1
|
Deng Y, Wu F, Li Q, Yao L, Yang C, Ma L, Yao X, Li J. Annotation and characterization of immunoglobulin loci and CDR3 polymorphism in water buffalo ( Bubalus bubalis). Front Immunol 2025; 15:1503788. [PMID: 39902045 PMCID: PMC11788136 DOI: 10.3389/fimmu.2024.1503788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction Immunoglobulin (Ig) refers to the nomenclature for all antibody proteins produced by B lymphocytes. The genetic locus encoding Ig is critical for vertebrate humoral immune responses and diverse antibody repertoires. Despite the critical role of buffaloes as livestock and their significance in disease transmission, the Ig loci of this species have not been thoroughly annotated. This study aimed to systematically characterize the Ig loci in buffaloes and their unique features, providing a foundation for understanding buffalo immune function. Methods The genomic assembly of Murrah buffalo (NDDB_SH_1) was analyzed to annotate Ig loci. Annotation criteria included functional motifs, RSS sequences, and structural features of V, D, J, and C genes. The CDR3 repertoires were constructed using genomic DNA extracted from spleen samples of five healthy buffaloes. High-throughput sequencing of multiplex PCR products enabled repertoire analysis, and MiXCR software was used for alignment and CDR3 extraction. Repertoire diversity, gene usage, and clonal frequencies were analyzed using the Immunarch R package. Results The IgH locus spans approximately 667 kb on chromosome 20, containing two D-J-C clusters, 54 VH genes, 10 DH genes, 8 JH genes, and 9 CH genes. The Igκ locus, located on chromosome 12, encompasses 24 Vκ genes, 5 Jκ genes, and 1 Cκ gene, while the Igλ locus on chromosome 17 includes 71 Vλ genes, 3 Jλ genes, and 3 Cλ genes. We also conducted a detailed examination of the buffalo IgH CDR3 repertoire, revealing the presence of ultra-long CDR3 sequences, a biased usage of certain V genes, and a high-frequency usage of IgHJ1-4 genes. Furthermore, we identified a set of shared clonotypes across the samples, highlighting commonalities in the buffalo antibody repertoire. Conclusion These findings contribute to the understanding of buffalo immune function and provide insights into the evolution and diversity of ruminant immunoglobulin genes.
Collapse
Affiliation(s)
- Yunlan Deng
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Fengli Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
- Department of Laboratory, The Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Qianqian Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Lidie Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Chengzhi Yang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Long Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Dolan ME, Sadiki A, Wang LL, Wang Y, Barton C, Oppenheim SF, Zhou ZS. First site-specific conjugation method for native goat IgG antibodies via glycan remodeling at the conserved Fc region. Antib Ther 2024; 7:233-248. [PMID: 39262442 PMCID: PMC11384149 DOI: 10.1093/abt/tbae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/24/2024] [Indexed: 09/13/2024] Open
Abstract
Despite their triumph in treating human diseases, antibody therapies for animals have gained momentum more slowly. However, the first approvals of animal antibodies for osteoarthritic pain in cats and dogs may herald the dawn of a new era. For example, goats are vital to economies around the world for their milk, meat, and hide products. It is therefore imperative to develop therapies to safeguard goats-with antibodies at the forefront. Goat antibodies will be crucial in the development of therapeutic antibodies, for example, as tracers to study antibody distribution in vivo, reagents to develop other therapeutic antibodies, and therapeutic agents themselves (e.g., antibody-drug conjugates). Hamstringing this effort is a still-burgeoning understanding of goat antibodies and their derivatization. Historically, goat antibody conjugates were generated through stochastic chemical modifications, producing numerous attachment sites and modification ratios, thereby deleteriously impacting antigen binding. Site-specific methods exist but often require substantial engineering and have not been demonstrated with goat antibodies. Nevertheless, we present herein a novel method to site-specifically conjugate native goat antibodies: chemo-enzymatic remodeling of the native Fc N-glycan introduces a reactive azide handle, after which click chemistry with strained alkyne partners affords homogeneous conjugates labeled only on the Fc domain. This process is robust, and resulting conjugates retain their antigen binding and specificity. To our knowledge, our report is the first for site-specific conjugation of native goat antibodies. Furthermore, our approach should be applicable to other animal antibodies-even with limited structural information-with similar success.
Collapse
Affiliation(s)
- Michael E Dolan
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, United States
- Biotherapeutics Process Development, Takeda Development Center Americas, 200 Shire Way, Lexington, MA 02421, United States
| | - Amissi Sadiki
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, United States
| | - Leo Lei Wang
- Analytical Development, Takeda Development Center Americas, 200 Shire Way, Lexington, MA 02421, United States
| | - Yan Wang
- Analytical Development, Takeda Development Center Americas, 200 Shire Way, Lexington, MA 02421, United States
| | - Christopher Barton
- Analytical Development, Takeda Development Center Americas, 200 Shire Way, Lexington, MA 02421, United States
| | - Sheldon F Oppenheim
- Biotherapeutics Process Development, Takeda Development Center Americas, 200 Shire Way, Lexington, MA 02421, United States
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, United States
| |
Collapse
|
3
|
Enström A, Carlsson R, Buizza C, Lewi M, Paul G. Pericyte-Specific Secretome Profiling in Hypoxia Using TurboID in a Multicellular in Vitro Spheroid Model. Mol Cell Proteomics 2024; 23:100782. [PMID: 38705386 PMCID: PMC11176767 DOI: 10.1016/j.mcpro.2024.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024] Open
Abstract
Cellular communication within the brain is imperative for maintaining homeostasis and mounting effective responses to pathological triggers like hypoxia. However, a comprehensive understanding of the precise composition and dynamic release of secreted molecules has remained elusive, confined primarily to investigations using isolated monocultures. To overcome these limitations, we utilized the potential of TurboID, a non-toxic biotin ligation enzyme, to capture and enrich secreted proteins specifically originating from human brain pericytes in spheroid cocultures with human endothelial cells and astrocytes. This approach allowed us to characterize the pericyte secretome within a more physiologically relevant multicellular setting encompassing the constituents of the blood-brain barrier. Through a combination of mass spectrometry and multiplex immunoassays, we identified a wide spectrum of different secreted proteins by pericytes. Our findings demonstrate that the pericytes secretome is profoundly shaped by their intercellular communication with other blood-brain barrier-residing cells. Moreover, we identified substantial differences in the secretory profiles between hypoxic and normoxic pericytes. Mass spectrometry analysis showed that hypoxic pericytes in coculture increase their release of signals related to protein secretion, mTOR signaling, and the complement system, while hypoxic pericytes in monocultures showed an upregulation in proliferative pathways including G2M checkpoints, E2F-, and Myc-targets. In addition, hypoxic pericytes show an upregulation of proangiogenic proteins such as VEGFA but display downregulation of canonical proinflammatory cytokines such as CXCL1, MCP-1, and CXCL6. Understanding the specific composition of secreted proteins in the multicellular brain microvasculature is crucial for advancing our knowledge of brain homeostasis and the mechanisms underlying pathology. This study has implications for the identification of targeted therapeutic strategies aimed at modulating microvascular signaling in brain pathologies associated with hypoxia.
Collapse
Affiliation(s)
- Andreas Enström
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Robert Carlsson
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Carolina Buizza
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Marvel Lewi
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden; Department of Neurology, Scania University Hospital, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Noble A, Paudyal B, Schwartz JC, Mwangi W, Munir D, Tchilian E, Hammond JA, Graham SP. Distinct effector functions mediated by Fc regions of bovine IgG subclasses and their interaction with Fc gamma receptors. Front Immunol 2023; 14:1286903. [PMID: 38077405 PMCID: PMC10702552 DOI: 10.3389/fimmu.2023.1286903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Cattle possess three IgG subclasses. However, the key immune functions, including complement and NK cell activation, and enhancement of phagocytosis, are not fully described for bovine IgG1, 2 and 3. We produced chimeric monoclonal antibodies (mAbs) consisting of a defined variable region linked to the constant regions of bovine IgG1, 2 and 3, and expressed His-tagged soluble recombinant bovine Fc gamma receptors (FcγRs) IA (CD64), IIA (CD32A), III (CD16) and Fcγ2R. Functional assays using bovinized mAbs were developed. IgG1 and IgG3, but not IgG2, activated complement-dependent cytotoxicity. Only IgG1 could activate cattle NK cells to mobilize CD107a after antigen crosslinking, a surrogate assay for antibody-dependent cell cytotoxicity. Both IgG1 and IgG2 could trigger monocyte-derived macrophages to phagocytose fluorescently labelled antigen-expressing target cells. IgG3 induced only weak antibody-dependent cellular phagocytosis (ADCP). By contrast, monocytes only exhibited strong ADCP when triggered by IgG2. IgG1 bound most strongly to recombinant FcγRs IA, IIA and III, with weaker binding by IgG3 and none by IgG2, which bound exclusively to Fcγ2R. Immune complexes containing IgG1, 2 and 3 bound differentially to leukocyte subsets, with IgG2 binding strongly to neutrophils and monocytes and all subclasses binding platelets. Differential expression of the FcγRs on leukocyte subsets was demonstrated by surface staining and/or RT-qPCR of sorted cells, e.g., Fcγ2R mRNA was expressed in monocytes/macrophages, neutrophils, and platelets, potentially explaining their strong interactions with IgG2, and FcγRIII was expressed on NK cells, presumably mediating IgG1-dependent NK cell activation. These data reveal differences in bovine IgG subclass functionality, which do not correspond to those described in humans, mice or pigs, which is relevant to the study of these IgG subclasses in vaccine and therapeutic antibody development.
Collapse
|
5
|
Ramirez Valdez K, Nzau B, Dorey-Robinson D, Jarman M, Nyagwange J, Schwartz JC, Freimanis G, Steyn AW, Warimwe GM, Morrison LJ, Mwangi W, Charleston B, Bonnet-Di Placido M, Hammond JA. A Customizable Suite of Methods to Sequence and Annotate Cattle Antibodies. Vaccines (Basel) 2023; 11:1099. [PMID: 37376488 PMCID: PMC10302312 DOI: 10.3390/vaccines11061099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Studying the antibody response to infection or vaccination is essential for developing more effective vaccines and therapeutics. Advances in high-throughput antibody sequencing technologies and immunoinformatic tools now allow the fast and comprehensive analysis of antibody repertoires at high resolution in any species. Here, we detail a flexible and customizable suite of methods from flow cytometry, single cell sorting, heavy and light chain amplification to antibody sequencing in cattle. These methods were used successfully, including adaptation to the 10x Genomics platform, to isolate native heavy-light chain pairs. When combined with the Ig-Sequence Multi-Species Annotation Tool, this suite represents a powerful toolkit for studying the cattle antibody response with high resolution and precision. Using three workflows, we processed 84, 96, and 8313 cattle B cells from which we sequenced 24, 31, and 4756 antibody heavy-light chain pairs, respectively. Each method has strengths and limitations in terms of the throughput, timeline, specialist equipment, and cost that are each discussed. Moreover, the principles outlined here can be applied to study antibody responses in other mammalian species.
Collapse
Affiliation(s)
| | - Benjamin Nzau
- The Pirbright Institute, Pirbright GU24 0NF, UK
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | | | | | - James Nyagwange
- The Pirbright Institute, Pirbright GU24 0NF, UK
- KEMRI-Wellcome Trust Research Programme CGMRC, Kilifi P.O. Box 230-80108, Kenya
| | | | | | | | - George M. Warimwe
- KEMRI-Wellcome Trust Research Programme CGMRC, Kilifi P.O. Box 230-80108, Kenya
| | - Liam J. Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | | | | | | | | |
Collapse
|
6
|
Gnanesh Kumar BS, Lijina P, Jinesh P, Anagha SM. N-Glycoprofiling of immunoglobulin G and lactoferrin with site-specificity from goat milk using RP-UHPLC MS/MS. Food Chem 2022; 383:132376. [PMID: 35180604 DOI: 10.1016/j.foodchem.2022.132376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 11/30/2022]
Abstract
Glycans present in glycoproteins are structurally diverse and contribute to the carbohydrate pool of the milk. Goat milk is a leading non-bovine milk source, wherein glycan diversity of several glycoproteins remains unexplored. Herein, site-specific N-glycoprofiling of two major glycoproteins - immunoglobulin G (IgG) and lactoferrin (Lf) from goat milk was performed through RP-UHPLC Q-Tof MS/MS approach. IgG revealed diverse complex glycans that were predominantly biantennary type with differential core fucosylation, bisecting GlcNAc, and mono/di- sialylation (NeuAc/NeuGc). The N-glycan repertoire of Lf at four sites indicated the range of high mannose, complex and hybrid types with varying abundances. High mannose glycans were specifically observed at N252NT and N564DT sites. Majorly complex glycans with fully sialylated were found at N387VT site. While N495QT site revealed complex and hybrid types with differential core fucosylation and sialylation. The glycan features observed in these glycoproteins would pave way for effective utilization as bioactive ingredients.
Collapse
Affiliation(s)
- B S Gnanesh Kumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - P Lijina
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - P Jinesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S M Anagha
- School of Biological Sciences, JSS AHER, Sri Shivarathreeshwara Nagara, Mysuru 570 015, Karnataka, India
| |
Collapse
|
7
|
Sinkora M, Stepanova K, Butler JE, Sinkora M, Sinkora S, Sinkorova J. Comparative Aspects of Immunoglobulin Gene Rearrangement Arrays in Different Species. Front Immunol 2022; 13:823145. [PMID: 35222402 PMCID: PMC8873125 DOI: 10.3389/fimmu.2022.823145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Studies in humans and mice indicate the critical role of the surrogate light chain in the selection of the productive immunoglobulin repertoire during B cell development. However, subsequent studies using mutant mice have also demonstrated that alternative pathways are allowed. Our recent investigation has shown that some species, such as pig, physiologically use preferential rearrangement of authentic light chains, and become independent of surrogate light chains. Here we summarize the findings from swine and compare them with results in other species. In both groups, allelic and isotypic exclusions remain intact, so the different processes do not alter the paradigm of B-cell monospecificity. Both groups also retained some other essential processes, such as segregated and sequential rearrangement of heavy and light chain loci, preferential rearrangement of light chain kappa before lambda, and functional κ-deleting element recombination. On the other hand, the respective order of heavy and light chains rearrangement may vary, and rearrangement of the light chain kappa and lambda on different chromosomes may occur independently. Studies have also confirmed that the surrogate light chain is not required for the selection of the productive repertoire of heavy chains and can be substituted by authentic light chains. These findings are important for understanding evolutional approaches, redundancy and efficiency of B-cell generation, dependencies on other regulatory factors, and strategies for constructing therapeutic antibodies in unrelated species. The results may also be important for explaining interspecies differences in the proportional use of light chains and for the understanding of divergences in rearrangement processes. Therefore, the division into two groups may not be definitive and there may be more groups of intermediate species.
Collapse
Affiliation(s)
- Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - John E. Butler
- Department of Microbiology, University of Iowa, Iowa City, IA, United States
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Simon Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| |
Collapse
|
8
|
Wang Y, Krémer V, Iannascoli B, Goff ORL, Mancardi DA, Ramke L, de Chaisemartin L, Bruhns P, Jönsson F. Specificity of mouse and human Fcgamma receptors and their polymorphic variants for IgG subclasses of different species. Eur J Immunol 2022; 52:753-759. [PMID: 35133670 DOI: 10.1002/eji.202149766] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/05/2022]
Abstract
Immunoglobulin G (IgG) is the predominant antibody class generated during infections and used for the generation of therapeutic antibodies. Antibodies are mainly characterized in or generated from animal models that support particular infections, respond to particular antigens or allow the generation of hybridomas. Due to the availability of numerous transgenic mouse models and the ease of performing bioassays with human blood cells in vitro, most antibodies from species other than mice and humans are tested in vitro using human cells and/or in vivo using mice. In this process, it is expected, but not yet systematically documented, that IgG from these species interact with human or mouse IgG receptors (FcγRs). In this study, we undertook a systematic assessment of binding specificities of IgG from various species to the families of mouse and human FcγRs, including their polymorphic variants. Our results document the specific binding patterns for each of these IgG (sub)classes, reveal possible caveats of antibody-based immunoassays, and will be a useful reference for the transition from one animal model to preclinical mouse models or human cell-based bioassays. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yu Wang
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222, Paris, F-75015
| | - Vanessa Krémer
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222, Paris, F-75015
| | - Bruno Iannascoli
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222, Paris, F-75015
| | - Odile Richard-Le Goff
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222, Paris, F-75015
| | - David A Mancardi
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222, Paris, F-75015
| | - Leoni Ramke
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222, Paris, F-75015
| | - Luc de Chaisemartin
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222, Paris, F-75015.,APHP, Bichat Hospital, Immunology Department, Paris, F-75018
| | - Pierre Bruhns
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222, Paris, F-75015
| | - Friederike Jönsson
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222, Paris, F-75015.,CNRS, Paris, F-75016
| |
Collapse
|
9
|
Paudyal B, Mwangi W, Rijal P, Schwartz JC, Noble A, Shaw A, Sealy JE, Bonnet-Di Placido M, Graham SP, Townsend A, Hammond JA, Tchilian E. Fc-Mediated Functions of Porcine IgG Subclasses. Front Immunol 2022; 13:903755. [PMID: 35757698 PMCID: PMC9218351 DOI: 10.3389/fimmu.2022.903755] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
The pig is an important agricultural species and powerful biomedical model. We have established the pig, a large natural host animal for influenza with many physiological similarities to humans, as a robust model for testing the therapeutic potential of monoclonal antibodies. Antibodies provide protection through neutralization and recruitment of innate effector functions through the Fc domain. However very little is known about the Fc-mediated functions of porcine IgG subclasses. We have generated 8 subclasses of two porcine monoclonal anti influenza hemagglutinin antibodies. We characterized their ability to activate complement, trigger cytotoxicity and phagocytosis by immune cells and assayed their binding to monocytes, macrophages, and natural killer cells. We show that IgG1, IgG2a, IgG2b, IgG2c and IgG4 bind well to targeted cell types and mediate complement mediated cellular cytotoxicity (CDCC), antibody dependent cellular cytotoxicity (ADCC) and antibody mediated cell phagocytosis (ADCP). IgG5b and IgG5c exhibited weak binding and variable and poor functional activity. Immune complexes of porcine IgG3 did not show any Fc-mediated functions except for binding to monocytes and macrophages and weak binding to NK cells. Interestingly, functionally similar porcine IgG subclasses clustered together in the genome. These novel findings will enhance the utility of the pig model for investigation of therapeutic antibodies.
Collapse
Affiliation(s)
- Basudev Paudyal
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - William Mwangi
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Pramila Rijal
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John C Schwartz
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Alistair Noble
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Andrew Shaw
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Joshua E Sealy
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | | | - Simon P Graham
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Alain Townsend
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John A Hammond
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Elma Tchilian
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| |
Collapse
|
10
|
Gillespie A, Yirsaw A, Gunasekaran KP, Smith TP, Bickhart DM, Turley M, Connelley T, Telfer JC, Baldwin CL. Characterization of the domestic goat γδ T cell receptor gene loci and gene usage. Immunogenetics 2021; 73:187-201. [PMID: 33479855 DOI: 10.1007/s00251-021-01203-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/02/2021] [Indexed: 11/28/2022]
Abstract
Goats and cattle diverged 30 million years ago but retain similarities in immune system genes. Here, the caprine T cell receptor (TCR) gene loci and transcription of its genes were examined and compared to cattle. We annotated the TCR loci using an improved genome assembly (ARS1) of a highly homozygous San Clemente goat. This assembly has already proven useful for describing other immune system genes including antibody and leucocyte receptors. Both the TCRγ (TRG) and TCRδ (TRD) loci were similarly organized in goats as in cattle and the gene sequences were highly conserved. However, the number of genes varied slightly as a result of duplications and differences occurred in mutations resulting in pseudogenes. WC1+ γδ T cells in cattle have been shown to use TCRγ genes from only one of the six available cassettes. The structure of that Cγ gene product is unique and may be necessary to interact with WC1 for signal transduction following antigen ligation. Using RT-PCR and PacBio sequencing, we observed the same restriction for goat WC1+ γδ T cells. In contrast, caprine WC1+ and WC1- γδ T cell populations had a diverse TCRδ gene usage although the propensity for particular gene usage differed between the two cell populations. Noncanonical recombination signal sequences (RSS) largely correlated with restricted expression of TCRγ and δ genes. Finally, caprine γδ T cells were found to incorporate multiple TRD diversity gene sequences in a single transcript, an unusual feature among mammals but also previously observed in cattle.
Collapse
Affiliation(s)
- Alexandria Gillespie
- Integrated Sciences Building, Department of Veterinary and Animal Sciences, University of Massachusetts, 661 N. Pleasant St, Amherst, MA, 01003, USA
| | - Al Yirsaw
- Integrated Sciences Building, Department of Veterinary and Animal Sciences, University of Massachusetts, 661 N. Pleasant St, Amherst, MA, 01003, USA
| | - Karthick P Gunasekaran
- College of Information and Computer Sciences, University of Massachusetts, 140 Governors Drive, Amherst, MA, 01003, USA
| | - Timothy P Smith
- United States Department of Agriculture, Agricultural Research Service, United States Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Derek M Bickhart
- United States Department of Agriculture, Agricultural Research Service, United States Dairy Forage Research Center, Madison, WI, 53706, USA
| | - Michael Turley
- Integrated Sciences Building, Department of Veterinary and Animal Sciences, University of Massachusetts, 661 N. Pleasant St, Amherst, MA, 01003, USA
| | | | - Janice C Telfer
- Integrated Sciences Building, Department of Veterinary and Animal Sciences, University of Massachusetts, 661 N. Pleasant St, Amherst, MA, 01003, USA
| | - Cynthia L Baldwin
- Integrated Sciences Building, Department of Veterinary and Animal Sciences, University of Massachusetts, 661 N. Pleasant St, Amherst, MA, 01003, USA.
| |
Collapse
|
11
|
Barroso R, Morrison WI, Morrison LJ. Molecular Dissection of the Antibody Response: Opportunities and Needs for Application in Cattle. Front Immunol 2020; 11:1175. [PMID: 32595642 PMCID: PMC7304342 DOI: 10.3389/fimmu.2020.01175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Improving understanding of the bovine adaptive immune response would equip researchers to more efficiently design interventions against pathogens that impact upon food security and animal welfare. There are features of the bovine antibody response that differ substantially from other mammalian species, including the best understood models in the human and mouse. These include the ability to generate a functionally diverse immunoglobulin response despite having a fraction of the germline gene diversity that underpins this process in humans and mice, and the unique structure of a subset of immunoglobulins with "ultralong" HCDR3 domains, which are of significant interest with respect to potential therapeutics, including against human pathogens. However, a more detailed understanding of the B cell response and the production of an effective antibody response in the bovine is currently hampered by the lack of reagents for the B cell lineage. In this article we outline the current state of knowledge and capabilities with regard to B cell and antibody responses in cattle, highlight resource gaps, and summarize recent advances that have the potential to fundamentally advance our understanding of this process in the bovine host.
Collapse
Affiliation(s)
- Ruben Barroso
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - W Ivan Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
12
|
Muriuki C, Bush SJ, Salavati M, McCulloch ME, Lisowski ZM, Agaba M, Djikeng A, Hume DA, Clark EL. A Mini-Atlas of Gene Expression for the Domestic Goat ( Capra hircus). Front Genet 2019; 10:1080. [PMID: 31749840 PMCID: PMC6844187 DOI: 10.3389/fgene.2019.01080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Goats (Capra hircus) are an economically important livestock species providing meat and milk across the globe. They are of particular importance in tropical agri-systems contributing to sustainable agriculture, alleviation of poverty, social cohesion, and utilisation of marginal grazing. There are excellent genetic and genomic resources available for goats, including a highly contiguous reference genome (ARS1). However, gene expression information is limited in comparison to other ruminants. To support functional annotation of the genome and comparative transcriptomics, we created a mini-atlas of gene expression for the domestic goat. RNA-Seq analysis of 17 transcriptionally rich tissues and 3 cell-types detected the majority (90%) of predicted protein-coding transcripts and assigned informative gene names to more than 1000 previously unannotated protein-coding genes in the current reference genome for goat (ARS1). Using network-based cluster analysis, we grouped genes according to their expression patterns and assigned those groups of coexpressed genes to specific cell populations or pathways. We describe clusters of genes expressed in the gastro-intestinal tract and provide the expression profiles across tissues of a subset of genes associated with functional traits. Comparative analysis of the goat atlas with the larger sheep gene expression atlas dataset revealed transcriptional similarities between macrophage associated signatures in the sheep and goats sampled in this study. The goat transcriptomic resource complements the large gene expression dataset we have generated for sheep and contributes to the available genomic resources for interpretation of the relationship between genotype and phenotype in small ruminants.
Collapse
Affiliation(s)
- Charity Muriuki
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Edinburgh, United Kingdom
| | - Stephen J. Bush
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mazdak Salavati
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Edinburgh, United Kingdom
| | - Mary E.B. McCulloch
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Zofia M. Lisowski
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Morris Agaba
- Biosciences Eastern and Central Africa - International Livestock Research Institute (BecA - ILRI) Hub, Nairobi, Kenya
| | - Appolinaire Djikeng
- Centre for Tropical Livestock Genetics and Health (CTLGH), Edinburgh, United Kingdom
| | - David A. Hume
- Mater Research Institute-University of Queensland, Woolloongabba, QLD, Australia
| | - Emily L. Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Edinburgh, United Kingdom
| |
Collapse
|
13
|
Li C, Chen L, Liu X, Shi X, Guo Y, Huang R, Nie F, Zheng C, Zhang C, Ma RZ. A high-density BAC physical map covering the entire MHC region of addax antelope genome. BMC Genomics 2019; 20:479. [PMID: 31185912 PMCID: PMC6558854 DOI: 10.1186/s12864-019-5790-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/10/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The mammalian major histocompatibility complex (MHC) harbours clusters of genes associated with the immunological defence of animals against infectious pathogens. At present, no complete MHC physical map is available for any of the wild ruminant species in the world. RESULTS The high-density physical map is composed of two contigs of 47 overlapping bacterial artificial chromosome (BAC) clones, with an average of 115 Kb for each BAC, covering the entire addax MHC genome. The first contig has 40 overlapping BAC clones covering an approximately 2.9 Mb region of MHC class I, class III, and class IIa, and the second contig has 7 BAC clones covering an approximately 500 Kb genomic region that harbours MHC class IIb. The relative position of each BAC corresponding to the MHC sequence was determined by comparative mapping using PCR screening of the BAC library of 192,000 clones, and the order of BACs was determined by DNA fingerprinting. The overlaps of neighboring BACs were cross-verified by both BAC-end sequencing and co-amplification of identical PCR fragments within the overlapped region, with their identities further confirmed by DNA sequencing. CONCLUSIONS We report here the successful construction of a high-quality physical map for the addax MHC region using BACs and comparative mapping. The addax MHC physical map we constructed showed one gap of approximately 18 Mb formed by an ancient autosomal inversion that divided the MHC class II into IIa and IIb. The autosomal inversion provides compelling evidence that the MHC organizations in all of the ruminant species are relatively conserved.
Collapse
Affiliation(s)
- Chaokun Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, S2-316 Building #2, West Beichen Road, Chaoyang District, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longxin Chen
- Zhengzhou Key Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, 450044, China
| | - Xuefeng Liu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, 100044, China
| | - Xiaoqian Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, S2-316 Building #2, West Beichen Road, Chaoyang District, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Guo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, S2-316 Building #2, West Beichen Road, Chaoyang District, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, S2-316 Building #2, West Beichen Road, Chaoyang District, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangyuan Nie
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, S2-316 Building #2, West Beichen Road, Chaoyang District, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changming Zheng
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, 100044, China
| | - Chenglin Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, 100044, China.
- Beijing Zoo, No. 137 West straight door Avenue, Xicheng District, Beijing, 100032, China.
| | - Runlin Z Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, S2-316 Building #2, West Beichen Road, Chaoyang District, Beijing, 100101, China.
- Zhengzhou Key Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, 450044, China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Collins AM, Watson CT. Immunoglobulin Light Chain Gene Rearrangements, Receptor Editing and the Development of a Self-Tolerant Antibody Repertoire. Front Immunol 2018; 9:2249. [PMID: 30349529 PMCID: PMC6186787 DOI: 10.3389/fimmu.2018.02249] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/10/2018] [Indexed: 11/13/2022] Open
Abstract
Discussion of the antibody repertoire usually emphasizes diversity, but a conspicuous feature of the light chain repertoire is its lack of diversity. The diversity of reported allelic variants of germline light chain genes is also limited, even in well-studied species. In this review, the implications of this lack of diversity are considered. We explore germline and rearranged light chain genes in a variety of species, with a particular focus on human and mouse genes. The importance of the number, organization and orientation of the genes for the control of repertoire development is discussed, and we consider how primary rearrangements and receptor editing together shape the expressed light chain repertoire. The resulting repertoire is dominated by just a handful of IGKV and IGLV genes. It has been hypothesized that an important function of the light chain is to guard against self-reactivity, and the role of secondary rearrangements in this process could explain the genomic organization of the light chain genes. It could also explain why the light chain repertoire is so limited. Heavy and light chain genes may have co-evolved to ensure that suitable light chain partners are usually available for each heavy chain that forms early in B cell development. We suggest that the co-evolved loci of the house mouse often became separated during the inbreeding of laboratory mice, resulting in new pairings of loci that are derived from different sub-species of the house mouse. A resulting vulnerability to self-reactivity could explain at least some mouse models of autoimmune disease.
Collapse
Affiliation(s)
- Andrew M. Collins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|