 32610 USA
| | - Rosanna Marsella
- Department of Small Animal Clinical Sciences; College of Veterinary Medicine; University of Florida; 2015 SW 16th Avenue Gainesville FL 32610 USA
| | - Cherie M. Pucheu-Haston
- Department of Veterinary Clinical Sciences; School of Veterinary Medicine; Louisiana State University; 1909 Skip Bertman Drive Baton Rouge LA 70803 USA
| | | | - Tim Nuttall
- Royal (Dick) School of Veterinary Studies; Easter Bush Veterinary Centre; University of Edinburgh; Roslin EH25 9RG UK
| | - Petra Bizikova
- Department of Clinical Sciences; College of Veterinary Medicine; North Carolina State University; 1060 William Moore Drive Raleigh NC 27606 USA
| |
Collapse
|
15
|
Abstract
Hypoadrenocorticism is an uncommon disease in dogs and rare in humans, where it is known as Addison disease (ADD). The disease is characterized by a deficiency in corticosteroid production from the adrenal cortex, requiring lifelong hormone replacement therapy. When compared with humans, the pathogenesis of hypoadrenocorticism in dogs is not well established, although the evidence supports a similar autoimmune etiology of adrenocortical pathology. Several immune response genes have been implicated in determining susceptibility to Addison disease in humans, some of which are shared with other autoimmune syndromes. Indeed, other types of autoimmune disease are common (approximately 50%) in patients affected with ADD. Several lines of evidence suggest a genetic component to the etiology of canine hypoadrenocorticism. Certain dog breeds are overrepresented in epidemiologic studies, reflecting a likely genetic influence, supported by data from pedigree analysis. Molecular genetic studies have identified similar genes and signaling pathways, involved in ADD in humans, to be also associated with susceptibility to canine hypoadrenocorticism. Immune response genes such as the dog leukocyte antigen (DLA) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) genes seem to be particularly important. It is clear that there are genetic factors involved in determining susceptibility to canine hypoadrenocorticism, although similar to the situation in humans, this is likely to represent a complex genetic disorder.
Collapse
Affiliation(s)
- Alisdair M Boag
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, Scotland.
| | - Brian Catchpole
- Department of Pathology and Pathogen Biology, Royal Veterinary College, University of London, Hatfield, UK
| |
Collapse
|
16
|
Nuttall T. The genomics revolution: will canine atopic dermatitis be predictable and preventable? Vet Dermatol 2013; 24:10-8.e3-4. [PMID: 23331674 DOI: 10.1111/j.1365-3164.2012.01094.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Heritability studies suggest that atopic dermatitis (AD) involves multiple genes and interactions with environmental factors. Advances in genomics have given us powerful techniques to study the genetics of AD. OBJECTIVE To review the application of these techniques to canine AD. RESULTS Candidate genes can be studied using quantitative PCR and genomic techniques, but these are hypothesis-dependent techniques and may miss novel genes. Hypothesis-free techniques avoid this limitation. Microarrays quantify expression of large numbers of genes, although false-positive associations are common. In the future, expression profiling could be used to produce a complete tissue transcriptome. Genome-wide linkage studies can detect AD-associated loci if enough affected dogs and unaffected relatives are recruited. Genome-wide association studies can be used to discover AD-associated single nucleotide polymorphisms without relying on related dogs. Genomic studies in dogs have implicated numerous genes in the pathogenesis of AD, including those involved in innate and adaptive immunity, inflammation, cell cycle, apoptosis, skin barrier formation and transcription regulation. These findings, however, have been inconsistent, and problems include low case numbers, inappropriate controls, inconsistent diagnosis, incomplete genome coverage, low-penetrance mutations and environmental factors. CONCLUSIONS Canine AD has a complex genotype that varies between breeds and gene pools. Breeding programmes to eliminate AD are therefore unlikely to succeed, but this complexity could explain variations in clinical phenotype and response to treatment. Genotyping of affected dogs will identify novel target molecules and enable better targeting of treatment and management options. However, we must avoid misuse of genomic data.
Collapse
Affiliation(s)
- Tim Nuttall
- The University of Liverpool School of Veterinary Science, Leahurst Campus, Neston, UK.
| |
Collapse
|
17
|
Abstract
Canine atopic dermatitis is a complex multifactorial disease. Here, Tim Nuttall, Maarja Uri and Richard Halliwell, representing three generations of veterinary dermatologists, describe the research underpinning our understanding of the condition and highlight its relevance to clinical practice.
Collapse
Affiliation(s)
- Tim Nuttall
- School of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK
| | | | | |
Collapse
|
18
|
Roque JB, O'Leary CA, Kyaw-Tanner M, Duffy DL, Gharahkhani P, Vogelnest L, Mason K, Shipstone M. PTPN22 polymorphisms may indicate a role for this gene in atopic dermatitis in West Highland white terriers. BMC Res Notes 2011; 4:571. [PMID: 22208456 PMCID: PMC3271996 DOI: 10.1186/1756-0500-4-571] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/30/2011] [Indexed: 12/20/2022] Open
Abstract
Background Canine atopic dermatitis is an allergic inflammatory skin disease common in West Highland white terriers. A genome-wide association study for atopic dermatitis in a population of West Highland white terriers identified a 1.3 Mb area of association on CFA17 containing canine protein tyrosine phosphatase non-receptor type 22 (lymphoid) PTPN22. This gene is a potential candidate gene for canine atopic dermatitis as it encodes a lymphoid-specific signalling mediator that regulates T-cell and possibly B-cell activity. Findings Sequencing of PTPN22 in three atopic and three non-atopic West Highland white terriers identified 18 polymorphisms, including five genetic variants with a bioinformatically predicted functional effect. An intronic polymorphic repeat sequence variant was excluded as the cause of the genome-wide association study peak signal, by large-scale genotyping in 72 West Highland white terriers (gene-dropping simulation method, P = 0.01). Conclusions This study identified 18 genetic variants in PTPN22 that might be associated with atopic dermatitis in West Highland white terriers. This preliminary data may direct further study on the role of PTPN22 in this disease. Large scale genotyping and complementary genomic and proteomic assays would be required to assess this possibility.
Collapse
Affiliation(s)
- Joana Barros Roque
- Centre for Companion Animal Health, School of Veterinary Science, The University of Queensland, St Lucia, Queensland, 4069, Australia.
| | | | | | | | | | | | | | | |
Collapse
|