1
|
Liu P, Li G, Zhao N, Song X, Wang J, Shi X, Wang B, Zhang L, Dong L, Li Q, Liu Q, Lu L. Neutral Forces and Balancing Selection Interplay to Shape the Major Histocompatibility Complex Spatial Patterns in the Striped Hamster in Inner Mongolia: Suggestive of Broad-Scale Local Adaptation. Genes (Basel) 2023; 14:1500. [PMID: 37510404 PMCID: PMC10379431 DOI: 10.3390/genes14071500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) plays a key role in the adaptive immune response to pathogens due to its extraordinary polymorphism. However, the spatial patterns of MHC variation in the striped hamster remain unclear, particularly regarding the relative contribution of the balancing selection in shaping MHC spatial variation and diversity compared to neutral forces. METHODS In this study, we investigated the immunogenic variation of the striped hamster in four wild populations in Inner Mongolia which experience a heterogeneous parasitic burden. Our goal was to identify local adaptation by comparing the genetic structure at the MHC with that at seven microsatellite loci, taking into account neutral processes. RESULTS We observed significant variation in parasite pressure among sites, with parasite burden showing a correlation with temperature and precipitation. Molecular analysis revealed a similar co-structure between MHC and microsatellite loci. We observed lower genetic differentiation at MHC loci compared to microsatellite loci, and no correlation was found between the two. CONCLUSIONS Overall, these results suggest a complex interplay between neutral evolutionary forces and balancing selection in shaping the spatial patterns of MHC variation. Local adaptation was not detected on a small scale but may be applicable on a larger scale.
Collapse
Affiliation(s)
- Pengbo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Guichang Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ning Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiuping Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jun Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xinfei Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Bin Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Public Health School, Jiamusi University, Jiamusi 154007, China
| | - Lu Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Li Dong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Qingduo Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Liang Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
2
|
Vinh NT, Dong HT, Lan NGT, Sangsuriya P, Salin KR, Chatchaiphan S, Senapin S. Immunological response of 35 and 42 days old Asian seabass (Lates calcarifer, Bloch 1790) fry following immersion immunization with Streptococcus iniae heat-killed vaccine. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108802. [PMID: 37178986 DOI: 10.1016/j.fsi.2023.108802] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/16/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Early disease prevention by vaccination requires understanding when fry fish develop specific immunity to a given pathogen. In this research, we explored the immune responses of Asian seabass (Lates calcarifer) at the stages of 35- and 42- days post-hatching (dph) to an immersive heat-killed Streptococcus iniae (Si) vaccine to determine whether fish can produce specific antibodies against the pathogen. The vaccinated fish of each stage (V35 and V42) were immersed with the Si vaccine at 107 CFU/ml for 3 h, whereas the control groups (C35 and C42) were immersed with tryptic soy broth (TSB) in the same manner. Specific antibodies were measured by enzyme-linked immunosorbent assay (ELISA) before and post-immunization (i.e., 0, 7, and 14 days post-immunization, dpi). Expression of innate (TNFα and IL-1β) and adaptive (MHCI, MHCII, CD4, CD8, IgM-like, IgT-like, and IgD-like) immune-related genes were evaluated at the same time points with the addition of 1 dpi. The results showed that a subset of immunized fish from both V35 and V42 fry could elicit specific antibodies (IgM) against Si at 14 dpi. All tested innate and adaptive immune genes upregulated at 7 dpi among fish in V35 group. Interestingly, 42 dph fish appeared to respond to the Si vaccine faster than that of 35 dph, as a significant increase in transcripts was observed in CD4, IL-1β, IgM-like, and IgD-like at 1 dpi; and specific antibody titers of some fish, although not all, were higher than a threshold (p = 0.05) since 7 dpi. In conclusion, this study reveals that 35-42 dph Asian seabass fry can elicit specific immunity to Si immersion vaccine, suggesting that early vaccination of 35 dph fry Asian seabass is feasible.
Collapse
Affiliation(s)
- Nguyen Tien Vinh
- Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand.
| | - Nguyen Giang Thu Lan
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Viet Nam; Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pakkakul Sangsuriya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand; Aquatic Molecular Genetics and Biotechnology Research Team, BIOTEC, NSTDA, Pathum Thani, Thailand
| | - Krishna R Salin
- Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Satid Chatchaiphan
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand; Fish Heath Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
3
|
LaFond J, Martin KR, Dahn H, Richmond JQ, Murphy RW, Rollinson N, Savage AE. Invasive Bullfrogs Maintain MHC Polymorphism Including Alleles Associated with Chytrid Fungal Infection. Integr Comp Biol 2022; 62:262-274. [PMID: 35588059 DOI: 10.1093/icb/icac044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
Maintenance of genetic diversity at adaptive loci may facilitate invasions by non-native species by allowing populations to adapt to novel environments, despite the loss of diversity at neutral loci that typically occurs during founder events. To evaluate this prediction, we compared genetic diversity at major histocompatibility complex (MHC) and cytochrome b (cytb) loci from 20 populations of the American bullfrog (Rana catesbeiana) across theinvasive and native ranges in North America and quantified the presence of the pathogen Batrachochytrium dendrobatidis (Bd). Compared to native populations, invasive populations had significantly higher Bd prevalence and intensity, significantly higher pairwise MHC and cytb FST, and significantly lower cytb diversity, but maintained similar levels of MHC diversity. The two most common MHC alleles (LiCA_B and Rapi_33) were associated with a significant decreased risk of Bd infection, and we detected positive selection acting on four peptide binding residues. Phylogenetic analysis suggested invasive populations likely arose from a single founding population in the American Midwest with a possible subsequent invasion in the northwest. Overall, our study suggests that the maintenance of diversity at adaptive loci may contribute to invasion success and highlights the importance of quantifying diversity at functional loci to assess the evolutionary potential of invasive populations.
Collapse
Affiliation(s)
- Jacob LaFond
- Department of Biology, University of Central Florida, Orlando, FL 32816, USA
- Department of Biology, University of Tampa, Tampa, FL 33606, USA
| | - Katherine R Martin
- Department of Biology, University of Central Florida, Orlando, FL 32816, USA
| | - Hollis Dahn
- Department of Biology, University of Toronto, Toronto, ON, Canada
| | - Jonathan Q Richmond
- U.S. Geological Survey, 4165 Spruance Rd. Suite 200, San Diego, CA 92101, USA
| | - Robert W Murphy
- Department of Biology, University of Toronto, Toronto, ON, Canada
| | - Njal Rollinson
- Department of Biology, University of Toronto, Toronto, ON, Canada
| | - Anna E Savage
- Department of Biology, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
4
|
Papadopoulou A, Monaghan SJ, Bagwell N, Alves MT, Verner-Jeffreys D, Wallis T, Davie A, Adams A, Migaud H. Efficacy testing of an immersion vaccine against Aeromonas salmonicida and immunocompetence in ballan wrasse (Labrus bergylta, Ascanius). FISH & SHELLFISH IMMUNOLOGY 2022; 121:505-515. [PMID: 34673256 DOI: 10.1016/j.fsi.2021.09.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
The development of effective vaccines is a critical step towards the domestication of emerging fish species for aquaculture. However, traditional vaccine delivery through intraperitoneal (i.p.) injection requires fish to reach a minimum size and age and therefore cannot provide protection at early developmental stages when infection may occur. This study investigated the effectiveness of immersion vaccination with respect to immunocompetence in a cleaner fish species (ballan wrasse, Labrus bergylta, Ascanius) used in Atlantic salmon farming as an alternative means to control sea lice. The species is susceptible to atypical strains of Aeromonas salmonicida (aAs) at early life stages (<15 g), when i.p. vaccination is not applicable. While immersion vaccination is currently used in commercial hatcheries, the optimal fish size for vaccination, and efficacy of the vaccine delivered by this route has not yet been established. Importantly, efficacy depends on the capability of the species immune system to recognise antigens and process antigens to trigger and produce an adaptive immune response, (process known as immunocompetence). In this study, the efficacy of a polyvalent autogenous vaccine administered by immersion in juvenile ballan wrasse and the subsequent immune response induced was investigated after prime and booster vaccination regimes. In addition, temporal expression (0-150 days post hatch) of adaptive immune genes including major histocompatibility complex (MHC II CD74 molecule) and immunoglobulin M (IgM) was assessed using quantitative PCR (qPCR). Prime and/or boost vaccination by immersion of juvenile ballan wrasse (0.5 g and 1.5 g corresponding to 80 and 170 days post hatch (dph), respectively) did not provide significant protection against aAs vapA V after bath challenge under experimental conditions. Despite no evident protection >80 dph, MHC II and IgM transcripts were first reported at 35 and 75 dph, respectively, suggesting a window of immunocompetence. The results provide important new information on the onset of adaptive immunity in ballan wrasse and highlight that immersion vaccination in the species for protection against aAs should be performed at later developmental stages (>1.5 g) in the hatchery.
Collapse
Affiliation(s)
- Athina Papadopoulou
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK; Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, the Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Sean J Monaghan
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Nicola Bagwell
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, the Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Mickael Teixeira Alves
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, the Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - David Verner-Jeffreys
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, the Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Tim Wallis
- Ridgeway Biologicals Ltd. a Ceva Santé Animale Company, Units 1-3 Old Station Business Park, Compton, Berkshire, RG20 6NE, UK
| | - Andrew Davie
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Alexandra Adams
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Herve Migaud
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| |
Collapse
|
5
|
Minett JF, Garcia de Leaniz C, Sobolewska H, Brickle P, Crossin GT, Consuegra S. SNP analyses and acoustic tagging reveal multiple origins and widespread dispersal of invasive brown trout in the Falkland Islands. Evol Appl 2021; 14:2134-2144. [PMID: 34429754 PMCID: PMC8372121 DOI: 10.1111/eva.13274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022] Open
Abstract
Biological invasions are important causes of biodiversity loss, particularly in remote islands. Brown trout (Salmo trutta) have been widely introduced throughout the Southern Hemisphere, impacting endangered native fauna, particularly galaxiid fishes, through predation and competition. However, due to their importance for sport fishing and aquaculture farming, attempts to curtail the impacts of invasive salmonids have generally been met with limited support and the best prospects for protecting native galaxiids is to predict where and how salmonids might disperse. We analysed 266 invasive brown trout from 14 rivers and ponds across the Falkland Islands as well as 32 trout from three potential source populations, using a panel of 592 single nucleotide polymorphisms (SNPs) and acoustic tagging, to ascertain their origins and current patterns of dispersal. We identified four genetically distinct clusters with high levels of genetic diversity and low admixture, likely reflecting the different origins of the invasive brown trout populations. Our analysis suggests that many trout populations in the Falklands may have originated from one of the donor populations analysed (River Wey). The highest genetic diversity was observed in the rivers with the greatest number of introductions and diverse origins, while the lowest diversity corresponded to a location without documented introductions, likely colonized by natural dispersal. High levels of gene flow indicated widespread migration of brown trout across the Falkland Islands, likely aided by anadromous dispersal. This is supported by data from acoustically tagged fish, three of which were detected frequently moving between two rivers ~26 km apart. Our results suggest that, without containment measures, brown trout may invade the last remaining refuges for the native endangered Aplochiton spp. We provide new insights into the origin and dispersal of invasive brown trout in the Falkland Islands that can pave the way for a targeted approach to limit their impact on native fish fauna.
Collapse
Affiliation(s)
- Jessica F. Minett
- Department of BiosciencesCentre for Sustainable Aquatic ResearchSwansea UniversitySwanseaUK
- South Atlantic Environmental Research Institute (SAERI)StanleyFalkland Islands
| | | | | | - Paul Brickle
- South Atlantic Environmental Research Institute (SAERI)StanleyFalkland Islands
- School of Biological Science (Zoology)University of AberdeenAberdeenUK
| | | | - Sofia Consuegra
- Department of BiosciencesCentre for Sustainable Aquatic ResearchSwansea UniversitySwanseaUK
| |
Collapse
|
6
|
Talarico L, Marta S, Rossi AR, Crescenzo S, Petrosino G, Martinoli M, Tancioni L. Balancing selection, genetic drift, and human-mediated introgression interplay to shape MHC (functional) diversity in Mediterranean brown trout. Ecol Evol 2021; 11:10026-10041. [PMID: 34367556 PMCID: PMC8328470 DOI: 10.1002/ece3.7760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
The extraordinary polymorphism of major histocompatibility complex (MHC) genes is considered a paradigm of pathogen-mediated balancing selection, although empirical evidence is still scarce. Furthermore, the relative contribution of balancing selection to shape MHC population structure and diversity, compared to that of neutral forces, as well as its interaction with other evolutionary processes such as hybridization, remains largely unclear. To investigate these issues, we analyzed adaptive (MHC-DAB gene) and neutral (11 microsatellite loci) variation in 156 brown trout (Salmo trutta complex) from six wild populations in central Italy exposed to introgression from domestic hatchery lineages (assessed with the LDH gene). MHC diversity and structuring correlated with those at microsatellites, indicating the substantial role of neutral forces. However, individuals carrying locally rare MHC alleles/supertypes were in better body condition (a proxy of individual fitness/parasite load) regardless of the zygosity status and degree of sequence dissimilarity of MHC, hence supporting balancing selection under rare allele advantage, but not heterozygote advantage or divergent allele advantage. The association between specific MHC supertypes and body condition confirmed in part this finding. Across populations, MHC allelic richness increased with increasing admixture between native and domestic lineages, indicating introgression as a source of MHC variation. Furthermore, introgression across populations appeared more pronounced for MHC than microsatellites, possibly because initially rare MHC variants are expected to introgress more readily under rare allele advantage. Providing evidence for the complex interplay among neutral evolutionary forces, balancing selection, and human-mediated introgression in shaping the pattern of MHC (functional) variation, our findings contribute to a deeper understanding of the evolution of MHC genes in wild populations exposed to anthropogenic disturbance.
Collapse
Affiliation(s)
- Lorenzo Talarico
- Laboratory of Experimental Ecology and AquacultureDepartment of BiologyUniversity of Rome “Tor Vergata”RomeItaly
| | - Silvio Marta
- Department of Environmental Science and PolicyUniversity of MilanMilanItaly
| | - Anna Rita Rossi
- Department of Biology and Biotechnology C. DarwinUniversity of Rome “La Sapienza”RomeItaly
| | - Simone Crescenzo
- Department of Biology and Biotechnology C. DarwinUniversity of Rome “La Sapienza”RomeItaly
| | - Gerardo Petrosino
- Department of Biology and Biotechnology C. DarwinUniversity of Rome “La Sapienza”RomeItaly
| | - Marco Martinoli
- Laboratory of Experimental Ecology and AquacultureDepartment of BiologyUniversity of Rome “Tor Vergata”RomeItaly
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA)Centro di Zootecnia e AcquacolturaMonterotondoItaly
| | - Lorenzo Tancioni
- Laboratory of Experimental Ecology and AquacultureDepartment of BiologyUniversity of Rome “Tor Vergata”RomeItaly
| |
Collapse
|
7
|
Gong H, Wang Q, Lai Y, Zhao C, Sun C, Chen Z, Tao J, Huang Z. Study on Immune Response of Organs of Epinephelus coioides and Carassius auratus After Immersion Vaccination With Inactivated Vibrio harveyi Vaccine. Front Immunol 2021; 11:622387. [PMID: 33633740 PMCID: PMC7900426 DOI: 10.3389/fimmu.2020.622387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/21/2020] [Indexed: 12/04/2022] Open
Abstract
Immersion vaccination relies on the response of fish mucosa-associated lymphoid tissues, the Crucian carp (Carassius auratus) and Grouper (Epinephelus coioides) were researched in this paper to examine local mucosal immune responses and associated humoral system responses following immersion vaccination. We administered 1.5 × 107 CFU/ml formalin-inactivated Vibrio harveyi cells and measured mucus and serum antibody titers as well as IgM, MHC II mRNA levels in immune organs. The mucosal antibody response preceded the serum response indicating a role for local mucosal immunity in immersion vaccination. IgM and MHC II mRNA levels were relatively greater for the spleen and head kidney indicating the importance and central position of systemic immunity. Expression levels were also high for the gills while skin levels were the lowest. IgM and MHC II mRNA levels were altered over time following vaccination and the hindgut, liver and spleen were similar indicating a close relationship, so the absolute value of r is used to analyze the correlation among different organs immunized. It can be inferred the existence of an internal immune molecular mechanism for Immune synergy hindgut-liver-spleen, from the peak time (14th day), the relative ratio of genes expression in the same tissues between the immunized grouper and the control group (26 times), and Pearson correlation coefficient (0.8<|r|<1). Injection challenges with live V. harveyi indicated that the relative protection rates for the crucian carp and Grouper was basically the same at 44.4% and 47.4%, respectively. It is believe that crucian carp may be used as a substitute for the valuable grouper in immunity experiment, just from aspect of the relative percent survival (RPS) and how it changes with time. But they were not consistent about the IgM mRNA expression between that of crucian carp and grouper after immersion the Vibrio vaccine.
Collapse
Affiliation(s)
- Hua Gong
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Qing Wang
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yingtiao Lai
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Changchen Zhao
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chenwen Sun
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zonghui Chen
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jiafa Tao
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhibin Huang
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
8
|
Biedrzycka A, Konopiński M, Hoffman E, Trujillo A, Zalewski A. Comparing raccoon major histocompatibility complex diversity in native and introduced ranges: Evidence for the importance of functional immune diversity for adaptation and survival in novel environments. Evol Appl 2020; 13:752-767. [PMID: 32211065 PMCID: PMC7086054 DOI: 10.1111/eva.12898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 09/27/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022] Open
Abstract
The adaptive potential of invasive species is related to the genetic diversity of the invader, which is influenced by genetic drift and natural selection. Typically, the genetic diversity of invaders is studied with neutral genetic markers; however, the expectation of reduced diversity has not been consistently supported by empirical studies. Here, we describe and interpret genetic diversity at both neutral microsatellite loci and the immune-related MHC-DRB locus of native and invasive populations of raccoon to better understand of how drift and selection impact patterns of genetic diversity during the invasion process. We found that despite the loss of many MHC (major histocompatibility complex) alleles in comparison with native populations, functional MHC supertypes are preserved in the invasive region. In the native raccoon population, the number of supertypes within individuals was higher than expected under a neutral model. The high level of individual functional divergence may facilitate the adaptation to local conditions in the invasive range. In the invasive populations, we also detected increased population structure at microsatellites compared to the MHC locus, further suggesting that balancing selection is acting on adaptively important regions of the raccoon genome. Finally, we found that alleles known to exhibit resistance to rabies in the native range, Prlo-DRB*4, Prlo-DRB*16 and Prlo-DRB*102, were the most common alleles in the European populations, suggesting directional selection is acting on this locus. Our research shows empirical support for the importance of functional immune diversity for adaptation and survival in novel environments.
Collapse
Affiliation(s)
| | - Maciej Konopiński
- Institute of Nature ConservationPolish Academy of SciencesKrakówPoland
| | - Eric Hoffman
- Department of BiologyUniversity of Central FloridaOrlandoFLUSA
| | - Alexa Trujillo
- Department of BiologyUniversity of Central FloridaOrlandoFLUSA
| | - Andrzej Zalewski
- Mammal Research InstitutePolish Academy of SciencesBiałowieżaPoland
| |
Collapse
|
9
|
Molecular and Structural Characterization of MHC Class II β Genes Reveals High Diversity in the Cold-Adapted Icefish Chionodraco hamatus. Sci Rep 2019; 9:5523. [PMID: 30940855 PMCID: PMC6445107 DOI: 10.1038/s41598-019-42003-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 03/21/2019] [Indexed: 01/04/2023] Open
Abstract
This study reports the presence of two distinct MHC class II β genes in the Antarctic icefish Chionodraco hamatus, belonging to the classical (ChhaDAB) and nonclassical (ChhaDBB) evolutionary lineages. By the application of targeted sequencing approach, a remarkable molecular diversity in the exon 2 sequence of the highly expressed gene ChhaDAB has been observed, resulting in an estimate of 92 different variants translated in 87 different peptides from 54 analysed icefish individuals. A highly conservative estimate, based on a 95% sequence identity threshold clustering, translate this variability in 41 different peptide clusters belonging to four different clades and showing the signature of different kinds of selection. In stark contrast, the poorly expressed ChhaDBB gene displayed a very low level of molecular diversity within exon 2, in agreement with expectations for a nonclassical MHC class II β gene.
Collapse
|
10
|
Canales-Aguirre CB, Seeb LW, Seeb JE, Cádiz MI, Musleh SS, Arismendi I, Gajardo G, Galleguillos R, Gomez-Uchida D. Contrasting genetic metrics and patterns among naturalized rainbow trout ( Oncorhynchus mykiss) in two Patagonian lakes differentially impacted by trout aquaculture. Ecol Evol 2017; 8:273-285. [PMID: 29321870 PMCID: PMC5756871 DOI: 10.1002/ece3.3574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 11/29/2022] Open
Abstract
Different pathways of propagation and dispersal of non‐native species into new environments may have contrasting demographic and genetic impacts on established populations. Repeated introductions of rainbow trout (Oncorhynchus mykiss) to Chile in South America, initially through stocking and later through aquaculture escapes, provide a unique setting to contrast these two pathways. Using a panel of single nucleotide polymorphisms, we found contrasting genetic metrics and patterns among naturalized trout in Lake Llanquihue, Chile's largest producer of salmonid smolts for nearly 50 years, and Lake Todos Los Santos (TLS), a reference lake where aquaculture has been prohibited by law. Trout from Lake Llanquihue showed higher genetic diversity, weaker genetic structure, and larger estimates for the effective number of breeders (Nb) than trout from Lake TLS. Trout from Lake TLS were divergent from Lake Llanquihue and showed marked genetic structure and a significant isolation‐by‐distance pattern consistent with secondary contact between documented and undocumented stocking events in opposite shores of the lake. Multiple factors, including differences in propagule pressure, origin of donor populations, lake geomorphology, habitat quality or quantity, and life history, may help explain contrasting genetic metrics and patterns for trout between lakes. We contend that high propagule pressure from aquaculture may not only increase genetic diversity and Nb via demographic effects and admixture, but also may impact the evolution of genetic structure and increase gene flow, consistent with findings from artificially propagated salmonid populations in their native and naturalized ranges.
Collapse
Affiliation(s)
- Cristian B Canales-Aguirre
- Genomics in Ecology, Evolution and Conservation Lab (GEECLAB) Departamento de Zoología Universidad de Concepción Concepción Chile.,Laboratorio de Genética y Acuicultura Departamento de Oceanografía Facultad de Ciencias Naturales y Oceanográficas Universidad de Concepción Concepción Chile.,Nucleo Milenio INVASAL Concepción Chile.,Centro i-mar Universidad de Los Lagos Camino Chinquihue 6 km Puerto Montt Chile
| | - Lisa W Seeb
- Nucleo Milenio INVASAL Concepción Chile.,School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| | - James E Seeb
- Nucleo Milenio INVASAL Concepción Chile.,School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| | - María I Cádiz
- Genomics in Ecology, Evolution and Conservation Lab (GEECLAB) Departamento de Zoología Universidad de Concepción Concepción Chile
| | - Selim S Musleh
- Genomics in Ecology, Evolution and Conservation Lab (GEECLAB) Departamento de Zoología Universidad de Concepción Concepción Chile.,Nucleo Milenio INVASAL Concepción Chile
| | - Ivan Arismendi
- Department of Fisheries and Wildlife Oregon State University Corvallis OR USA
| | - Gonzalo Gajardo
- Laboratorio de Genética, Acuicultura & Biodiversidad Universidad de Los Lagos Osorno Chile
| | - Ricardo Galleguillos
- Laboratorio de Genética y Acuicultura Departamento de Oceanografía Facultad de Ciencias Naturales y Oceanográficas Universidad de Concepción Concepción Chile
| | - Daniel Gomez-Uchida
- Genomics in Ecology, Evolution and Conservation Lab (GEECLAB) Departamento de Zoología Universidad de Concepción Concepción Chile.,Nucleo Milenio INVASAL Concepción Chile.,Centro i-mar Universidad de Los Lagos Camino Chinquihue 6 km Puerto Montt Chile
| |
Collapse
|
11
|
Selechnik D, West AJ, Brown GP, Fanson KV, Addison B, Rollins LA, Shine R. Effects of invasion history on physiological responses to immune system activation in invasive Australian cane toads. PeerJ 2017; 5:e3856. [PMID: 29018604 PMCID: PMC5633027 DOI: 10.7717/peerj.3856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/06/2017] [Indexed: 12/12/2022] Open
Abstract
The cane toad (Rhinella marina) has undergone rapid evolution during its invasion of tropical Australia. Toads from invasion front populations (in Western Australia) have been reported to exhibit a stronger baseline phagocytic immune response than do conspecifics from range core populations (in Queensland). To explore this difference, we injected wild-caught toads from both areas with the experimental antigen lipopolysaccharide (LPS, to mimic bacterial infection) and measured whole-blood phagocytosis. Because the hypothalamic-pituitary-adrenal axis is stimulated by infection (and may influence immune responses), we measured glucocorticoid response through urinary corticosterone levels. Relative to injection of a control (phosphate-buffered saline), LPS injection increased both phagocytosis and the proportion of neutrophils in the blood. However, responses were similar in toads from both populations. This null result may reflect the ubiquity of bacterial risks across the toad’s invaded range; utilization of this immune pathway may not have altered during the process of invasion. LPS injection also induced a reduction in urinary corticosterone levels, perhaps as a result of chronic stress.
Collapse
Affiliation(s)
- Daniel Selechnik
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| | - Andrea J West
- Centre for Integrative Ecology, School of Life & Environmental Sciences (LES), Deakin University, Geelong, VIC, Australia
| | - Gregory P Brown
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| | - Kerry V Fanson
- Centre for Integrative Ecology, School of Life & Environmental Sciences (LES), Deakin University, Geelong, VIC, Australia
| | - BriAnne Addison
- Centre for Integrative Ecology, School of Life & Environmental Sciences (LES), Deakin University, Geelong, VIC, Australia
| | - Lee A Rollins
- Centre for Integrative Ecology, School of Life & Environmental Sciences (LES), Deakin University, Geelong, VIC, Australia
| | - Richard Shine
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Narum SR, Gallardo P, Correa C, Matala A, Hasselman D, Sutherland BJG, Bernatchez L. Genomic patterns of diversity and divergence of two introduced salmonid species in Patagonia, South America. Evol Appl 2017; 10:402-416. [PMID: 28352299 PMCID: PMC5367078 DOI: 10.1111/eva.12464] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 01/26/2017] [Indexed: 12/25/2022] Open
Abstract
Invasive species have become widespread in aquatic environments throughout the world, yet there are few studies that have examined genomic variation of multiple introduced species in newly colonized environments. In this study, we contrast genomic variation in two salmonid species (anadromous Chinook Salmon, Oncorhynchus tshawytscha, 11,579 SNPs and resident Brook Charr Salvelinus fontinalis, 13,522 SNPs) with differing invasion success after introduction to new environments in South America relative to populations from their native range in North America. Estimates of genetic diversity were not significantly different between introduced and source populations for either species, indicative of propagule pressure that has been shown to maintain diversity in founding populations relative to their native range. Introduced populations also demonstrated higher connectivity and gene flow than those in their native range. Evidence for candidate loci under divergent selection was observed, but was limited to specific introduced populations and was not widely evident. Patterns of genomic variation were consistent with general dispersal potential of each species and therefore also the notion that life history variation may contribute to both invasion success and subsequent genetic structure of these two salmonids in Patagonia.
Collapse
Affiliation(s)
- Shawn R. Narum
- Hagerman Fish Culture Experiment StationColumbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| | - Pablo Gallardo
- Centro de Cultivos Marinos Bahía LaredoUniversity of MagallanesPunta ArenasChile
| | - Cristian Correa
- Facultad de Ciencias Forestales y Recursos NaturalesInstituto de Conservación Biodiversidad y TerritorioUniversidad Austral de ChileValdiviaChile
- Facultad de CienciasInstituto de Ciencias Marinas y LimnológicasUniversidad Austral de ChileValdiviaChile
| | - Amanda Matala
- Hagerman Fish Culture Experiment StationColumbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| | - Daniel Hasselman
- Hagerman Fish Culture Experiment StationColumbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| | - Ben J. G. Sutherland
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| |
Collapse
|
13
|
Schenekar T, Weiss S. Selection and genetic drift in captive versus wild populations: an assessment of neutral and adaptive (MHC-linked) genetic variation in wild and hatchery brown trout (Salmo trutta) populations. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0949-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Temporal and spatial instability in neutral and adaptive (MHC) genetic variation in marginal salmon populations. Sci Rep 2017; 7:42416. [PMID: 28186200 PMCID: PMC5301200 DOI: 10.1038/srep42416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/10/2017] [Indexed: 12/04/2022] Open
Abstract
The role of marginal populations for the long-term maintenance of species’ genetic diversity and evolutionary potential is particularly timely in view of the range shifts caused by climate change. The Centre-Periphery hypothesis predicts that marginal populations should bear reduced genetic diversity and have low evolutionary potential. We analysed temporal stability at neutral microsatellite and adaptive MHC genetic variation over five decades in four marginal Atlantic salmon populations located at the southern limit of the species’ distribution with a complicated demographic history, which includes stocking with foreign and native salmon for at least 2 decades. We found a temporal increase in neutral genetic variation, as well as temporal instability in population structuring, highlighting the importance of temporal analyses in studies that examine the genetic diversity of peripheral populations at the margins of the species’ range, particularly in face of climate change.
Collapse
|
15
|
Lillie M, Dubey S, Shine R, Belov K. Variation in Major Histocompatibility Complex diversity in invasive cane toad populations. WILDLIFE RESEARCH 2017. [DOI: 10.1071/wr17055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context The cane toad (Rhinella marina), a native species of central and southern America, was introduced to Australia in 1935 as a biocontrol agent after a complex history of prior introductions. The population rapidly expanded and has since spread through much of the Australian landmass, with severe impacts on the endemic wildlife, primarily via toxicity to predators. The invasion process has taken its toll on the cane toad, with changes in the immunological capacity across the Australian invasive population. Aims To investigate the immunogenetic underpinnings of these changes, we studied the diversity of the Major Histocompatiblity Complex (MHC) genes in introduced cane toad populations. Methods We studied the diversity of two MHC genes (the classical class I UA locus and a class II DAB locus) and compared these with neutral microsatellite markers in toads from the Australian site of introduction and the Australian invasion front. We also included toads from Hawai’i, the original source of the Australian toads, to infer founder effect. Key results Diversity across all markers was low across Australian and Hawai’ian samples, consistent with a reduction in genetic diversity through multiple founder effects during the course of the successive translocations. In Australia, allelic diversity at the microsatellite markers and the UA locus was reduced at the invasion front, whereas all three alleles at the DAB locus were maintained in the invasion-front toads. Conclusions Loss of allelic diversity observed at the microsatellite markers and the UA locus could be the result of drift and bottlenecking along the invasion process, however, the persistence of DAB diversity warrants further investigation to disentangle the evolutionary forces influencing this locus. Implications Through the use of different molecular markers, we provide a preliminary description of the adaptive genetic processes occurring in this invasive population. The extremely limited MHC diversity may represent low immunogenetic competence across the Australian population, which could be exploited for invasive species management.
Collapse
|
16
|
Cornet S, Brouat C, Diagne C, Charbonnel N. Eco-immunology and bioinvasion: revisiting the evolution of increased competitive ability hypotheses. Evol Appl 2016; 9:952-62. [PMID: 27606004 PMCID: PMC4999526 DOI: 10.1111/eva.12406] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022] Open
Abstract
Immunity is at the core of major theories related to invasion biology. Among them, the evolution of increased competitive ability (EICA) and EICA‐refined hypotheses have been used as a reference work. They postulate that the release from pathogens often experienced during invasion should favour a reallocation of resources from (costly) immune defences to beneficial life‐history traits associated with invasive potential. We review studies documenting immune changes during animal invasions. We describe the designs and approaches that have been applied and discuss some reasons that prevent drawing generalized conclusions regarding EICA hypotheses. We detail why a better assessment of invasion history and immune costs, including immunopathologies and parasite communities, could improve our understanding of the relationships between immunity and invasion success. Finally, we propose new perspectives to revisit the EICA hypotheses. We first emphasize the neutral and adaptive mechanisms involved in immune changes, as well as timing of the later. Such investigation will help decipher whether immune changes are a consequence of pre‐adaptation, or the result of postintroduction adaptations to invasion front conditions. We next bring attention to new avenues of research that remain unexplored, namely age‐dependent immunity and gut microbiota, potential key factors underlying adaptation to invasion front environment and modulating invasion success.
Collapse
Affiliation(s)
- Stéphane Cornet
- Centre de Biologie Pour la Gestion des Populations (UMR INRA/IRD/CIRAD/Montpellier SupAgro) IRD Montferrier-sur-Lez France
| | - Carine Brouat
- Centre de Biologie Pour la Gestion des Populations (UMR INRA/IRD/CIRAD/Montpellier SupAgro) IRD Montferrier-sur-Lez France
| | - Christophe Diagne
- Centre de Biologie Pour la Gestion des Populations (UMR INRA/IRD/CIRAD/Montpellier SupAgro) IRD Montferrier-sur-Lez France; Centre de Biologie Pour la Gestion des Populations (UMR INRA/IRD/CIRAD/Montpellier SupAgro) IRD Campus de Bel-Air, Dakar Sénégal; Département de Biologie Animale, Faculté des Sciences et Techniques Université Chiekh Anta Diop Fann, Dakar Sénégal
| | - Nathalie Charbonnel
- Centre de Biologie Pour la Gestion des Populations (UMR INRA/IRD/CIRAD/Montpellier SupAgro) INRA Montferrier-sur-Lez France
| |
Collapse
|
17
|
Pettersen RA, Østbye K, Holmen J, Vøllestad LA, Mo TA. Gyrodactylus spp. diversity in native and introduced minnow (Phoxinus phoxinus) populations: no support for "the enemy release" hypothesis. Parasit Vectors 2016; 9:51. [PMID: 26822543 PMCID: PMC4730603 DOI: 10.1186/s13071-016-1306-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 01/14/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Translocation of native species and introduction of non-native species are potentially harmful to the existing biota by introducing e.g. diseases, parasites and organisms that may negatively affect the native species. The enemy release hypothesis states that parasite species will be lost from host populations when the host is introduced into new environments. METHODS We tested the enemy release hypothesis by comparing 14 native and 29 introduced minnow (Phoxinus phoxinus) populations in Norway with regard to the ectoparasitic Gyrodactylus species community and load (on caudal fin). Here, we used a nominal logistic regression on presence/absence of Gyrodactylus spp. and a generalized linear model on the summed number of Gyrodactylus spp. on infected populations, with individual minnow heterozygosity (based on 11 microsatellites) as a covariate. In addition, a sample-based rarefaction analysis was used to test if the Gyrodactylus-species specific load differed between native and introduced minnow populations. An analysis of molecular variance was performed to test for hierarchical population structure between the two groups and to test for signals of population bottlenecks the two-phase model in the Wilcoxon signed-rank test was used. To test for demographic population expansion events in the introduced minnow population, we used the kg-test under a stepwise mutation model. RESULTS The native and introduced minnow populations had similar species compositions of Gyrodactylus, lending no support to the enemy release hypothesis. The two minnow groups did not differ in the likelihood of being infected with Gyrodactylus spp. Considering only infected minnow populations it was evident that native populations had a significantly higher mean abundance of Gyrodactylus spp. than introduced populations. The results showed that homozygotic minnows had a higher Gyrodactylus spp. infection than more heterozygotic hosts. Using only infected individuals, the two minnow groups did not differ in their mean number of Gyrodactylus spp. However, a similar negative association between heterozygosity and abundance was observed in the native and introduced group. There was no evidence for demographic bottlenecks in the minnow populations, implying that introduced populations retained a high degree of genetic variation, indicating that the number of introduced minnows may have been large or that introductions have been happening repeatedly. This could partly explain the similar species composition of Gyrodactylus in the native and introduced minnow populations. CONCLUSIONS In this study it was observed that native and introduced minnow populations did not differ in their species community of Gyrodactylus spp., lending no support to the enemy release hypothesis. A negative association between individual minnow host heterozygosity and the number of Gyrodactylus spp. was detected. Our results suggest that the enemy release hypothesis does not necessarily limit fish parasite dispersal, further emphasizing the importance of invasive fish species dispersal control.
Collapse
Affiliation(s)
- Ruben Alexander Pettersen
- Center for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P. O. Box 1066, Blindern, NO-0316, Oslo, Norway.
| | - Kjartan Østbye
- Center for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P. O. Box 1066, Blindern, NO-0316, Oslo, Norway.
- Department of Forestry and Wildlife Management, Hedmark University College, Campus Evenstad, Elverum, NO, 2418, Norway.
| | - Johannes Holmen
- Center for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P. O. Box 1066, Blindern, NO-0316, Oslo, Norway.
| | - Leif Asbjørn Vøllestad
- Center for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P. O. Box 1066, Blindern, NO-0316, Oslo, Norway.
| | - Tor Atle Mo
- Norwegian Veterinary Institute, P.O. Box 8156, Dep. NO-0033, Oslo, Norway.
| |
Collapse
|
18
|
Benavente JN, Seeb LW, Seeb JE, Arismendi I, Hernández CE, Gajardo G, Galleguillos R, Cádiz MI, Musleh SS, Gomez-Uchida D. Temporal Genetic Variance and Propagule-Driven Genetic Structure Characterize Naturalized Rainbow Trout (Oncorhynchus mykiss) from a Patagonian Lake Impacted by Trout Farming. PLoS One 2015; 10:e0142040. [PMID: 26544983 PMCID: PMC4636326 DOI: 10.1371/journal.pone.0142040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/17/2015] [Indexed: 12/30/2022] Open
Abstract
Knowledge about the genetic underpinnings of invasions—a theme addressed by invasion genetics as a discipline—is still scarce amid well documented ecological impacts of non-native species on ecosystems of Patagonia in South America. One of the most invasive species in Patagonia’s freshwater systems and elsewhere is rainbow trout (Oncorhynchus mykiss). This species was introduced to Chile during the early twentieth century for stocking and promoting recreational fishing; during the late twentieth century was reintroduced for farming purposes and is now naturalized. We used population- and individual-based inference from single nucleotide polymorphisms (SNPs) to illuminate three objectives related to the establishment and naturalization of Rainbow Trout in Lake Llanquihue. This lake has been intensively used for trout farming during the last three decades. Our results emanate from samples collected from five inlet streams over two seasons, winter and spring. First, we found that significant intra- population (temporal) genetic variance was greater than inter-population (spatial) genetic variance, downplaying the importance of spatial divergence during the process of naturalization. Allele frequency differences between cohorts, consistent with variation in fish length between spring and winter collections, might explain temporal genetic differences. Second, individual-based Bayesian clustering suggested that genetic structure within Lake Llanquihue was largely driven by putative farm propagules found at one single stream during spring, but not in winter. This suggests that farm broodstock might migrate upstream to breed during spring at that particular stream. It is unclear whether interbreeding has occurred between “pure” naturalized and farm trout in this and other streams. Third, estimates of the annual number of breeders (Nb) were below 73 in half of the collections, suggestive of genetically small and recently founded populations that might experience substantial genetic drift. Our results reinforce the notion that naturalized trout originated recently from a small yet genetically diverse source and that farm propagules might have played a significant role in the invasion of Rainbow Trout within a single lake with intensive trout farming. Our results also argue for proficient mitigation measures that include management of escapes and strategies to minimize unintentional releases from farm facilities.
Collapse
Affiliation(s)
- Javiera N Benavente
- Department of Zoology, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile
| | - Lisa W Seeb
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA, 98195-5020, United States of America
| | - James E Seeb
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA, 98195-5020, United States of America
| | - Ivan Arismendi
- Department of Fisheries & Wildlife, Oregon State University, 104 Nash Hall, 2820 SW Campus Way, Corvallis, OR, 97331, United States of America
| | - Cristián E Hernández
- Department of Zoology, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile
| | - Gonzalo Gajardo
- Laboratorio de Genética, Acuicultura & Biodiversidad, Universidad de Los Lagos, Osorno, Chile
| | - Ricardo Galleguillos
- Department of Oceanography, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile
| | - Maria I Cádiz
- Department of Zoology, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), Barrio Universitario s/n, Universidad de Concepcion, Concepcion, Chile
| | - Selim S Musleh
- Department of Zoology, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile.,Department of Oceanography, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile
| | - Daniel Gomez-Uchida
- Department of Zoology, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), Barrio Universitario s/n, Universidad de Concepcion, Concepcion, Chile
| |
Collapse
|