1
|
Sarangi S, Nahak SK, Padhi S, Nayak N, Pradhan B, Pati A, Panigrahi J, Panda AK. TNF-α promoter variant (G-308A) is associated with susceptibility to P. falciparum infection and severe malaria: a meta-analysis and trial sequential analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:381-397. [PMID: 36472340 DOI: 10.1080/15257770.2022.2151622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α) plays an essential role in Plasmodium falciparum infection, with lower levels associated with susceptibility to infection and higher levels linked with organ failure in severe malaria. Genetic polymorphisms in the promoter region of the TNF-α gene (G-308A and G-238A) affect plasma TNF-α levels. Numerous case-control studies have been conducted to determine the possible association between TNF-α polymorphisms and susceptibility to malaria infection and clinical severity; however, the results are inconsistent. Various databases such as Google Scholar, Science Direct, PubMed, and Scopus were searched for relevant articles for the present meta-analysis. Data were extracted from the eligible studies based on inclusion and exclusion criteria. Meta-analysis was carried out with CMA v.3.3.070 software, and combined odds ratio, 95% confidence interval, and p values were calculated. Further, a trial sequential analysis was also performed to test whether enough number of case and controls have been enrolled to date to draw a valid conclusion. Allele (OR = 9.757, p value=.049) and heterozygous (OR = 8.98, p value=.016) comparison model revealed the TNF-α G-308A variant as a susceptible genetic factor for P. falciparum infection. Similarly, a significant association of TNF-α G-308A polymorphism with P. falciparum malarial severity was also observed (A versus G: OR = 1.761, p value = .000; and GG + GA versus GG: OR = 1.769, p value = .000). However, no association of TNF-α (G-238A) polymorphism was observed with infection and severity of P. falciparum or Plasmodium vivax malaria. TNF-α G-308A variant is associated with susceptibility to P. falciparum infection and clinical severity. However, further studies on different populations are required.
Collapse
Affiliation(s)
| | - Suraj Kuamr Nahak
- P.G. Department of Biotechnology, Berhampur University, Berhampur, India
| | - Sunali Padhi
- P.G. Department of Biotechnology, Berhampur University, Berhampur, India
| | - Nisha Nayak
- P.G. Department of Biotechnology, Berhampur University, Berhampur, India
| | | | - Abhijit Pati
- P.G. Department of Biotechnology, Berhampur University, Berhampur, India
| | - Jogeswar Panigrahi
- P.G. Department of Biotechnology, Berhampur University, Berhampur, India
| | - Aditya K. Panda
- P.G. Department of Biotechnology, Berhampur University, Berhampur, India
| |
Collapse
|
2
|
A meta-analysis on the association of the -308 G/A polymorphism of the TNF-alpha gene with the development of malaria. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
Morenikeji OB, Strutton E, Wallace M, Bernard K, Yip E, Thomas BN. Dissecting Transcription Factor-Target Interaction in Bovine Coronavirus Infection. Microorganisms 2020; 8:E1323. [PMID: 32872640 PMCID: PMC7564962 DOI: 10.3390/microorganisms8091323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are RNA viruses that cause significant disease within many species, including cattle. Bovine coronavirus (BCoV) infects cattle and wild ruminants, both as a respiratory and enteric pathogen, and possesses a significant economic threat to the cattle industry. Transcription factors are proteins that activate or inhibit transcription through DNA binding and have become new targets for disease therapies. This study utilized in silico tools to identify potential transcription factors that can serve as biomarkers for regulation of BCoV pathogenesis in cattle, both for testing and treatment. A total of 11 genes were identified as significantly expressed during BCoV infection through literature searches and functional analyses. Eleven transcription factors were predicted to target those genes (AREB6, YY1, LMO2, C-Rel, NKX2-5, E47, RORAlpha1, HLF, E4BP4, ARNT, CREB). Function, network, and phylogenetic analyses established the significance of many transcription factors within the immune response. This study establishes new information on the transcription factors and genes related to host-pathogen interactome in BCoV infection, particularly transcription factors YY1, AREB6, LMO2, and NKX2, which appear to have strong potential as diagnostic markers, and YY1 as a potential target for drug therapies.
Collapse
Affiliation(s)
- Olanrewaju B. Morenikeji
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (O.B.M.); (E.S.); (M.W.); (K.B.); (E.Y.)
| | - Ellis Strutton
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (O.B.M.); (E.S.); (M.W.); (K.B.); (E.Y.)
| | - Madeleine Wallace
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (O.B.M.); (E.S.); (M.W.); (K.B.); (E.Y.)
| | - Kahleel Bernard
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (O.B.M.); (E.S.); (M.W.); (K.B.); (E.Y.)
| | - Elaine Yip
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (O.B.M.); (E.S.); (M.W.); (K.B.); (E.Y.)
| | - Bolaji N. Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY 14623, USA
| |
Collapse
|
4
|
Morenikeji OB, Metelski JL, Hawkes ME, Capria AL, Seamans BN, Falade CO, Ojurongbe O, Thomas BN. CD209 and Not CD28 or STAT6 Polymorphism Mediates Clinical Malaria and Parasitemia among Children from Nigeria. Microorganisms 2020; 8:microorganisms8020158. [PMID: 31979279 PMCID: PMC7074881 DOI: 10.3390/microorganisms8020158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/19/2023] Open
Abstract
Malaria remains a significant disease, causing epic health problems and challenges all over the world, especially in sub-Saharan Africa. CD209 and CD28 genes act as co-stimulators and regulators of the immune system, while the STAT6 gene has been reported to mediate cytokine-induced responses. Single nucleotide polymorphisms of these genes might lead to differential disease susceptibility among populations at risk for malaria, due to alterations in the immune response. We aim to identify key drivers of the immune response to malaria infection among the three SNPs: CD209 (rs4804803), CD28 (rs35593994) and STAT6 (rs3024974). After approval and informed consent, we genotyped blood samples from a total of 531 children recruited from Nigeria using the Taqman SNP genotyping assay and performed comparative analysis of clinical covariates among malaria-infected children. Our results reveal the CD209 (rs4804803) polymorphism as a susceptibility factor for malaria infection, significantly increasing the risk of disease among children, but not CD28 (rs35593994) or STAT6 (rs3024974) polymorphisms. Specifically, individuals with the homozygous mutant allele (rs4804803G/G) for the CD209 gene have a significantly greater susceptibility to malaria, and presented with higher mean parasitemia. This observation may be due to a defective antigen presentation and priming, leading to an ineffective downstream adaptive immune response needed to combat infection, as well as the resultant higher parasitemia and disease manifestation. We conclude that the CD209 gene is a critical driver of the immune response during malaria infection, and can serve as a predictor of disease susceptibility or a biomarker for disease diagnosis.
Collapse
Affiliation(s)
- Olanrewaju B. Morenikeji
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Jessica L. Metelski
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Megan E. Hawkes
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Anna L. Capria
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Brooke N. Seamans
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Catherine O. Falade
- Department of Pharmacology & Therapeutics, College of Medicine, University of Ibadan, P.M.B 3017, Ibadan, Nigeria
| | - Olusola Ojurongbe
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, P.M.B. 4000, Osogbo, Nigeria
| | - Bolaji N. Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY 14623, USA
- Correspondence: ; Tel.: +1-(585)-475-6382; Fax: +1-(585)-475-5809
| |
Collapse
|
5
|
TNF-α promoter polymorphisms (G-238A and G-308A) are associated with susceptibility to Systemic Lupus Erythematosus (SLE) and P. falciparum malaria: a study in malaria endemic area. Sci Rep 2019; 9:11752. [PMID: 31409832 PMCID: PMC6692415 DOI: 10.1038/s41598-019-48182-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine associated with autoimmune and infectious diseases. Importance of TNF-α in P. falciparum malaria and systemic lupus erythematosus (SLE) have been demonstrated. However, association of functional promoter variants with SLE and malaria is lacking in malaria endemic population. A total of 204 female SLE patients and 224 age and sex matched healthy controls were enrolled in the study. Three hundred fourteen P. falciparum infected patients with different clinical phenotypes were included. TNF-α polymorphisms (G-238A & G-308A) were genotyped by PCR-RFLP. Plasma levels of TNF-α was quantified by ELISA. Heterozygous mutants and minor alleles of TNF-α (G-238A and G-308A) polymorphisms were significantly higher in SLE patients compared to healthy controls and associated with development of lupus nephritis. In addition, both promoter variants were associated with severe P. falciparum malaria. SLE patients demonstrated higher levels of plasma TNF-α compared to healthy controls. TNF-α (G-238A and G-308A) variants were associated with higher plasma TNF-α. In conclusion, TNF-α (G-238A & G-308A) variants are associated with higher plasma TNF-α levels in SLE patients residing in malaria endemic areas and could be a contributing factor in the development of SLE and susceptibility to severe P. falciparum malaria.
Collapse
|
6
|
Penha-Gonçalves C. Genetics of Malaria Inflammatory Responses: A Pathogenesis Perspective. Front Immunol 2019; 10:1771. [PMID: 31417551 PMCID: PMC6682681 DOI: 10.3389/fimmu.2019.01771] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/15/2019] [Indexed: 12/27/2022] Open
Abstract
Despite significant progress in combating malaria in recent years the burden of severe disease and death due to Plasmodium infections remains a global public health concern. Only a fraction of infected people develops severe clinical syndromes motivating a longstanding search for genetic determinants of malaria severity. Strong genetic effects have been repeatedly ascribed to mutations and allelic variants of proteins expressed in red blood cells but the role of inflammatory response genes in disease pathogenesis has been difficult to discern. We revisited genetic evidence provided by inflammatory response genes that have been repeatedly associated to malaria, namely TNF, NOS2, IFNAR1, HMOX1, TLRs, CD36, and CD40LG. This highlighted specific genetic variants having opposing roles in the development of distinct malaria clinical outcomes and unveiled diverse levels of genetic heterogeneity that shaped the complex association landscape of inflammatory response genes with malaria. However, scrutinizing genetic effects of individual variants corroborates a pathogenesis model where pro-inflammatory genetic variants acting in early infection stages contribute to resolve infection but at later stages confer increased vulnerability to severe organ dysfunction driven by tissue inflammation. Human genetics studies are an invaluable tool to find genes and molecular pathways involved in the inflammatory response to malaria but their precise roles in disease pathogenesis are still unexploited. Genome editing in malaria experimental models and novel genotyping-by-sequencing techniques are promising approaches to delineate the relevance of inflammatory response gene variants in the natural history of infection thereby will offer new rational angles on adjuvant therapeutics for prevention and clinical management of severe malaria.
Collapse
|
7
|
Bivona G, Agnello L, Lo Sasso B, Scazzone C, Butera D, Gambino CM, Iacolino G, Bellia C, Ciaccio M. Vitamin D in malaria: more hypotheses than clues. Heliyon 2019; 5:e01183. [PMID: 30793054 PMCID: PMC6370580 DOI: 10.1016/j.heliyon.2019.e01183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022] Open
Abstract
Vitamin D is a secosteroid hormone regulating calcium and phosphate metabolism, immune response and brain development. Low blood 25(OH)D levels have been reported in patients affected by infectious diseases caused by parasites, including malaria. Despite the high effectiveness of antimalarials, malaria is burdened with high morbidity and mortality, and the search for additional therapies is rapidly growing. Furthermore, available preventive measures have proved to be barely effective so far. Finding new prevention and therapy tools is a matter of urgency. Studies on animal models and humans have hypothesized some mechanisms by which the hormone can influence malaria pathogenesis, and the role of Vitamin D supplementation in preventing and treating this disease has been suggested. Few studies on the association between Vitamin D and malaria are available and disagreeing results have been reported. Studies in humans reporting an association between low 25(OH)D circulating levels and Malaria have a small sample size and observational study-set. Randomized controlled trials are needed in order to understand if Vitamin D administration might play a role in preventing and treating malaria.
Collapse
Affiliation(s)
- Giulia Bivona
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy
| | - Luisa Agnello
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy
| | - Bruna Lo Sasso
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy
| | - Concetta Scazzone
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy
| | - Daniela Butera
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy
| | - Caterina Maria Gambino
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy
| | - Giorgia Iacolino
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy
| | - Chiara Bellia
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy
| | - Marcello Ciaccio
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy
- Department and U.O.C. Laboratory Medicine, University Hospital “Paolo Giaccone” of Palermo, Italy
| |
Collapse
|
8
|
Mohanty S, Singh US, Mohanty S, Mohanty AK, Pande V, Das A. Evolutionary interplay of single nucleotide polymorphisms at the promoter region of TNF-α gene in different clinical outcomes of malaria in India. INFECTION GENETICS AND EVOLUTION 2019; 69:107-116. [PMID: 30677532 DOI: 10.1016/j.meegid.2019.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 01/17/2023]
Abstract
Host genetic factors are frequently ascribed to differential malaria outcomes as a by-product of evolutionary adaptation. To this respect, Tumor Necrosis factor alpha (TNF-α), a human cytokine, is known to be associated with malaria through its differential regulation in diverse malaria manifestations. Since diversity in differential malaria outcome is uncommon in every endemic settings, possible association of TNF-α and malaria is not commonly established. In order to check for association between the occurrence of Single Nucleotide Polymorphisms (SNPs) in the TNF-α gene with different malaria manifestations, we have sequenced a 4011 bp region constituting the promoter and the whole gene of human TNF-α in 61 patients [(16 cerebral plus severe (SCM), 21 severe (SM) and 24 uncomplicated (UM)] samples in a highly malaria endemic state (Odisha) of India. Multiple sequence alignment revealed presence of six SNPs (-1031 T > C, -863C > A, -857C > T, -308G > A, -806C > T, +787C > A), out of which the -806C > T and +787C > A are novel in malaria patients in general and the +787C > A was detected for the first time in humans. Although alleles due to six different SNPs segregate differentially in the three groups of malaria (SCM, SM and UM) in the present study, interestingly, for the -1031 T > C position, the frequency of individuals possessing the homozygous rare allele was higher in the SCM group with a higher number of heterozygotes in the UM group. The Tajima's D values considering all the SNPs in a defined group were positive and statistically insignificant conforming no evolutionary constraint. However, statistically significant deviation from expectation under Hardy-Weinberg equilibrium for -1031 T > C SNP in the UM group points towards the probable role of natural selection providing some kind of protection to malaria in Odisha, India.
Collapse
Affiliation(s)
- Stuti Mohanty
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Garha, Jabalpur, Madhya Pradesh, India
| | - Upasana Shyamsunder Singh
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Garha, Jabalpur, Madhya Pradesh, India; School of Earth and Environmental Sciences, The University of Manchester, Manchester M139PL, United Kingdom
| | - Sanjib Mohanty
- Community Welfare Society Hospital, Rourkela, Odisha, India
| | | | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Aparup Das
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Garha, Jabalpur, Madhya Pradesh, India.
| |
Collapse
|
9
|
Parmar N, Chandrakar P, Vishwakarma P, Singh K, Mitra K, Kar S. Leishmania donovani Exploits Tollip, a Multitasking Protein, To Impair TLR/IL-1R Signaling for Its Survival in the Host. THE JOURNAL OF IMMUNOLOGY 2018; 201:957-970. [DOI: 10.4049/jimmunol.1800062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/21/2018] [Indexed: 01/10/2023]
|