1
|
Kamiki J, Gorgulho CM, Lérias JR, Maeurer MJ. Mucosal-associated invariant T-cells in pulmonary pathophysiology. Curr Opin Pulm Med 2025; 31:202-210. [PMID: 40104908 PMCID: PMC11957436 DOI: 10.1097/mcp.0000000000001163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
PURPOSE OF REVIEW Mucosal-associated invariant T-cells (MAIT) have been associated with lung cancer and pulmonary infections. The treatment of patients with cancer or infections includes host-directed therapies (HDTs). MAIT play a role in shaping the 'milieu interne' in cancer and infections and this review addresses the biology of MAIT in pulmonary pathophysiology. RECENT FINDINGS MAIT represent an attractive target for therapy in pulmonary malignancies and infections. T-cells are often difficult to exploit therapeutically due to the diversity of both T-cell receptor (TCR) repertoire and its ligandome. MAIT-cells are restricted by the major histocompatibility complex class I-related gene protein (MR1) that presents nondefined tumor-associated targets, bacterial products, vitamin and drug derivates. Due to their plasticity in gene expression, MAIT are able to conversely switch from IFN-γ to IL-17 production. Both cytokines play a key role in protective immune responses in infections and malignancies. MAIT-derived production of interleukin (IL)-17/TGF-β shapes the tumor micro-environment (TME), including tissue re-modelling leading to pulmonary fibrosis and recruitment of neutrophils. MAIT contribute to the gut-lung axis associated with clinical improved responses of patients with cancer to checkpoint inhibition therapy. MAIT are at the crossroad of HDTs targeting malignant and infected cells. Clinical presentations of overt inflammation, protective immune responses and tissue re-modeling are reviewed along the balance between Th1, Th2, Th9, and Th17 responses associated with immune-suppression or protective immune responses in infections. SUMMARY MAIT shape the TME in pulmonary malignancies and infections. Drugs targeting the TME and HDTs affect MAIT that can be explored to achieve improved clinical results while curbing overt tissue-damaging immune responses.
Collapse
Affiliation(s)
- Jéssica Kamiki
- ImmunoTherapy/ImmunoSurgery Laboratory, Cell Center at the Champalimaud Foundation, Lisbon, Portugal
| | | | | | | |
Collapse
|
2
|
Germain L, Veloso P, Lantz O, Legoux F. MAIT cells: Conserved watchers on the wall. J Exp Med 2025; 222:e20232298. [PMID: 39446132 PMCID: PMC11514058 DOI: 10.1084/jem.20232298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
MAIT cells are innate-like T cells residing in barrier tissues such as the lung, skin, and intestine. Both the semi-invariant T cell receptor of MAIT cells and the restricting element MR1 are deeply conserved across mammals, indicating non-redundant functions linked to antigenic specificity. MAIT cells across species concomitantly express cytotoxicity and tissue-repair genes, suggesting versatile functions. Accordingly, MAIT cells contribute to antibacterial responses as well as to the repair of damaged barrier tissues. MAIT cells recognize riboflavin biosynthetic pathway-derived metabolites, which rapidly cross epithelial barriers to be presented by antigen-presenting cells. Changes in gut ecology during intestinal inflammation drive the expansion of strong riboflavin and MAIT ligand producers. Thus, MAIT cells may enable real-time surveillance of microbiota dysbiosis across intact epithelia and provide rapid and context-dependent responses. Here, we discuss recent findings regarding the origin and regulation of MAIT ligands and the role of MAIT cells in barrier tissues. We speculate on the potential reasons for MAIT cell conservation during evolution.
Collapse
Affiliation(s)
- Lilou Germain
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
| | - Pablo Veloso
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
| | - Olivier Lantz
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Laboratoire d’immunologie Clinique, Institut Curie, Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - François Legoux
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| |
Collapse
|
3
|
El Morr Y, Fürstenheim M, Mestdagh M, Franciszkiewicz K, Salou M, Morvan C, Dupré T, Vorobev A, Jneid B, Premel V, Darbois A, Perrin L, Mondot S, Colombeau L, Bugaut H, du Halgouet A, Richon S, Procopio E, Maurin M, Philippe C, Rodriguez R, Lantz O, Legoux F. MAIT cells monitor intestinal dysbiosis and contribute to host protection during colitis. Sci Immunol 2024; 9:eadi8954. [PMID: 38905325 PMCID: PMC7616241 DOI: 10.1126/sciimmunol.adi8954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Intestinal inflammation shifts microbiota composition and metabolism. How the host monitors and responds to such changes remains unclear. Here, we describe a protective mechanism by which mucosal-associated invariant T (MAIT) cells detect microbiota metabolites produced upon intestinal inflammation and promote tissue repair. At steady state, MAIT ligands derived from the riboflavin biosynthesis pathway were produced by aerotolerant bacteria residing in the colonic mucosa. Experimental colitis triggered luminal expansion of riboflavin-producing bacteria, leading to increased production of MAIT ligands. Modulation of intestinal oxygen levels suggested a role for oxygen in inducing MAIT ligand production. MAIT ligands produced in the colon rapidly crossed the intestinal barrier and activated MAIT cells, which expressed tissue-repair genes and produced barrier-promoting mediators during colitis. Mice lacking MAIT cells were more susceptible to colitis and colitis-driven colorectal cancer. Thus, MAIT cells are sensitive to a bacterial metabolic pathway indicative of intestinal inflammation.
Collapse
Affiliation(s)
- Yara El Morr
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Mariela Fürstenheim
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Université Paris Cité, Paris, France
| | - Martin Mestdagh
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | | | - Marion Salou
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Claire Morvan
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015Paris, France
| | - Thierry Dupré
- Laboratoire de Biochimie, Hôpital Bichat AP-HP, Université de Paris, Paris, France
| | - Alexey Vorobev
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Bakhos Jneid
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Virginie Premel
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Aurélie Darbois
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Laetitia Perrin
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Stanislas Mondot
- Institut Micalis, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ludovic Colombeau
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005Paris, France
| | - Hélène Bugaut
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | | | - Sophie Richon
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Emanuele Procopio
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Catherine Philippe
- Institut Micalis, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Raphael Rodriguez
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005Paris, France
| | - Olivier Lantz
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Laboratoire d’immunologie clinique, Institut Curie, 75005Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - François Legoux
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- INSERM ERL1305, CNRS UMR6290, Université de Rennes, Institut de Génétique & Développement de Rennes, Rennes, France
| |
Collapse
|
4
|
McWilliam HEG, Villadangos JA. MR1 antigen presentation to MAIT cells and other MR1-restricted T cells. Nat Rev Immunol 2024; 24:178-192. [PMID: 37773272 PMCID: PMC11108705 DOI: 10.1038/s41577-023-00934-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 10/01/2023]
Abstract
MHC antigen presentation plays a fundamental role in adaptive and semi-invariant T cell immunity. Distinct MHC molecules bind antigens that differ in chemical structure, origin and location and present them to specialized T cells. MHC class I-related protein 1 (MR1) presents a range of small molecule antigens to MR1-restricted T (MR1T) lymphocytes. The best studied MR1 ligands are derived from microbial metabolism and are recognized by a major class of MR1T cells known as mucosal-associated invariant T (MAIT) cells. Here, we describe the MR1 antigen presentation pathway: the known types of antigens presented by MR1, the location where MR1-antigen complexes form, the route followed by the complexes to the cell surface, the mechanisms involved in termination of MR1 antigen presentation and the accessory cellular proteins that comprise the MR1 antigen presentation machinery. The current road map of the MR1 antigen presentation pathway reveals potential strategies for therapeutic manipulation of MR1T cell function and provides a foundation for further studies that will lead to a deeper understanding of MR1-mediated immunity.
Collapse
Affiliation(s)
- Hamish E G McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
5
|
Parihar N, Bhatt LK. The emerging paradigm of Unconventional T cells as a novel therapeutic target for celiac disease. Int Immunopharmacol 2023; 122:110666. [PMID: 37473709 DOI: 10.1016/j.intimp.2023.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Celiac disease (CD) is an organ-specific autoimmune disorder that occurs in genetically predisposed individuals when exposed to exogenous dietary gluten. This exposure to wheat gluten and related proteins from rye and barley triggers an immune response which leads to the development of enteropathy associated with symptoms of bloating, diarrhea, or malabsorption. The sole current treatment is to follow a gluten-free diet for the rest of one's life. Intestinal barriers are enriched with Unconventional T cells such as iNKT, MAIT, and γδ T cells, which lack or express only a limited range of rearranged antigen receptors. Unconventional T cells play a crucial role in regulating mucosal barrier function and microbial colonization. Unconventional T cell populations are widely represented in diseased conditions, where changes in disease activity related to iNKT and MAIT cell reduction, as well as γδ T cell expansion, are demonstrated. In this review, we discuss the role and potential employment of Unconventional T cells as a therapeutic target in the pathophysiology of celiac disease.
Collapse
Affiliation(s)
- Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
6
|
Hackstein CP, Klenerman P. MAITs and their mates: "Innate-like" behaviors in conventional and unconventional T cells. Clin Exp Immunol 2023; 213:1-9. [PMID: 37256718 PMCID: PMC10324555 DOI: 10.1093/cei/uxad058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023] Open
Abstract
Most CD4 and CD8 T cells are restricted by conventional major histocompatibility complex (MHC) molecules and mount TCR-dependent adaptive immune responses. In contrast, MAIT, iNKT, and certain γδ TCR bearing cells are characterized by their abilities to recognize antigens presented by unconventional antigen-presenting molecules and to mount cytokine-mediated TCR-independent responses in an "innate-like" manner. In addition, several more diverse T-cell subsets have been described that in a similar manner are restricted by unconventional antigen-presenting molecules but mainly depend on their TCRs for activation. Vice versa, innate-like behaviour was reported in defined subpopulations of conventional T cells, particularly in barrier sites, showing that these two features are not necessarily linked. The abilities to recognize antigens presented by unconventional antigen-presenting molecules or to mount TCR-independent responses creates unique niches for these T cells and is linked to wide range of functional capabilities. This is especially exemplified by unconventional and innate-like T cells present at barrier sites where they are involved in pathogen defense, tissue homeostasis as well as in pathologic processes.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Abstract
Mucosal associated invariant T (MAIT) cells are innate-like T lymphocytes, strikingly enriched at mucosal surfaces and characterized by a semi-invariant αβ T cell receptor (TCR) recognizing microbial derived intermediates of riboflavin synthesis presented by the MHC-Ib molecule MR1. At barrier sites MAIT cells occupy a prime position for interaction with commensal microorganisms, comprising the microbiota. The microbiota is a rich source of riboflavin derived antigens required in early life to promote intra-thymic MAIT cell development and sustain a life-long population of tissue resident cells. A symbiotic relationship is thought to be maintained in health whereby microbes promote maturation and homeostasis, and in turn MAIT cells can engage a TCR-dependent "tissue repair" program in the presence of commensal organisms conducive to sustaining barrier function and integrity of the microbial community. MAIT cell activation can be induced in a MR1-TCR dependent manner or through MR1-TCR independent mechanisms via pro-inflammatory cytokines interleukin (IL)-12/-15/-18 and type I interferon. MAIT cells provide immunity against bacterial, fungal and viral pathogens. However, MAIT cells may have deleterious effects through insufficient or exacerbated effector activity and have been implicated in autoimmune, inflammatory and allergic conditions in which microbial dysbiosis is a shared feature. In this review we summarize the current knowledge on the role of the microbiota in the development and maintenance of circulating and tissue resident MAIT cells. We also explore how microbial dysbiosis, alongside changes in intestinal permeability and imbalance between pro- and anti-inflammatory components of the immune response are together involved in the potential pathogenicity of MAIT cells. Whilst there have been significant improvements in our understanding of how the microbiota shapes MAIT cell function, human data are relatively lacking, and it remains unknown if MAIT cells can conversely influence the composition of the microbiota. We speculate whether, in a human population, differences in microbiomes might account for the heterogeneity observed in MAIT cell frequency across mucosal sites or between individuals, and response to therapies targeting T cells. Moreover, we speculate whether manipulation of the microbiota, or harnessing MAIT cell ligands within the gut or disease-specific sites could offer novel therapeutic strategies.
Collapse
Affiliation(s)
- Maisha F. Jabeen
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Timothy S. C. Hinks
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
8
|
du Halgouet A, Darbois A, Alkobtawi M, Mestdagh M, Alphonse A, Premel V, Yvorra T, Colombeau L, Rodriguez R, Zaiss D, El Morr Y, Bugaut H, Legoux F, Perrin L, Aractingi S, Golub R, Lantz O, Salou M. Role of MR1-driven signals and amphiregulin on the recruitment and repair function of MAIT cells during skin wound healing. Immunity 2023; 56:78-92.e6. [PMID: 36630919 PMCID: PMC9839364 DOI: 10.1016/j.immuni.2022.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/02/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
Tissue repair processes maintain proper organ function following mechanical or infection-related damage. In addition to antibacterial properties, mucosal associated invariant T (MAIT) cells express a tissue repair transcriptomic program and promote skin wound healing when expanded. Herein, we use a human-like mouse model of full-thickness skin excision to assess the underlying mechanisms of MAIT cell tissue repair function. Single-cell RNA sequencing analysis suggested that skin MAIT cells already express a repair program at steady state. Following skin excision, MAIT cells promoted keratinocyte proliferation, thereby accelerating healing. Using skin grafts, parabiosis, and adoptive transfer experiments, we show that MAIT cells migrated into the wound in a T cell receptor (TCR)-independent but CXCR6 chemokine receptor-dependent manner. Amphiregulin secreted by MAIT cells following excision promoted wound healing. Expression of the repair function was probably independent of sustained TCR stimulation. Overall, our study provides mechanistic insights into MAIT cell wound healing function in the skin.
Collapse
Affiliation(s)
| | - Aurélie Darbois
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Mansour Alkobtawi
- Cutaneous Biology, Institut Cochin, Inserm 1016, and Université de Paris Cité, 75014 Paris, France
| | - Martin Mestdagh
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Aurélia Alphonse
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Virginie Premel
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Thomas Yvorra
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005 Paris, France
| | - Ludovic Colombeau
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005 Paris, France
| | - Raphaël Rodriguez
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005 Paris, France
| | - Dietmar Zaiss
- Department of Immune Medicine, University of Regensburg, Regensburg, Germany,Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany,Institute of Pathology, University Regensburg, Regensburg, Germany,Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Yara El Morr
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Hélène Bugaut
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - François Legoux
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Laetitia Perrin
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Selim Aractingi
- Cutaneous Biology, Institut Cochin, Inserm 1016, and Université de Paris Cité, 75014 Paris, France
| | - Rachel Golub
- Institut Pasteur, Université Paris Cité, INSERM U1223, 75015 Paris, France
| | - Olivier Lantz
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France; Laboratoire d'Immunologie Clinique, Institut Curie, 75005 Paris, France; Centre d'investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Institut Curie, 75005 Paris, France.
| | - Marion Salou
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France.
| |
Collapse
|
9
|
Hackstein CP, Klenerman P. Emerging features of MAIT cells and other unconventional T cell populations in human viral disease and vaccination. Semin Immunol 2022; 61-64:101661. [PMID: 36374780 PMCID: PMC10933818 DOI: 10.1016/j.smim.2022.101661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
MAIT cells are one representative of a group of related unconventional or pre-set T cells, and are particularly abundant in humans. While these unconventional T cell types, which also include populations of Vδ2 cells and iNKT cells, recognise quite distinct ligands, they share functional features including the ability to sense "danger" by integration of cytokine signals. Since such signals are common to many human pathologies, activation of MAIT cells in particular has been widely observed. In this review we will discuss recent trends in these data, for example the findings from patients with Covid-19 and responses to novel vaccines. Covid-19 is an example where MAIT cell activation has been correlated with disease severity by several groups, and the pathways leading to activation are being clarified, but the overall role of the cells in vivo requires further exploration. Given the potential wide functional responsiveness of these cells, which ranges from tissue repair to cytotoxicity, and likely impacts on the activity of many other cell populations, defining the role of these cells - not only as sensitive biomarkers but also as mediators - across human disease remains an important task.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Dept of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Dept of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
10
|
Gao MG, Zhao XS. Mining the multifunction of mucosal-associated invariant T cells in hematological malignancies and transplantation immunity: A promising hexagon soldier in immunomodulatory. Front Immunol 2022; 13:931764. [PMID: 36052080 PMCID: PMC9427077 DOI: 10.3389/fimmu.2022.931764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are evolutionarily conserved innate-like T cells capable of recognizing bacterial and fungal ligands derived from vitamin B biosynthesis. Under different stimulation conditions, MAIT cells can display different immune effector phenotypes, exerting immune regulation and anti-/protumor responses. Based on basic biological characteristics, including the enrichment of mucosal tissue, the secretion of mucosal repair protective factors (interleukin-17, etc.), and the activation of riboflavin metabolites by intestinal flora, MAIT cells may play an important role in the immune regulation effect of mucosal lesions or inflammation. At the same time, activated MAIT cells secrete granzyme B, perforin, interferon γ, and other toxic cytokines, which can mediate anti-tumor effects. In addition, since a variety of hematological malignancies express the targets of MAIT cell-specific effector molecules, MAIT cells are also a potentially attractive target for cell therapy or immunotherapy for hematological malignancies. In this review, we will provide an overview of MAIT research related to blood system diseases and discuss the possible immunomodulatory or anti-tumor roles that unique biological characteristics or effector phenotypes may play in hematological diseases.
Collapse
Affiliation(s)
- Meng-Ge Gao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Su Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- *Correspondence: Xiao-Su Zhao,
| |
Collapse
|
11
|
Harly C, Robert J, Legoux F, Lantz O. γδ T, NKT, and MAIT Cells During Evolution: Redundancy or Specialized Functions? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:217-225. [PMID: 35821101 PMCID: PMC7613099 DOI: 10.4049/jimmunol.2200105] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/06/2022] [Indexed: 01/17/2023]
Abstract
Innate-like T cells display characteristics of both innate lymphoid cells (ILCs) and mainstream αβ T cells, leading to overlapping functions of innate-like T cells with both subsets. In this review, we show that although innate-like T cells are probably present in all vertebrates, their main characteristics are much better known in amphibians and mammals. Innate-like T cells encompass both γδ and αβ T cells. In mammals, γδ TCRs likely coevolved with molecules of the butyrophilin family they interact with, whereas the semi-invariant TCRs of iNKT and mucosal-associated invariant T cells are evolutionarily locked with their restricting MH1b molecules, CD1d and MR1, respectively. The strong conservation of the Ag recognition systems of innate-like T cell subsets despite similar effector potentialities supports that each one fulfills nonredundant roles related to their Ag specificity.
Collapse
Affiliation(s)
- Christelle Harly
- Nantes Université, Institut National de la Santé et de la Recherche Médicale UMR1307, Centre National de la Recherche Scientifique UMR6075, Université d'Angers, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers CRCI2NA, Nantes, France;
- LabEx Immunotherapy, Graft, Oncology, Nantes, France
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Francois Legoux
- INSERM U932, Paris Sciences et Lettres Université, Institut Curie, Paris, France
| | - Olivier Lantz
- INSERM U932, Paris Sciences et Lettres Université, Institut Curie, Paris, France;
- Laboratoire d'Immunologie Clinique, Institut Curie, Paris, France; and
- Centre d'Investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| |
Collapse
|
12
|
Al-hadlaq SM, Balto HA, Hassan WM, Marraiki NA, El-Ansary AK. Biomarkers of non-communicable chronic disease: an update on contemporary methods. PeerJ 2022; 10:e12977. [PMID: 35233297 PMCID: PMC8882335 DOI: 10.7717/peerj.12977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/31/2022] [Indexed: 01/11/2023] Open
Abstract
Chronic diseases constitute a major global burden with significant impact on health systems, economies, and quality of life. Chronic diseases include a broad range of diseases that can be communicable or non-communicable. Chronic diseases are often associated with modifications of normal physiological levels of various analytes that are routinely measured in serum and other body fluids, as well as pathological findings, such as chronic inflammation, oxidative stress, and mitochondrial dysfunction. Identification of at-risk populations, early diagnosis, and prediction of prognosis play a major role in preventing or reducing the burden of chronic diseases. Biomarkers are tools that are used by health professionals to aid in the identification and management of chronic diseases. Biomarkers can be diagnostic, predictive, or prognostic. Several individual or grouped biomarkers have been used successfully in the diagnosis and prediction of certain chronic diseases, however, it is generally accepted that a more sophisticated approach to link and interpret various biomarkers involved in chronic disease is necessary to improve our current procedures. In order to ensure a comprehensive and unbiased coverage of the literature, first a primary frame of the manuscript (title, headings and subheadings) was drafted by the authors working on this paper. Second, based on the components drafted in the preliminary skeleton a comprehensive search of the literature was performed using the PubMed and Google Scholar search engines. Multiple keywords related to the topic were used. Out of screened papers, only 190 papers, which are the most relevant, and recent articles were selected to cover the topic in relation to etiological mechanisms of different chronic diseases, the most recently used biomarkers of chronic diseases and finally the advances in the applications of multivariate biomarkers of chronic diseases as statistical and clinically applied tool for the early diagnosis of chronic diseases was discussed. Recently, multivariate biomarkers analysis approach has been employed with promising prospect. A brief discussion of the multivariate approach for the early diagnosis of the most common chronic diseases was highlighted in this review. The use of diagnostic algorithms might show the way for novel criteria and enhanced diagnostic effectiveness inpatients with one or numerous non-communicable chronic diseases. The search for new relevant biomarkers for the better diagnosis of patients with non-communicable chronic diseases according to the risk of progression, sickness, and fatality is ongoing. It is important to determine whether the newly identified biomarkers are purely associations or real biomarkers of underlying pathophysiological processes. Use of multivariate analysis could be of great importance in this regard.
Collapse
Affiliation(s)
- Solaiman M. Al-hadlaq
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Hanan A. Balto
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia,Central Research Laboratory, Female Campus, King Saud University, Riyadh, Saudi Arabia
| | - Wail M. Hassan
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, KS, United States of America
| | - Najat A. Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Afaf K. El-Ansary
- Central Research Laboratory, Female Campus, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Exploring the Role of Innate Lymphocytes in the Immune System of Bats and Virus-Host Interactions. Viruses 2022; 14:v14010150. [PMID: 35062356 PMCID: PMC8781337 DOI: 10.3390/v14010150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
Bats are reservoirs of a large number of viruses of global public health significance, including the ancestral virus for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the causative agent of coronavirus disease 2019 (COVID-19). Although bats are natural carriers of multiple pathogenic viruses, they rarely display signs of disease. Recent insights suggest that bats have a more balanced host defense and tolerance system to viral infections that may be linked to the evolutionary adaptation to powered flight. Therefore, a deeper understanding of bat immune system may provide intervention strategies to prevent zoonotic disease transmission and to identify new therapeutic targets. Similar to other eutherian mammals, bats have both innate and adaptive immune systems that have evolved to detect and respond to invading pathogens. Bridging these two systems are innate lymphocytes, which are highly abundant within circulation and barrier tissues. These cells share the characteristics of both innate and adaptive immune cells and are poised to mount rapid effector responses. They are ideally suited as the first line of defense against early stages of viral infections. Here, we will focus on the current knowledge of innate lymphocytes in bats, their function, and their potential role in host–pathogen interactions. Moreover, given that studies into bat immune systems are often hindered by a lack of bat-specific research tools, we will discuss strategies that may aid future research in bat immunity, including the potential use of organoid models to delineate the interplay between innate lymphocytes, bat viruses, and host tolerance.
Collapse
|
14
|
Tourret M, Talvard-Balland N, Lambert M, Ben Youssef G, Chevalier MF, Bohineust A, Yvorra T, Morin F, Azarnoush S, Lantz O, Dalle JH, Caillat-Zucman S. Human MAIT cells are devoid of alloreactive potential: prompting their use as universal cells for adoptive immune therapy. J Immunother Cancer 2021; 9:jitc-2021-003123. [PMID: 34615705 PMCID: PMC8496386 DOI: 10.1136/jitc-2021-003123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Background Mucosal-associated invariant T (MAIT) cells are semi-invariant T cells that recognize microbial antigens presented by the highly conserved MR1 molecule. MAIT cells are predominantly localized in the liver and barrier tissues and are potent effectors of antimicrobial defense. MAIT cells are very few at birth and accumulate gradually over a period of about 6 years during the infancy. The cytotoxic potential of MAIT cells, as well as their newly described regulatory and tissue repair functions, open the possibility of exploiting their properties in adoptive therapy. A prerequisite for their use as ‘universal’ cells would be a lack of alloreactive potential, which remains to be demonstrated. Methods We used ex vivo, in vitro and in vivo models to determine if human MAIT cells contribute to allogeneic responses. Results We show that recovery of MAIT cells after allogeneic hematopoietic stem cell transplantation recapitulates their slow physiological expansion in early childhood, independent of recovery of non-MAIT T cells. In vitro, signals provided by allogeneic cells and cytokines do not induce sustained MAIT cell proliferation. In vivo, human MAIT cells do not expand nor accumulate in tissues in a model of T-cell-mediated xenogeneic graft-versus-host disease in immunodeficient mice. Conclusions Altogether, these results provide evidence that MAIT cells are devoid of alloreactive potential and pave the way for harnessing their translational potential in universal adoptive therapy overcoming barriers of HLA disparity. Trial registration number ClinicalTrials.gov number NCT02403089.
Collapse
Affiliation(s)
- Marie Tourret
- INSERM UMR976, Human Immunology, Pathophysiology and Immunotherapy, Université de Paris, Paris, France
| | - Nana Talvard-Balland
- INSERM UMR976, Human Immunology, Pathophysiology and Immunotherapy, Université de Paris, Paris, France
| | - Marion Lambert
- INSERM UMR976, Human Immunology, Pathophysiology and Immunotherapy, Université de Paris, Paris, France
| | - Ghada Ben Youssef
- INSERM UMR976, Human Immunology, Pathophysiology and Immunotherapy, Université de Paris, Paris, France
| | - Mathieu F Chevalier
- INSERM UMR976, Human Immunology, Pathophysiology and Immunotherapy, Université de Paris, Paris, France
| | - Armelle Bohineust
- INSERM UMR976, Human Immunology, Pathophysiology and Immunotherapy, Université de Paris, Paris, France
| | - Thomas Yvorra
- INSERM UMR3666/U1143, Université PSL, Institut Curie, Paris, France
| | - Florence Morin
- Laboratoire d'Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Saba Azarnoush
- Département d'Immuno-Hématologie, Hôpital Robert Debré, AP-HP, Université de Paris, Paris, France
| | - Olivier Lantz
- INSERM U932, Université PSL, Institut Curie, Paris, France.,Laboratoire d'immunologie clinique & Centre d'investigation Clinique en Biothérapie (CIC-BT1428), Institut Curie, Paris, France
| | - Jean-Hugues Dalle
- INSERM UMR976, Human Immunology, Pathophysiology and Immunotherapy, Université de Paris, Paris, France.,Département d'Immuno-Hématologie, Hôpital Robert Debré, AP-HP, Université de Paris, Paris, France
| | - Sophie Caillat-Zucman
- INSERM UMR976, Human Immunology, Pathophysiology and Immunotherapy, Université de Paris, Paris, France .,Laboratoire d'Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| |
Collapse
|
15
|
Gao MG, Hong Y, Zhao XY, Pan XA, Sun YQ, Kong J, Wang ZD, Wang FR, Wang JZ, Yan CH, Wang Y, Huang XJ, Zhao XS. The Potential Roles of Mucosa-Associated Invariant T Cells in the Pathogenesis of Gut Graft-Versus-Host Disease After Hematopoietic Stem Cell Transplantation. Front Immunol 2021; 12:720354. [PMID: 34539656 PMCID: PMC8448388 DOI: 10.3389/fimmu.2021.720354] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
Gut acute graft-versus-host disease (aGVHD) is a serious complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and is associated with high mortality. Mucosa-associated invariant T (MAIT) cells are a group of innate-like T cells enriched in the intestine that can be activated by riboflavin metabolites from various microorganisms. However, little is known about the function or mechanism of action of MAIT cells in the occurrence of gut aGVHD in humans. In our study, multiparameter flow cytometry (FCM) was used to evaluate the number of MAIT cells and functional cytokines. 16S V34 region amplicon sequencing analysis was used to analyze the intestinal flora of transplant patients. In vitro stimulation and coculture assays were used to study the activation and function of MAIT cells. The number and distribution of MAIT cells in intestinal tissues were analyzed by immunofluorescence technology. Our study showed that the number and frequency of MAIT cells in infused grafts in gut aGVHD patients were lower than those in no-gut aGVHD patients. Recipients with a high number of MAITs in infused grafts had a higher abundance of intestinal flora in the early posttransplantation period (+14 days). At the onset of gut aGVHD, the number of MAIT cells decreased in peripheral blood, and the activation marker CD69, chemokine receptors CXCR3 and CXCR4, and transcription factors Rorγt and T-bet tended to increase. Furthermore, when gut aGVHD occurred, the proportion of MAIT17 was higher than that of MAIT1. The abundance of intestinal flora with non-riboflavin metabolic pathways tended to increase in gut aGVHD patients. MAIT cells secreted more granzyme B, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ under the interleukin (IL)-12/IL-18 stimulation [non-T-cell receptor (TCR) signal] and secreted most of the IL-17 under the cluster of differentiation (CD)3/CD28 stimulation (TCR signal). MAIT cells inhibited the proliferation of CD4+ T cells in vitro. In conclusion, the lower number of MAIT cells in infused grafts was related to the higher incidence of gut aGVHD, and the number of MAIT cells in grafts may affect the composition of the intestinal flora of recipients early after transplantation. The flora of the riboflavin metabolism pathway activated MAIT cells and promoted the expression of intestinal protective factors to affect the occurrence of gut aGVHD in humans.
Collapse
Affiliation(s)
- Meng-Ge Gao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yan Hong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xin-An Pan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jun Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zhi-Dong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Feng-Rong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jing-Zhi Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chen-Hua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Mayassi T, Barreiro LB, Rossjohn J, Jabri B. A multilayered immune system through the lens of unconventional T cells. Nature 2021; 595:501-510. [PMID: 34290426 PMCID: PMC8514118 DOI: 10.1038/s41586-021-03578-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023]
Abstract
The unconventional T cell compartment encompasses a variety of cell subsets that straddle the line between innate and adaptive immunity, often reside at mucosal surfaces and can recognize a wide range of non-polymorphic ligands. Recent advances have highlighted the role of unconventional T cells in tissue homeostasis and disease. In this Review, we recast unconventional T cell subsets according to the class of ligand that they recognize; their expression of semi-invariant or diverse T cell receptors; the structural features that underlie ligand recognition; their acquisition of effector functions in the thymus or periphery; and their distinct functional properties. Unconventional T cells follow specific selection rules and are poised to recognize self or evolutionarily conserved microbial antigens. We discuss these features from an evolutionary perspective to provide insights into the development and function of unconventional T cells. Finally, we elaborate on the functional redundancy of unconventional T cells and their relationship to subsets of innate and adaptive lymphoid cells, and propose that the unconventional T cell compartment has a critical role in our survival by expanding and complementing the role of the conventional T cell compartment in protective immunity, tissue healing and barrier function.
Collapse
Affiliation(s)
- Toufic Mayassi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Luis B. Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL, USA.,Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA.,Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jamie Rossjohn
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, IL, USA.,Department of Medicine, University of Chicago, Chicago, IL, USA.,Department of Pathology, University of Chicago, Chicago, IL, USA.,Department of Pediatrics, University of Chicago, Chicago, IL, USA.,Correspondence and requests for materials should be addressed to B.J.,
| |
Collapse
|
17
|
Legoux F, Salou M, Lantz O. MAIT Cell Development and Functions: the Microbial Connection. Immunity 2021; 53:710-723. [PMID: 33053329 DOI: 10.1016/j.immuni.2020.09.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/21/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are an evolutionarily conserved T cell subset, which reacts to most bacteria through T cell receptor (TCR)-mediated recognition of metabolites derived from the vitamin B2 biosynthetic pathway. Microbiota-derived signals affect all stages of MAIT cell biology including intra-thymic development, peripheral expansion, and functions in specific organs. In tissues, MAIT cells can integrate multiple signals and display effector functions involved in the defense against infectious pathogens. In addition to anti-bacterial activity, MAIT cells improve wound healing in the skin, suggesting a role in epithelium homeostasis through bi-directional interactions with the local microbiota. In humans, blood MAIT cell frequency is modified during several auto-immune diseases, which are often associated with microbiota dysbiosis, further emphasizing the potential interplay of MAIT cells with the microbiota. Here, we will review how microbes interact with MAIT cells, from initial intra-thymic development to tissue colonization and functions.
Collapse
Affiliation(s)
- François Legoux
- INSERM U932, PSL University, Institut Curie, Paris, 75005, France
| | - Marion Salou
- INSERM U932, PSL University, Institut Curie, Paris, 75005, France
| | - Olivier Lantz
- INSERM U932, PSL University, Institut Curie, Paris, 75005, France; Laboratoire d'immunologie clinique, Institut Curie, Paris, 75005, France; Centre d'investigation Clinique en Biothérapie, Institut Curie (CIC-BT1428), Paris, 75005, France.
| |
Collapse
|
18
|
Augmentation of the Riboflavin-Biosynthetic Pathway Enhances Mucosa-Associated Invariant T (MAIT) Cell Activation and Diminishes Mycobacterium tuberculosis Virulence. mBio 2021; 13:e0386521. [PMID: 35164552 PMCID: PMC8844931 DOI: 10.1128/mbio.03865-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells play a critical role in antimicrobial defense. Despite increased understanding of their mycobacterial ligands and the clinical association of MAIT cells with tuberculosis (TB), their function in protection against Mycobacterium tuberculosis infection remains unclear. Here, we show that overexpressing key genes of the riboflavin-biosynthetic pathway potentiates MAIT cell activation and results in attenuation of M. tuberculosis virulence in vivo. Further, we observed greater control of M. tuberculosis infection in MAIThi CAST/EiJ mice than in MAITlo C57BL/6J mice, highlighting the protective role of MAIT cells against TB. We also endogenously adjuvanted Mycobacterium bovis BCG with MR1 ligands via overexpression of the lumazine synthase gene ribH and evaluated its protective efficacy in the mouse model of M. tuberculosis infection. Altogether, our findings demonstrate that MAIT cells confer host protection against TB and that overexpression of genes in the riboflavin-biosynthetic pathway attenuates M. tuberculosis virulence. Enhancing MAIT cell-mediated immunity may also offer a novel approach toward improved vaccines against TB. IMPORTANCE Mucosa-associated invariant T (MAIT) cells are an important subset of innate lymphocytes that recognize microbial ligands derived from the riboflavin biosynthesis pathway and mediate antimicrobial immune responses. Modulated MAIT cell responses have been noted in different forms of tuberculosis. However, it has been unclear if increased MAIT cell abundance is protective against TB disease. In this study, we show that augmentation of the mycobacterial MAIT cell ligands leads to higher MAIT cell activation with reduced M. tuberculosis virulence and that elevated MAIT cell abundance confers greater control of M. tuberculosis infection. Our study also highlights the potential of endogenously adjuvanting the traditional BCG vaccine with MR1 ligands to augment MAIT cell activation. This study increases current knowledge on the roles of the riboflavin-biosynthetic pathway and MAIT cell activation in M. tuberculosis virulence and host immunity against TB.
Collapse
|
19
|
Kubica P, Lara-Velazquez M, Bam M, Siraj S, Ong I, Liu P, Priya R, Salamat S, Brutkiewicz RR, Dey M. MR1 overexpression correlates with poor clinical prognosis in glioma patients. Neurooncol Adv 2021; 3:vdab034. [PMID: 33948562 PMCID: PMC8080245 DOI: 10.1093/noajnl/vdab034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Glioblastoma is the most common adult primary brain tumor with near-universal fatality. Major histocompatibility complex (MHC) class I molecules are important mediators of CD8 activation and can be downregulated by cancer cells to escape immune surveillance. MR1 is a nonclassical MHC-I-like molecule responsible for the activation of a subset of T cells. Although high levels of MR1 expression should enhance cancer cell recognition, various tumors demonstrate MR1 overexpression with unknown implications. Here, we study the role of MR1 in glioma. METHODS Using multi-omics data from the Cancer Genome Atlas (TCGA), we studied MR1 expression patterns and its impact on survival for various solid tumors. In glioma specifically, we validated MR1 expression by histology, elucidate transcriptomic profiles of MR1 high versus low gliomas. To understand MR1 expression, we analyzed the methylation status of the MR1 gene and MR1 gene-related transcription factor (TF) expression. RESULTS MR1 is overexpressed in all grades of glioma and many other solid cancers. However, only in glioma, MR1 overexpression correlated with poor overall survival and demonstrated global dysregulation of many immune-related genes in an MR1-dependent manner. MR1 overexpression correlated with decreased MR1 gene methylation and upregulation of predicted MR1 promoter binding TFs, implying MR1 gene methylation might regulate MR1 expression in glioma. CONCLUSIONS Our in silico analysis shows that MR1 expression is a predictor of clinical outcome in glioma patients and is potentially regulated at the epigenetic level, resulting in immune-related genes dysregulation. These findings need to be validated using independent in vitro and in vivo functional studies.
Collapse
Affiliation(s)
- Phillip Kubica
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Montserrat Lara-Velazquez
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Marpe Bam
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Seema Siraj
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Irene Ong
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Peng Liu
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Raj Priya
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shahriar Salamat
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mahua Dey
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
20
|
De Libero G, Chancellor A, Mori L. Antigen specificities and functional properties of MR1-restricted T cells. Mol Immunol 2020; 130:148-153. [PMID: 33358568 DOI: 10.1016/j.molimm.2020.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 11/25/2022]
Abstract
MR1 is an MHC class I-like molecule with unique structural and biological features that make it an important member among the molecules involved in antigen presentation to T cells. Distinctive features include ubiquitous expression of the MR1 gene and its monomorphism. Another relevant property is that the MR1 protein appears at very low levels on the plasma membrane and its surface expression is regulated by antigen binding. Finally, the nature of presented antigens differs from those that bind other presenting molecules and includes small metabolites of microbial and self-origin, small drugs and tumor-associated antigens. This opinion paper describes in detail some of those features and discusses recent literature in the field.
Collapse
|
21
|
Salou M, Legoux F, Lantz O. MAIT cell development in mice and humans. Mol Immunol 2020; 130:31-36. [PMID: 33352411 DOI: 10.1016/j.molimm.2020.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023]
Abstract
MAIT cells arise in the thymus following rearrangement of a T cell receptor (TCR) reactive against microbial vitamin B2-derived metabolites presented by the MHC-Ib molecule, MR1. Mechanisms that are conserved in mammals ensure the frequent production of MR1-restricted TCRs and the intra-thymic differentiation of MR1-restricted thymocytes into effector cells. Upon thymic egress and migration into non-lymphoid tissues, additional signals modulate MAIT cell functions according to each local tissue environment. Here, we review the recent progress made towards a better understanding of the establishment of this major immune cell subset.
Collapse
Affiliation(s)
- Marion Salou
- INSERM U932, PSL University, Institut Curie, Paris, 75005, France
| | - François Legoux
- INSERM U932, PSL University, Institut Curie, Paris, 75005, France
| | - Olivier Lantz
- INSERM U932, PSL University, Institut Curie, Paris, 75005, France; Laboratoire d'immunologie clinique, Institut Curie, Paris, 75005, France; Centre d'investigation Clinique en Biothérapie, Institut Curie (CIC-BT1428), Paris, 75005, France.
| |
Collapse
|
22
|
Yvorra T, Steinmetz A, Retailleau P, Lantz O, Schmidt F. Synthesis, biological evaluation and molecular modelling of new potent clickable analogues of 5-OP-RU for their use as chemical probes for the study of MAIT cell biology. Eur J Med Chem 2020; 211:113066. [PMID: 33341648 DOI: 10.1016/j.ejmech.2020.113066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 02/08/2023]
Abstract
MAIT cells are preset αβ T lymphocytes that recognize a series of microbial antigens exclusively derived from the riboflavin biosynthesis pathway, which is present in most bacteria. The most active known antigen is unstable 5-(2-oxopropylideneamino)-6-(d-ribitylamino)uracil (5-OP-RU) which is stabilized when bound and presented to MAIT cells by MHC-related protein 1 (MR1). Here we describe the chemical synthesis and biological evaluation of new chemical probes for the study of MAIT cell biology. The two probes were ethinyl functionalized analogues of 5-OP-RU able to react through CuAAC also called "click chemistry". The molecules up-regulated more MR1 than 5-OP-RU and they efficiently activated iVα19 Vβ8 TCR transgenic murine MAIT cells but not iVα19 TCRα transgenic MAIT cells indicating a surprisingly strong impact of the TRCβ chain. Moreover, the use of these molecules as chemical probes was validated in vitro by efficient and selective binding to MR1 revealed via fluorescence microscopy. This study was also complemented by molecular modelling investigation of the probes and the binary/ternary complexes they form with MR1 and the TCR. These new probes will be crucial to delineate the dynamics of 5-OP-RU at the cellular or whole organism level and to identify the cells presenting 5-OP-RU to MAIT cells in vivo.
Collapse
Affiliation(s)
- Thomas Yvorra
- Institut Curie, PSL University, CNRS UMR3666, INSERM U1143, Paris, 75005, France
| | - Anke Steinmetz
- Centre de Recherche et Développement Vitry-Alfortville, IDD/ISDD, Sanofi-Aventis R&D, Vitry-sur-Seine, 94400, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de La Terrasse, Gif-sur-Yvette, 91190, France
| | - Olivier Lantz
- Institut Curie, PSL University, INSERM U932, Paris, 75005, France; Institut Curie, Laboratoire D'immunologie Clinique, Paris, 75005, France; Centre D'investigation Clinique en Biothérapie, Institut Curie (CIC-BT1428), Paris, 75005, France
| | - Frédéric Schmidt
- Institut Curie, PSL University, CNRS UMR3666, INSERM U1143, Paris, 75005, France.
| |
Collapse
|
23
|
Leeansyah E, Hey YY, Sia WR, Ng JHJ, Gulam MY, Boulouis C, Zhu F, Ahn M, Mak JYW, Fairlie DP, Kwa ALH, Sandberg JK, Wang LF. MR1-Restricted T Cells with MAIT-like Characteristics Are Functionally Conserved in the Pteropid Bat Pteropus alecto. iScience 2020; 23:101876. [PMID: 33344919 PMCID: PMC7736909 DOI: 10.1016/j.isci.2020.101876] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 01/07/2023] Open
Abstract
Bats are reservoirs for a large number of viruses which have potential to cause major human disease outbreaks, including the current coronavirus disease 2019 (COVID-19) pandemic. Major efforts are underway to understand bat immune response to viruses, whereas much less is known about their immune responses to bacteria. In this study, MR1-restricted T (MR1T) cells were detected through the use of MR1 tetramers in circulation and tissues of Pteropus alecto (Pa) bats. Pa MR1T cells exhibited weak responses to MR1-presented microbial metabolites at resting state. However, following priming with MR1-presented agonist they proliferated, upregulated critical transcription factors and cytolytic proteins, and gained transient expression of Th1/17-related cytokines and antibacterial cytotoxicity. Collectively, these findings show that the Pa bat immune system encompasses an abundant and functionally conserved population of MR1T cells with mucosal-associated invariant T-like characteristics, suggesting that MR1 and MR1T cells also play a significant role in bat immune defense. MR1T cells are present in Pa bats and react to MR1-presented microbial metabolites Pa MR1T cells upregulate Prf and MAIT-associated TFs upon culture with MR1 agonists Upon stimulation, Pa MR1T cells rapidly and transiently express TNF and IL-17 Pa MR1T cells kill E. coli and MR1 agonist-pulsed cells in an MR1-dependent manner
Collapse
Affiliation(s)
- Edwin Leeansyah
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.,Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14183 Stockholm, Sweden.,Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, 518055 Shenzhen, People's Republic of China
| | - Ying Ying Hey
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Wan Rong Sia
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Justin Han Jia Ng
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Muhammad Yaaseen Gulam
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Caroline Boulouis
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Matae Ahn
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Jeffrey Y W Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrea Lay Hoon Kwa
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.,Department of Pharmacy, Singapore General Hospital, Singapore 169608, Singapore
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.,SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| |
Collapse
|
24
|
Corbett AJ, Awad W, Wang H, Chen Z. Antigen Recognition by MR1-Reactive T Cells; MAIT Cells, Metabolites, and Remaining Mysteries. Front Immunol 2020; 11:1961. [PMID: 32973800 PMCID: PMC7482426 DOI: 10.3389/fimmu.2020.01961] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Mucosal-associated Invariant T (MAIT) cells recognize vitamin B-based antigens presented by the non-polymorphic MHC class I related-1 molecule (MR1). Both MAIT T cell receptors (TCR) and MR1 are highly conserved among mammals, suggesting an important, and conserved, immune function. For many years, the antigens they recognize were unknown. The discovery that MR1 presents vitamin B-based small molecule ligands resulted in a rapid expansion of research in this area, which has yielded information on the role of MAIT cells in immune protection, autoimmune disease and recently in homeostasis and cancer. More recently, we have begun to appreciate the diverse nature of the small molecule ligands that can bind MR1, with several less potent antigens and small molecule drugs that can bind MR1 being identified. Complementary structural information has revealed the complex nature of interactions defining antigen recognition. Additionally, we now view MAIT cells (defined here as MR1-riboflavin-Ag reactive, TRAV1-2+ cells) as one subset of a broader family of MR1-reactive T cells (MR1T cells). Despite these advances, we still lack a complete understanding of how MR1 ligands are generated, presented and recognized in vivo. The biological relevance of these MR1 ligands and the function of MR1T cells in infection and disease warrants further investigation with new tools and approaches.
Collapse
Affiliation(s)
- Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Huimeng Wang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Human MAIT cell cytolytic effector proteins synergize to overcome carbapenem resistance in Escherichia coli. PLoS Biol 2020; 18:e3000644. [PMID: 32511236 PMCID: PMC7302869 DOI: 10.1371/journal.pbio.3000644] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/18/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are abundant antimicrobial T cells in humans and recognize antigens derived from the microbial riboflavin biosynthetic pathway presented by the MHC-Ib-related protein (MR1). However, the mechanisms responsible for MAIT cell antimicrobial activity are not fully understood, and the efficacy of these mechanisms against antibiotic resistant bacteria has not been explored. Here, we show that MAIT cells mediate MR1-restricted antimicrobial activity against Escherichia coli clinical strains in a manner dependent on the activity of cytolytic proteins but independent of production of pro-inflammatory cytokines or induction of apoptosis in infected cells. The combined action of the pore-forming antimicrobial protein granulysin and the serine protease granzyme B released in response to T cell receptor (TCR)-mediated recognition of MR1-presented antigen is essential to mediate control against both cell-associated and free-living, extracellular forms of E. coli. Furthermore, MAIT cell-mediated bacterial control extends to multidrug-resistant E. coli primary clinical isolates additionally resistant to carbapenems, a class of last resort antibiotics. Notably, high levels of granulysin and granzyme B in the MAIT cell secretomes directly damage bacterial cells by increasing their permeability, rendering initially resistant E. coli susceptible to the bactericidal activity of carbapenems. These findings define the role of cytolytic effector proteins in MAIT cell-mediated antimicrobial activity and indicate that granulysin and granzyme B synergize to restore carbapenem bactericidal activity and overcome carbapenem resistance in E. coli. Mucosa-associated invariant T (MAIT) cells are abundant antimicrobial T cells in humans that recognize bacterial metabolites. This study shows that MAIT cells exert potent antimicrobial activity against both cell-associated and extracellular forms of Escherichia coli, including strains that are resistant to the last resort antibiotics carbapenems.
Collapse
|
26
|
Abstract
Mucosal-associated invariant T (MAIT) cells are unique innate-like T cells that bridge innate and adaptive immunity. They are activated by conserved bacterial ligands derived from vitamin B biosynthesis and have important roles in defence against bacterial and viral infections. However, they can also have various deleterious and protective functions in autoimmune, inflammatory and metabolic diseases. MAIT cell involvement in a large spectrum of pathological conditions makes them attractive targets for potential therapeutic approaches.
Collapse
|
27
|
Lukasik Z, Elewaut D, Venken K. MAIT Cells Come to the Rescue in Cancer Immunotherapy? Cancers (Basel) 2020; 12:cancers12020413. [PMID: 32053875 PMCID: PMC7072265 DOI: 10.3390/cancers12020413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Recent progress in immunobiology has led to the observation that, among cells classically categorized as the typical representatives of the adaptive immune system, i.e., T cells, some possess the phenotype of innate cells. Invariant T cells are characterized by T cell receptors recognizing a limited range of non-peptide antigens, presented only in the context of particular molecules. Mucosal-associated invariant T cells (MAIT cells) are an example of such unconventional cells. In humans, they constitute between 1% and 8% of the peripheral blood T lymphocytes and are further enriched in mucosal tissues, mesenteric lymph nodes, and liver, where they can account for even 40% of all the T cells. MAIT cells recognize antigens in the context of major histocompatibility complex class I-related protein (MR1). Upon activation, they instantly release pro-inflammatory cytokines and mediate cytolytic function towards bacterially infected cells. As such, they have been a rapidly evolving research topic not only in the field of infectious diseases but also in the context of many chronic inflammatory diseases and, more recently, in immuno-oncology. Novel findings suggest that MAIT cells function could also be modulated by endogenous ligands and drugs, making them an attractive target for therapeutic approaches. In this review, we summarize the current understanding of MAIT cell biology, their role in health and disease and discuss their future potential in cancer immunotherapy. This is discussed through the prism of knowledge and experiences with invariant natural killer T cells (iNKT)—another prominent unconventional T cell subset that shares many features with MAIT cells.
Collapse
Affiliation(s)
- Zuzanna Lukasik
- Department of Internal Medicine and Pediatrics (Rheumatology Unit), Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent 9052, Belgium
| | - Dirk Elewaut
- Department of Internal Medicine and Pediatrics (Rheumatology Unit), Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent 9052, Belgium
| | - Koen Venken
- Department of Internal Medicine and Pediatrics (Rheumatology Unit), Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent 9052, Belgium
- Correspondence:
| |
Collapse
|
28
|
Konuma T, Kohara C, Watanabe E, Takahashi S, Ozawa G, Suzuki K, Mizukami M, Nagai E, Jimbo K, Kaito Y, Isobe M, Kato S, Takahashi S, Chiba A, Miyake S, Tojo A. Reconstitution of Circulating Mucosal-Associated Invariant T Cells after Allogeneic Hematopoietic Cell Transplantation: Its Association with the Riboflavin Synthetic Pathway of Gut Microbiota in Cord Blood Transplant Recipients. THE JOURNAL OF IMMUNOLOGY 2020; 204:1462-1473. [PMID: 32041784 DOI: 10.4049/jimmunol.1900681] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/02/2020] [Indexed: 11/19/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are a type of innate lymphocyte and recognize riboflavin (vitamin B2) synthesis products presented by MHC-related protein 1. We investigated long-term reconstitution of MAIT cells and its association with chronic graft-versus-host disease (cGVHD) in a cross-sectional cohort of 173 adult patients after allogeneic hematopoietic cell transplantation. According to donor source, the number of MAIT cells significantly correlated with time after cord blood transplantation (CBT) but not with time after bone marrow transplantation or peripheral blood stem cell transplantation. The number of MAIT cells was significantly lower in patients with cGVHD compared with patients without cGVHD. We also examined the association between MAIT cell reconstitution and gut microbiota as evaluated by 16S ribosomal sequencing of stool samples 1 mo post-CBT in 27 adult patients undergoing CBT. The diversity of gut microbiota was positively correlated with better MAIT cell reconstitution after CBT. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States analysis indicated that amounts of ribB and ribA genes were significantly higher in the microbiomes of patients with subsequent MAIT cell reconstitution after CBT. In conclusion, long-term MAIT cell reconstitution is dependent on the type of donor source. Our data also unveiled an important role for the interaction of circulating MAIT cells with gut microbiota in humans.
Collapse
Affiliation(s)
- Takaaki Konuma
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan;
| | - Chisato Kohara
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Eri Watanabe
- Clinical Flow Cytometry Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | | | - Genki Ozawa
- TechnoSuruga Laboratory Co., Ltd., Shizuoka 424-0065, Japan
| | - Kei Suzuki
- TechnoSuruga Laboratory Co., Ltd., Shizuoka 424-0065, Japan
| | - Motoko Mizukami
- Department of Laboratory Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; and
| | - Etsuko Nagai
- Department of Laboratory Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; and
| | - Koji Jimbo
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yuta Kaito
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Masamichi Isobe
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Seiko Kato
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Satoshi Takahashi
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Asako Chiba
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Arinobu Tojo
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
29
|
Legoux F, Bellet D, Daviaud C, El Morr Y, Darbois A, Niort K, Procopio E, Salou M, Gilet J, Ryffel B, Balvay A, Foussier A, Sarkis M, El Marjou A, Schmidt F, Rabot S, Lantz O. Microbial metabolites control the thymic development of mucosal-associated invariant T cells. Science 2019; 366:494-499. [PMID: 31467190 DOI: 10.1126/science.aaw2719] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/15/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
Abstract
How the microbiota modulate immune functions remains poorly understood. Mucosal-associated invariant T (MAIT) cells are implicated in mucosal homeostasis and absent in germ-free mice. Here, we show that commensal bacteria govern murine MAIT intrathymic development, as MAIT cells did not recirculate to the thymus. MAIT development required RibD expression in bacteria, indicating that production of the MAIT antigen 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU) was necessary. 5-OP-RU rapidly traveled from mucosal surfaces to the thymus, where it was captured by the major histocompatibility complex class Ib molecule MR1. This led to increased numbers of the earliest MAIT precursors and the expansion of more mature receptor-related, orphan receptor γt-positive MAIT cells. Thus, a microbiota-derived metabolite controls the development of mucosally targeted T cells in a process blurring the distinction between exogenous antigens and self-antigens.
Collapse
Affiliation(s)
- François Legoux
- INSERM U932, PSL University, Institut Curie, Paris 75005, France.
| | - Déborah Bellet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Celine Daviaud
- INSERM U932, PSL University, Institut Curie, Paris 75005, France.,Animal Facility, Institut Curie, Paris 75005, France
| | - Yara El Morr
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Aurelie Darbois
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Kristina Niort
- Recombinant Protein Facility, Institut Curie, Paris 75005, France
| | | | - Marion Salou
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Jules Gilet
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | | | - Aurélie Balvay
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Anne Foussier
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Manal Sarkis
- INSERM U932, PSL University, Institut Curie, Paris 75005, France.,CNRS UMR3666, INSERM U1143, PSL University, Institut Curie, Paris 75005, France
| | - Ahmed El Marjou
- Recombinant Protein Facility, Institut Curie, Paris 75005, France
| | - Frederic Schmidt
- CNRS UMR3666, INSERM U1143, PSL University, Institut Curie, Paris 75005, France
| | - Sylvie Rabot
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Olivier Lantz
- INSERM U932, PSL University, Institut Curie, Paris 75005, France. .,Laboratoire d'Immunologie Clinique, Institut Curie, Paris 75005, France.,Centre d'Investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Institut Curie, Paris 75005, France
| |
Collapse
|
30
|
Lantz O, Legoux F. MAIT cells: programmed in the thymus to mediate immunity within tissues. Curr Opin Immunol 2019; 58:75-82. [DOI: 10.1016/j.coi.2019.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/19/2019] [Indexed: 01/03/2023]
|
31
|
Davanian H, Gaiser RA, Silfverberg M, Hugerth LW, Sobkowiak MJ, Lu L, Healy K, Sandberg JK, Näsman P, Karlsson J, Jansson L, Engstrand L, Sällberg Chen M. Mucosal-associated invariant T cells and oral microbiome in persistent apical periodontitis. Int J Oral Sci 2019; 11:16. [PMID: 31068577 PMCID: PMC6506549 DOI: 10.1038/s41368-019-0049-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023] Open
Abstract
Opportunistic bacteria in apical periodontitis (AP) may pose a risk for systemic dissemination. Mucosal-associated invariant T (MAIT) cells are innate-like T cells with a broad and potent antimicrobial activity important for gut mucosal integrity. It was recently shown that MAIT cells are present in the oral mucosal tissue, but the involvement of MAIT cells in AP is unknown. Here, comparison of surgically resected AP and gingival tissues demonstrated that AP tissues express significantly higher levels of Vα7.2-Jα33, Vα7.2-Jα20, Vα7.2-Jα12, Cα and tumour necrosis factor (TNF), interferon (IFN)-γ and interleukin (IL)-17A transcripts, resembling a MAIT cell signature. Moreover, in AP tissues the MR1-restricted MAIT cells positive for MR1–5-OP-RU tetramer staining appeared to be of similar levels as in peripheral blood but consisted mainly of CD4+ subset. Unlike gingival tissues, the AP microbiome was quantitatively impacted by factors like fistula and high patient age and had a prominent riboflavin-expressing bacterial feature. When merged in an integrated view, the examined immune and microbiome data in the sparse partial least squares discriminant analysis could identify bacterial relative abundances that negatively correlated with Vα7.2-Jα33, Cα, and IL-17A transcript expressions in AP, implying that MAIT cells could play a role in the local defence at the oral tissue barrier. In conclusion, we describe the presence of MAIT cells at the oral site where translocation of oral microbiota could take place. These findings have implications for understanding the immune sensing of polymicrobial-related oral diseases.
Collapse
Affiliation(s)
- Haleh Davanian
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | | | | | - Luisa W Hugerth
- Department of Microbiology, Tumor and Cell Biology and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Clinical Genomics Facility, Science for Life Laboratory, Solna, Sweden
| | | | - Liyan Lu
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Katie Healy
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | | | - Peggy Näsman
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Jörgen Karlsson
- Clinic of Endodontics and Periodontology, Eastman Institute Stockholm, Stockholm, Sweden
| | - Leif Jansson
- Clinic of Endodontics and Periodontology, Eastman Institute Stockholm, Stockholm, Sweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Clinical Genomics Facility, Science for Life Laboratory, Solna, Sweden
| | | |
Collapse
|
32
|
Huang W, He W, Shi X, He X, Dou L, Gao Y. The Role of CD1d and MR1 Restricted T Cells in the Liver. Front Immunol 2018; 9:2424. [PMID: 30425710 PMCID: PMC6218621 DOI: 10.3389/fimmu.2018.02424] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022] Open
Abstract
The liver is one of the most important immunological organs that remains tolerogenic in homeostasis yet promotes rapid responses to pathogens in the presence of a systemic infection. The composition of leucocytes in the liver is highly distinct from that of the blood and other lymphoid organs, particularly with respect to enrichment of innate T cells, i.e., invariant NKT cells (iNKT cells) and Mucosal-Associated Invariant T cells (MAIT cells). In recent years, studies have revealed insights into their biology and potential roles in maintaining the immune-environment in the liver. As the primary liver-resident immune cells, they are emerging as significant players in the human immune system and are associated with an increasing number of clinical diseases. As such, innate T cells are promising targets for modifying host defense and inflammation of various liver diseases, including viral, autoimmune, and those of tumor origin. In this review, we emphasize and discuss some of the recent discoveries and advances in the biology of innate T cells, their recruitment and diversity in the liver, and their role in various liver diseases, postulating on their potential application in immunotherapy.
Collapse
Affiliation(s)
- Wenyong Huang
- Organ Transplantation Unit, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenjing He
- Organ Transplantation Unit, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaomin Shi
- Organ Transplantation Unit, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoshun He
- Organ Transplantation Unit, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lang Dou
- Organ Transplantation Unit, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yifang Gao
- Organ Transplantation Unit, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Modulation of bacterial metabolism by the microenvironment controls MAIT cell stimulation. Mucosal Immunol 2018; 11:1060-1070. [PMID: 29743612 DOI: 10.1038/s41385-018-0020-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/18/2018] [Accepted: 02/19/2018] [Indexed: 02/04/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are abundant innate-like T lymphocytes in mucosal tissues and recognize a variety of riboflavin-related metabolites produced by the microbial flora. Relevant issues are whether MAIT cells are heterogeneous in the colon, and whether the local environment influences microbial metabolism thereby shaping MAIT cell phenotypes and responses. We found discrete MAIT cell populations in human colon, characterized by the diverse expression of transcription factors, cytokines and surface markers, indicative of activated and precisely controlled lymphocyte populations. Similar phenotypes were rare among circulating MAIT cells and appeared when circulating MAIT cells were stimulated with the synthetic antigens 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil, and 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil. Furthermore, bacteria grown in colon-resembling conditions with low oxygen tension and harvested at stationary growth phase, potently activated human MAIT cells. The increased activation correlated with accumulation of the above antigenic metabolites as indicated by mass spectrometry. Thus, the colon environment contributes to mucosal immunity by directly affecting bacterial metabolism, and indirectly controlling the stimulation and differentiation of MAIT cells.
Collapse
|
34
|
Distinct MHC class I-like interacting invariant T cell lineage at the forefront of mycobacterial immunity uncovered in Xenopus. Proc Natl Acad Sci U S A 2018; 115:E4023-E4031. [PMID: 29610296 DOI: 10.1073/pnas.1722129115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The amphibian Xenopus laevis is to date the only species outside of mammals where a MHC class I-like (MHC-like) restricted innate-like (i) T cell subset (iVα6 T cells) reminiscent of CD1d-restricted iNKT cells has been identified and functionally characterized. This provides an attractive in vivo model to study the biological analogies and differences between mammalian iT cells and the evolutionarily antecedent Xenopus iT cell defense system. Here, we report the identification of a unique iT cell subset (Vα45-Jα1.14) requiring a distinct MHC-like molecule (mhc1b4.L or XNC4) for its development and function. We used two complementary reverse genetic approaches: RNA interference by transgenesis to impair expression of either XNC4 or the Vα45-Jα1.14 rearrangement, and CRISPR/Cas9-mediated disruption of the Jα1.14 gene segment. Both XNC4 deficiency that ablates iVα45T cell development and the direct disruption of the iVα45-Jα1.14 T cell receptor dramatically impairs tadpole resistance to Mycobacterium marinum (Mm) infection. The higher mortality of Mm-infected tadpoles deficient for iVα45T cells correlates with dysregulated expression responses of several immune genes. In contrast, iVα45-Jα1.14-deficient tadpoles remain fully competent against infection by the ranavirus FV3, which indicates a specialization of this unique iT cell subset toward mycobacterial rather than viral pathogens that involve iVα6 T cells. These data suggest that amphibians, which are evolutionarily separated from mammals by more than 350 My, have independently diversified a prominent and convergent immune surveillance system based on MHC-like interacting innate-like T cells.
Collapse
|
35
|
Ben Youssef G, Tourret M, Salou M, Ghazarian L, Houdouin V, Mondot S, Mburu Y, Lambert M, Azarnoush S, Diana JS, Virlouvet AL, Peuchmaur M, Schmitz T, Dalle JH, Lantz O, Biran V, Caillat-Zucman S. Ontogeny of human mucosal-associated invariant T cells and related T cell subsets. J Exp Med 2018; 215:459-479. [PMID: 29339446 PMCID: PMC5789419 DOI: 10.1084/jem.20171739] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/27/2017] [Accepted: 12/06/2017] [Indexed: 12/31/2022] Open
Abstract
There are very few human MAIT cells in cord blood. Ben Youssef et al. show that they slowly expand during childhood and point to a critical role of the TCRαβ repertoire in determining their unique ability to recognize MR1-restricted microbial antigens. Mucosal-associated invariant T (MAIT) cells are semi-invariant Vα7.2+ CD161highCD4− T cells that recognize microbial riboflavin precursor derivatives such as 5-OP-RU presented by MR1. Human MAIT cells are abundant in adult blood, but there are very few in cord blood. We longitudinally studied Vα7.2+ CD161high T cell and related subset levels in infancy and after cord blood transplantation. We show that Vα7.2+ and Vα7.2− CD161high T cells are generated early during gestation and likely share a common prenatal developmental program. Among cord blood Vα7.2+ CD161high T cells, the minority recognizing MR1:5-OP-RU display a TRAV/TRBV repertoire very similar to adult MAIT cells. Within a few weeks of life, only the MR1:5-OP-RU reactive Vα7.2+ CD161high T cells acquire a memory phenotype. Only these cells expand to form the adult MAIT pool, diluting out other Vα7.2+ CD161high and Vα7.2− CD161high populations, in a process requiring at least 6 years to reach adult levels. Thus, the high clonal size of adult MAIT cells is antigen-driven and likely due to the fine specificity of the TCRαβ chains recognizing MR1-restricted microbial antigens.
Collapse
Affiliation(s)
- Ghada Ben Youssef
- Institut national de recherche médicale (INSERM) UMR1149, Center for Research on Inflammation, Paris Diderot University, Paris, France
| | - Marie Tourret
- Institut national de recherche médicale (INSERM) UMR1149, Center for Research on Inflammation, Paris Diderot University, Paris, France
| | - Marion Salou
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Liana Ghazarian
- Institut national de recherche médicale (INSERM) UMR1149, Center for Research on Inflammation, Paris Diderot University, Paris, France
| | - Véronique Houdouin
- Institut national de recherche médicale (INSERM) UMR1149, Center for Research on Inflammation, Paris Diderot University, Paris, France.,Service de Gastroentérologie et Pneumologie Pédiatrique, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Stanislas Mondot
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Yvonne Mburu
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Marion Lambert
- Institut national de recherche médicale (INSERM) UMR1149, Center for Research on Inflammation, Paris Diderot University, Paris, France
| | - Saba Azarnoush
- Institut national de recherche médicale (INSERM) UMR1149, Center for Research on Inflammation, Paris Diderot University, Paris, France
| | - Jean-Sébastien Diana
- Institut national de recherche médicale (INSERM) UMR1149, Center for Research on Inflammation, Paris Diderot University, Paris, France
| | - Anne-Laure Virlouvet
- Service de Pédiatrie et Réanimation Néonatale, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Michel Peuchmaur
- Institut national de recherche médicale (INSERM) UMR1149, Center for Research on Inflammation, Paris Diderot University, Paris, France.,Service de Pathologie Pédiatrique, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thomas Schmitz
- Service d'Obstétrique, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Hugues Dalle
- Institut national de recherche médicale (INSERM) UMR1149, Center for Research on Inflammation, Paris Diderot University, Paris, France.,Service d'Hématologie Pédiatrique, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Olivier Lantz
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Centre d'Investigations Cliniques CIC-BT1428 IGR/Curie, Paris, France.,Equipe labellisée de la Ligue de Lutte contre le Cancer, Institut Curie, Paris, France.,Département de Biopathologie, Institut Curie, Paris, France
| | - Valérie Biran
- Service de Pédiatrie et Réanimation Néonatale, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Caillat-Zucman
- Institut national de recherche médicale (INSERM) UMR1149, Center for Research on Inflammation, Paris Diderot University, Paris, France .,Laboratoire d'Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
36
|
Lantz O, Legoux F. MAIT cells: an historical and evolutionary perspective. Immunol Cell Biol 2017; 96:564-572. [PMID: 29363173 DOI: 10.1111/imcb.1034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/29/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022]
Abstract
In humans, MAIT cells represent the most abundant T-cell subset reacting against bacteria. MAIT cells belong to the evolutionarily conserved family of "preset" T cells that includes also NKT cells. Both subsets are selected by double positive thymocytes leading to common features such as PLZF expression. Preset T cells correspond to subsets prepositioned in specific tissue locations with preprogrammed versatile effector functions such as antimicrobial functions and possibly also metabolic control and tissue repair activity. Herein, we recall how several groups studying human samples discovered MAIT cells as T cells expressing either a restricted T-cell receptors (TCR) repertoire or homogeneous and singular phenotypic and functional characteristics. We then highlight the main evolutionary features of this subset and its restricting element, MR1 (MHC-related protein (1) with a striking coevolution of TRAV1 and MR1. We introduce another evolutionarily conserved invariant TCRalpha chain coevolving with another MHC class Ib molecule, called MHX, sharing phylogenetic features with MR1. We finally discuss the relationship between MAIT cells and other subsets reacting to microbial antigens or to compounds presented by MR1 in light of confounding experimental issues.
Collapse
Affiliation(s)
- Olivier Lantz
- Institut Curie, PSL Research University, Inserm U932, Paris, 75005, France.,Center of Clinical Investigations, CICBT1428 IGR/Curie, Paris, 75005, France.,Laboratoire d'Immunologie Clinique, Institut Curie, Paris, 75005, France
| | - François Legoux
- Institut Curie, PSL Research University, Inserm U932, Paris, 75005, France
| |
Collapse
|
37
|
Kumar V, Ahmad A. Role of MAIT cells in the immunopathogenesis of inflammatory diseases: New players in old game. Int Rev Immunol 2017; 37:90-110. [PMID: 29106304 DOI: 10.1080/08830185.2017.1380199] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Current advances in immunology have led to the identification of a population of novel innate immune T cells, called mucosa-associated invariant T (MAIT) cells. The cells in humans express an invariant TCRα chain (Vα7.2-Jα33) paired with a limited subset of TCRβ chains (Vβ2, 13 and 22), are restricted by the MHC class I (MH1)-related (MR)-1, and recognize molecules that are produced in the bacterial riboflavin (vitamin B2) biosynthetic pathway. They are present in the circulation, liver and at various mucosal sites (i.e. intestine, lungs and female reproductive tract, etc.). They kill host cells infected with bacteria and yeast, and secrete soluble mediators such as TNF-α, IFN-γ, IL-17, etc. The cells regulate immune responses and inflammation associated with a wide spectrum of acute and chronic diseases in humans. Since their discovery in 1993, significant advances have been made in understanding biology of MAIT cells and the potential role of these cells in the pathogenesis of autoimmune, inflammatory and infectious diseases as well as cancer in humans. The purpose of this review is to provide a current state of our knowledge about MAIT cell biology and delineate their role in autoimmune and inflammatory diseases (sterile or caused by infectious agents) and cancer in humans. A better understanding of the role of MAIT cells in human diseases may lead to novel ways of immunotherapies.
Collapse
Affiliation(s)
- Vijay Kumar
- a Department of Paediatrics and Child Care , Children's Health Queensland Clinical unit School of Medicine, Mater Research, Faculty of Medicine and Biomedical Sciences, University of Queensland , ST Lucia, Brisbane , Queensland , Australia
| | - Ali Ahmad
- b Laboratory of Innate Immunity, CHU Ste-Justine/Department of Microbiology , Infectious Diseases & Immunology, University of Montreal , Montreal , Quebec , Canada
| |
Collapse
|
38
|
Legoux F, Salou M, Lantz O. Unconventional or Preset αβ T Cells: Evolutionarily Conserved Tissue-Resident T Cells Recognizing Nonpeptidic Ligands. Annu Rev Cell Dev Biol 2017; 33:511-535. [PMID: 28661722 DOI: 10.1146/annurev-cellbio-100616-060725] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A majority of T cells bearing the αβ T cell receptor (TCR) are specific for peptides bound to polymorphic classical major histocompatibility complex (MHC) molecules. Smaller subsets of T cells are reactive toward various nonpeptidic ligands associated with nonpolymorphic MHC class-Ib (MHC-Ib) molecules. These cells have been termed unconventional for decades, even though only the composite antigen is different from the one seen by classical T cells. Herein, we discuss the identity of these particular T cells in light of the coevolution of their TCR and MHC-Ib restricting elements. We examine their original thymic development: selection on hematopoietic cells leading to the acquisition of an original differentiation program. Most of these cells acquire memory cell features during thymic maturation and exhibit unique patterns of migration into peripheral nonlymphoid tissues to become tissue resident. Thus, these cells are termed preset T cells, as they also display a variety of effector functions. They may act as microbial or danger sentinels, fight microbes, or regulate tissue homeostasis.
Collapse
Affiliation(s)
- Francois Legoux
- Institut Curie, PSL Research University, INSERM, U 932, 75005 Paris, France; , ,
| | - Marion Salou
- Institut Curie, PSL Research University, INSERM, U 932, 75005 Paris, France; , ,
| | - Olivier Lantz
- Institut Curie, PSL Research University, INSERM, U 932, 75005 Paris, France; , , .,Center of Clinical Investigations, CIC-1428 IGR/Curie, 75005 Paris, France.,Laboratoire d'immunologie clinique, Institut Curie, 75005 Paris, France
| |
Collapse
|
39
|
Salou M, Franciszkiewicz K, Lantz O. MAIT cells in infectious diseases. Curr Opin Immunol 2017; 48:7-14. [DOI: 10.1016/j.coi.2017.07.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 01/03/2023]
|
40
|
Gutowska-Owsiak D, Ogg GS. Therapeutic vaccines for allergic disease. NPJ Vaccines 2017; 2:12. [PMID: 29263869 PMCID: PMC5604746 DOI: 10.1038/s41541-017-0014-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/03/2017] [Accepted: 03/20/2017] [Indexed: 12/14/2022] Open
Abstract
Allergic diseases are highly prevalent worldwide and affect all age groups, contributing to a high personal and socioeconomic burden. Treatment with an “allergy vaccine” or allergen immunotherapy aims to provide long-lasting benefits by inducing unresponsiveness to the relevant antigen. The consequences of the therapy are considered disease modifying and range from dampening of the immediate immune responses to the reduction of secondary tissue remodeling. Furthermore, allergen immunotherapy interventions have a potential to slow or cease the development of additional allergic manifestations with a long-term overall effect on morbidity and quality of life. Here, we review proposed mechanisms underlying the therapeutic effects of immunotherapy for allergic diseases. Further, we discuss both standard and novel approaches and possible future directions in the development of allergen immunotherapy.
Collapse
Affiliation(s)
- Danuta Gutowska-Owsiak
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Graham S Ogg
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Abstract
The gut microbiota provides a range of ecologic, metabolic, and immunomodulatory functions relevant to health and well-being. The gut microbiota not only responds quickly to changes in diet, but this dynamic equilibrium may be managed to prevent and/or treat acute and chronic diseases. This article provides a working definition of the term "microbiome" and uses two examples of dietary interventions for the treatment of large bowel conditions to emphasize the links between diet and microbiome. There remains a need to develop a better functional understanding of the microbiota, if its management for clinical utility is to be fully realized.
Collapse
Affiliation(s)
- Nida Murtaza
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane, Queensland 4102, Australia
| | - Páraic Ó Cuív
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane, Queensland 4102, Australia
| | - Mark Morrison
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane, Queensland 4102, Australia.
| |
Collapse
|