1
|
Schwartz JC, Farrell CP, Freimanis G, Sewell AK, Phillips JD, Hammond JA. A genome assembly and transcriptome atlas of the inbred Babraham pig to illuminate porcine immunogenetic variation. Immunogenetics 2024; 76:361-380. [PMID: 39294478 PMCID: PMC11496355 DOI: 10.1007/s00251-024-01355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Abstract
The inbred Babraham pig serves as a valuable biomedical model for research due to its high level of homozygosity, including in the major histocompatibility complex (MHC) loci and likely other important immune-related gene complexes, which are generally highly diverse in outbred populations. As the ability to control for this diversity using inbred organisms is of great utility, we sought to improve this resource by generating a long-read whole genome assembly and transcriptome atlas of a Babraham pig. The genome was de novo assembled using PacBio long reads and error-corrected using Illumina short reads. Assembled contigs were then mapped to the porcine reference assembly, Sscrofa11.1, to generate chromosome-level scaffolds. The resulting TPI_Babraham_pig_v1 assembly is nearly as contiguous as Sscrofa11.1 with a contig N50 of 34.95 Mb and contig L50 of 23. The remaining sequence gaps are generally the result of poor assembly across large and highly repetitive regions such as the centromeres and tandemly duplicated gene families, including immune-related gene complexes, that often vary in gene content between haplotypes. We also further confirm homozygosity across the Babraham MHC and characterize the allele content and tissue expression of several other immune-related gene complexes, including the antibody and T cell receptor loci, the natural killer complex, and the leukocyte receptor complex. The Babraham pig genome assembly provides an alternate highly contiguous porcine genome assembly as a resource for the livestock genomics community. The assembly will also aid biomedical and veterinary research that utilizes this animal model such as when controlling for genetic variation is critical.
Collapse
Affiliation(s)
| | - Colin P Farrell
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - John D Phillips
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - John A Hammond
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK.
| |
Collapse
|
2
|
Protective porcine influenza virus-specific monoclonal antibodies recognize similar haemagglutinin epitopes as humans. PLoS Pathog 2021; 17:e1009330. [PMID: 33662023 PMCID: PMC7932163 DOI: 10.1371/journal.ppat.1009330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/25/2021] [Indexed: 01/18/2023] Open
Abstract
Pigs are natural hosts for the same subtypes of influenza A viruses as humans and integrally involved in virus evolution with frequent interspecies transmissions in both directions. The emergence of the 2009 pandemic H1N1 virus illustrates the importance of pigs in evolution of zoonotic strains. Here we generated pig influenza-specific monoclonal antibodies (mAbs) from H1N1pdm09 infected pigs. The mAbs recognized the same two major immunodominant haemagglutinin (HA) epitopes targeted by humans, one of which is not recognized by post-infection ferret antisera that are commonly used to monitor virus evolution. Neutralizing activity of the pig mAbs was comparable to that of potent human anti-HA mAbs. Further, prophylactic administration of a selected porcine mAb to pigs abolished lung viral load and greatly reduced lung pathology but did not eliminate nasal shedding of virus after H1N1pdm09 challenge. Hence mAbs from pigs, which target HA can significantly reduce disease severity. These results, together with the comparable sizes of pigs and humans, indicate that the pig is a valuable model for understanding how best to apply mAbs as therapy in humans and for monitoring antigenic drift of influenza viruses in humans, thereby providing information highly relevant to making influenza vaccine recommendations. Antibodies (Ab) are increasingly used to treat human infectious diseases. Pigs are large animals, natural hosts for influenza viruses and very similar to humans. We generated monoclonal Abs from influenza infected pigs and show that they recognize the same sites of the virus as humans. One of these sites was not recognized by ferret anti-sera, which are commonly used to predict the evolution of the virus and inform vaccine design. We also show that prophylactic administration of one of these mAb to pigs abolished lung viral load and prevented lung damage following infection with influenza. We conclude that the pig is a useful model to test how best to use Abs for therapy and to inform vaccine recommendations for humans.
Collapse
|
3
|
A Cell Proliferation and Inflammatory Signature Is Induced by Lawsonia intracellularis Infection in Swine. mBio 2019; 10:mBio.01605-18. [PMID: 30696739 PMCID: PMC6355989 DOI: 10.1128/mbio.01605-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lawsonia intracellularis causes porcine proliferative enteropathy. This is an enteric disease characterized by thickening of the wall of the ileum that leads to decreased growth of animals and diarrhea. In this study, we investigated the host response to L. intracellularis infection by performing transcriptomic and pathway analysis of intestinal tissue samples from groups of infected and noninfected animals at 14, 21, and 28 days postchallenge. At the peak of infection, when animals developed the most severe lesions, infected animals had higher levels of several gene transcripts involved in cellular proliferation and inflammation, including matrix metalloproteinase-7 (MMP7), transglutaminase-2 (TGM2), and oncostatin M (OSM). Histomorphology also revealed general features of intestinal inflammation. This study identified important pathways associated with the host response in developing and resolving lesions due to L. intracellularis infection.IMPORTANCE Lawsonia intracellularis is among the most important enteric pathogens of swine, and it can also infect other mammalian species. Much is still unknown regarding its pathogenesis and the host response, especially at the site of infection. In this study, we uncovered several novel genes and pathways associated with infection. Differentially expressed transcripts, in addition to histological changes in infected tissue, revealed striking similarities between L. intracellularis infection and cellular proliferation mechanisms described in some cancers and inflammatory diseases of the gastrointestinal tract. This research sheds important light into the pathogenesis of L. intracellularis and the host response associated with the lesions caused by infection.
Collapse
|
4
|
Schwartz JC, Philp RL, Bickhart DM, Smith TPL, Hammond JA. The antibody loci of the domestic goat (Capra hircus). Immunogenetics 2018; 70:317-326. [PMID: 29063126 PMCID: PMC5899754 DOI: 10.1007/s00251-017-1033-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022]
Abstract
The domestic goat (Capra hircus) is an important ruminant species both as a source of antibody-based reagents for research and biomedical applications and as an economically important animal for agriculture, particularly for developing nations that maintain most of the global goat population. Characterization of the loci encoding the goat immune repertoire would be highly beneficial for both vaccine and immune reagent development. However, in goat and other species whose reference genomes were generated using short-read sequencing technologies, the immune loci are poorly assembled as a result of their repetitive nature. Our recent construction of a long-read goat genome assembly (ARS1) has facilitated characterization of all three antibody loci with high confidence and comparative analysis to cattle. We observed broad similarity of goat and cattle antibody-encoding loci but with notable differences that likely influence formation of the functional antibody repertoire. The goat heavy-chain locus is restricted to only four functional and nearly identical IGHV genes, in contrast to the ten observed in cattle. Repertoire analysis indicates that light-chain usage is more balanced in goats, with greater representation of kappa light chains (~ 20-30%) compared to that in cattle (~ 5%). The present study represents the first characterization of the goat antibody loci and will help inform future investigations of their antibody responses to disease and vaccination.
Collapse
Affiliation(s)
| | - Rebecca L Philp
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK.,Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Derek M Bickhart
- Cell Wall Biology and Utilization Research, USDA-ARS, Madison, WI, 53706, USA
| | | | - John A Hammond
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK.
| |
Collapse
|
5
|
Schwartz JC, Hemmink JD, Graham SP, Tchilian E, Charleston B, Hammer SE, Ho C, Hammond JA. The major histocompatibility complex homozygous inbred Babraham pig as a resource for veterinary and translational medicine. HLA 2018; 92:40-43. [PMID: 29687612 PMCID: PMC6099331 DOI: 10.1111/tan.13281] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023]
Abstract
The Babraham pig is a highly inbred breed first developed in the United Kingdom approximately 50 years ago. Previous reports indicate a very high degree of homozygosity across the genome, including the major histocompatibility complex (MHC) region, but confirmation of homozygosity at the specific MHC loci was lacking. Using both direct sequencing and PCR-based sequence-specific typing, we confirm that Babraham pigs are essentially homozygous at their MHC loci and formalise their MHC haplotype as Hp-55.6. This enhances the utility of the Babraham pig as a useful biomedical model for studies in which controlling for genetic variation is important.
Collapse
Affiliation(s)
| | - J. D. Hemmink
- The Pirbright InstitutePirbrightSurreyUK
- The Roslin Institute, Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
- Livestock GeneticsThe International Livestock Research InstituteNairobiKenya
| | | | | | | | - S. E. Hammer
- Institute of Immunology, Department of PathobiologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - C.‐S. Ho
- Gift of Life MichiganAnn ArborMichigan
| | | |
Collapse
|
6
|
Guo N, Su M, Xie Z, Wang K, Yuan H, Li M, Li J, Liu M, Bai J, Liu J, Ouyang H, Pang D, Jiao H. Characterization and comparative analysis of immunoglobulin lambda chain diversity in a neonatal porcine model. Vet Immunol Immunopathol 2017; 195:84-91. [PMID: 29249323 DOI: 10.1016/j.vetimm.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 11/25/2022]
Abstract
To elucidate how antigen exposure and selection shape the porcine antibody repertoires, we investigated the immunoglobulin lambda light chain (IGL) gene repertoires of the binary cross-bred (Yorkshire×Landrace) pig at different developmental stages, pre-suckle neonate (0days), wean piglet (35days) and growing pig (75days) under normal farming conditions. Immunoglobulin lambda light transcript (IGLV-J-C) clones of the peripheral blood mononuclear cells (PBMCs) from these different developmental stages were assessed for IGL combination, junction and sequence diversity. Previous research has revealed that IGLV8 plays a major role in immunity during the early fetus stage and that IGLV3 accounts for 30% of the neonatal IGLV repertoires. Here, we found that the antibody profile exhibited salient features at different stages. The usage of the IGLV3-3 subclass gradually decreased during development, in contrast, the utilization of IGLV8 (IGLV8-10, IGLV8-13 and IGLV8-18), which started in the fetal stage, has increased in the growing stage. Moreover, the junction diversity, as measured by the IGLV hypervariable complementarity determining region 3 (CDR3L) lengths, was constant during the different stages. The complete junction mutation ratio clearly increased in the growing pig compared to that in the younger pig. Our data provide new insights into the postnatal porcine IGLV repertoires maturation which can lay the foundation for porcine antibody gene research.
Collapse
Affiliation(s)
- Nannan Guo
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Menghan Su
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Zicong Xie
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Kankan Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Hongming Yuan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Mengjing Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jianing Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Minghao Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jing Bai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jing Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Huping Jiao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
7
|
Abstract
We describe the domestication of the species, explore its value to agriculture and bioscience, and compare its immunoglobulin (Ig) genes to those of other vertebrates. For encyclopedic information, we cite earlier reviews and chapters. We provide current gene maps for the heavy and light chain loci and describe their polygeny and polymorphy. B-cell and antibody repertoire development is a major focus, and we present findings that challenge several mouse-centric paradigms. We focus special attention on the role of ileal Peyer's patches, the largest secondary lymphoid tissues in newborn piglets and a feature of all artiodactyls. We believe swine fetal development and early class switch evolved to provide natural secretory IgA antibodies able to prevent translocation of bacteria from the gut while the bacterial PAMPs drive development of adaptive immunity. We discuss the value of using the isolator piglet model to address these issues.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| | - Nancy Wertz
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| | - Marek Sinkora
- Laboratory of Gnotobiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| |
Collapse
|