1
|
Nguyen AT, Kövér G, Tóth P, Curik I, Bokor Á, Nagy I. Population Subdivision and Migration Assessment of Mangalica Pig Breeds Based on Pedigree Analysis. Animals (Basel) 2024; 14:653. [PMID: 38396621 PMCID: PMC10886115 DOI: 10.3390/ani14040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
In conserving the genetic diversity of domestic animal breeds, strategies that emphasise between-breed diversity may not be optimal, as they neglect within-breed variation. The aim of the present study was to assess the extent of population subdivision in three Mangalica pig breeds and the contribution of migration to their substructure. Wright's FST coefficient was calculated based on genealogical data with breeding animals born between 1981 and 2023, with three colour variants (Blonde, Swallow-Belly and Red). These Wright's FST coefficients were analysed using multidimensional scaling to reveal the population substructure. The average FST coefficient was 0.04 for the Blonde breed and 0.047 for the Swallow-Belly and Red Mangalica breeds, while these parameters were lower in the active herds at 0.03 and 0.04, respectively. The migration of individuals between herds was 61.63% for the Blonde breed and 75.53% and 63.64% for the Swallow-Belly and Red Magalica breeds, respectively. No population substructure was observed in any of the Mangalica breeds, which can be explained by the extensive migration between herds.
Collapse
Affiliation(s)
- Anh Thi Nguyen
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences (MATE), Guba Sándor u. 40, 7400 Kaposvár, Hungary; (A.T.N.); (G.K.); (Á.B.)
- Department of Veterinary Medicine, Faculty of Biology Applied Sciences, Vinh Long University of Technology Education, 73 Nguyen Hue, Ward 2, Vinh Long 85000, Vietnam
| | - György Kövér
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences (MATE), Guba Sándor u. 40, 7400 Kaposvár, Hungary; (A.T.N.); (G.K.); (Á.B.)
| | - Péter Tóth
- Hungarian National Association of Mangalica Breeders, Piac u. 77, 4025 Debrecen, Hungary;
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
| | - Árpád Bokor
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences (MATE), Guba Sándor u. 40, 7400 Kaposvár, Hungary; (A.T.N.); (G.K.); (Á.B.)
| | - István Nagy
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences (MATE), Guba Sándor u. 40, 7400 Kaposvár, Hungary; (A.T.N.); (G.K.); (Á.B.)
| |
Collapse
|
2
|
Suprovych TM, Salyha YT, Suprovych MP, Fedorovych EI, Fedorovych VV, Chornyj IO. Genetic Polymorphism of BoLA-DRB3.2 Locus in Ukrainian Cattle Breeds. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722040089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Vasoya D, Oliveira PS, Muriel LA, Tzelos T, Vrettou C, Morrison WI, de Miranda Santos IKF, Connelley T. High throughput analysis of MHC-I and MHC-DR diversity of Brazilian cattle populations. HLA 2021; 98:93-113. [PMID: 34102036 DOI: 10.1111/tan.14339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 01/16/2023]
Abstract
The major histocompatibility complex (MHC) contains many genes that play key roles in initiating and regulating immune responses. This includes the polymorphic MHCI and MHCII genes that present epitopes to CD8+ and CD4+ T-cells, respectively. Consequently, the characterisation of the repertoire of MHC genes is an important component of improving our understanding of the genetic variation that determines the outcomes of immune responses. In cattle, MHC (BoLA) research has predominantly focused on Holstein-Friesian animals (as the most economically important breed globally), although the development of high-throughput approaches has allowed the BoLA-DRB3 repertoire to be studied in a greater variety of breeds. In a previous study we reported on the development of a MiSeq-based method to enable high-throughput and high-resolution analysis of bovine MHCI repertoires. Herein, we report on the expansion of this methodology to incorporate analysis of the BoLA-DRB3 and its application to analyse MHC diversity in a large cohort of cattle from Brazil (>500 animals), including representatives from the three major Bos indicus breeds present in Brazil - Guzerat, Gir and Nelore. This large-scale description of paired MHCI-DRB3 repertoires in Bos indicus cattle has identified a small number of novel DRB3 alleles, a large number of novel MHCI alleles and haplotypes, and provided novel insights into MHCI-MHCII association - further expanding our knowledge of bovine MHC diversity.
Collapse
Affiliation(s)
- Deepali Vasoya
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Priscila Silva Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Laura Agundez Muriel
- Translational Synthetic Biology Department, Mammalian genome editing and gene therapy, Parque de Investigación Biomédica, Carrer del Dr, Barcelona, Spain
| | - Thomas Tzelos
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Christina Vrettou
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - W Ivan Morrison
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Timothy Connelley
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Sakhawat A, Rola-Łuszczak M, Osiński Z, Bibi N, Kuźmak J. Bayesian Estimation of the True Seroprevalence and Risk Factor Analysis of Bovine Leukemia Virus Infection in Pakistan. Animals (Basel) 2021; 11:ani11051404. [PMID: 34069156 PMCID: PMC8156210 DOI: 10.3390/ani11051404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary The enzootic bovine leucosis is the most common and economically important viral disease of cattle, caused by bovine leukemia virus (BLV). In cattle, infection with BLV leads to decreased milk production and premature culling and also impairs the immune system predisposing animals to other infections and increasing severity of disease. The aim of this study was to estimate the true seropositivity to BLV at the farm and within-farm levels in Pakistan, using a latent class analysis. In addition, some factors influencing BLV seropositivity were analyzed. We tested 1380 dairy cattle from 451 herds and 92 water buffalo. Analysis at the within-herd and herd levels showed 3.8% of cattle and 1.4% of herds were truly seropositive. All 92 serum samples from water buffalo were negative. The study demonstrated strong association between BLV seroprevalence and herd size but not with common housing of cattle representing indigenous breeds with exotic breed or their crossbred and also common housing of cattle and water buffalo. Abstract The objective of this study was to determine the true seroprevalence of bovine leukemia virus (BLV) infection in dairy cattle from Pakistan at the animal and herd-level. We tested 1380 dairy cattle from 451 herds and 92 water buffalo. The sera were tested by ELISA and the results were analyzed using Bayesian inference. The median posterior estimate of the herd level true BLV prevalence was 1.4%, with a 95% credible interval (CI) 0.7–3.1, whereas the median posterior estimate of the within-farm true seroprevalence was 3.8% with a 95% CI 2.8–4.8. All 92 sera collected from water buffalo were negative. Several risk factors potentially associated with seropositivity to BLV infections in Pakistan were analyzed using logistic regression model based on calculation of an odds ratio (OR). The study showed an association between seropositivity and medium herd (≥50) size (OR = 23.57, 95% CI: 3.01–103.48). Common housing of indigenous cattle with exotic-breed cattle (OR = 0.67, 95% CI: 06–2.35) or housing indigenous or their crossbred cattle with exotic-breed cattle (OR = 0.95, 95% CI: 0.14–3.01) had no effect on the BLV seroprevalence. Similarly, common housing of cattle and water buffalo was not risk factor for increased BLV seropositivity (OR = 27.10, 95% CI: 0.63–119.34).
Collapse
Affiliation(s)
- Ali Sakhawat
- National Veterinary Laboratories, Islamabad 45500, Pakistan;
- Animal Quarantine Department, Ministry of National Food Security and Research, Peshawar 25000, Pakistan
- Department of Bio Sciences, COMSATS University, Islamabad 45500, Pakistan;
| | - Marzena Rola-Łuszczak
- National Veterinary Research Institute, 24-100 Puławy, Poland; (Z.O.); (J.K.)
- Correspondence:
| | - Zbigniew Osiński
- National Veterinary Research Institute, 24-100 Puławy, Poland; (Z.O.); (J.K.)
| | - Nazia Bibi
- Department of Bio Sciences, COMSATS University, Islamabad 45500, Pakistan;
| | - Jacek Kuźmak
- National Veterinary Research Institute, 24-100 Puławy, Poland; (Z.O.); (J.K.)
| |
Collapse
|
5
|
Suprovych TM, Suprovych MP, Mokhnachova NB, Biriukova OD, Strojanovska LV, Chepurna VA. Genetic variability and biodiversity of Ukrainian Gray cattle by the BoLA-DRB3 gene. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
At the current stage of genetic studies of cattle, more and more attention is being drawn to autochthonous breeds. Native cattle have a number of prominent phenotypic traits and have preserved unique genes and their combinations lost by modern commercial breeds, which would be valuable to use in selective programs. We surveyed polymorphism of the Ukrainian autochthonous Gray breed according to alleles of exon 2 of the BoLA-DRB3 gene. The uniqueness of the gene lies in the broad variability of its allele variants. Significant informativeness at DNA level is quite important for genetic studies. We surveyed allele polymorphism using the PCR-RLFP method on DNA isolated from 88 samples of blood of cows and 5 samples of sperm. We identified 28 alleles, of which 23 variants were nomenclature ones and 5 (jba, *jab, *jbb, *nad and *nda) were “without established nomenclature”, their share accounting for 8.9%. Four alleles *06, *12, *16 and *jba had a frequency above 5% and occupied 69.9% of the breed’s allele fund overall. The commonest allele was BoLA-DRB3.2*16 (44.1%). In total, we found 40 genotypes. Considering the significant dominance of variant *16, as expected, 5 genotypes with its inclusion occurred: *16/*16, *12/*16, *06/*16, *16/*24 and *jba/*16. It was present in the genotype of two out three studied animals. Parameters of heterozygosity, effective number of alleles, Shannon and Pielou indices indicate that Ukrainian Gray cattle are characterized by lowest level of genetic variability and biodiversity according to the BoLA-DRB3 gene compared with other breeds. Due to significant dominance of allele *16, the breed has no inbred motifs. We noted deviation toward increase in homozygosity without deviations from the norm of the distribution according to Hardy-Weinberg equilibrium. The obtained results will be used for genetic-populational programs with the purpose of improving the genetic potential of cattle breeds in terms of economically beneficial traits and diseases of cattle.
Collapse
|
6
|
Snegin EA, Kramarenko AS, Artemchuk OY, Kramarenko SS. Intra- and interbreed genetic heterogeneity and divergence in four commercial pig breeds based on microsatellite markers. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In recent years, there has been an increasing amount of attention paid to the genetic health of domesticated animals and its relationship with the level of inbreeding and genetic diversity. At the same time, insufficient attention is still paid to the study of intrabreed genetic diversity and intrabreed stratification. The main goal of our work was to analyze the intra- and interbreed genetic diversity of commercial pig breeds on the basis of DNA microsatellite (MS-DNA) polymorphism. In total, the work used data for 3,308 pigs, which represented 11 herds. The animals belonged to four commercial pig breeds – Duroc (DR), Yorkshire (YR), Landrace (LN) and Large White (LW). 12 microsatellite loci recommended by ISAG-FAO and arranged in one multiplex panel (S0101, S0155, S0228, S0355, S0386, SW24, SW240, SW72, SW857, SW911, SW936, SW951) were used as DNA markers. When analyzing the intra- and interbreed variability of 11 herds, we found that all studied breeds significantly differed in terms of the proportion of both rare and the most common alleles. At the same time, the noted differences were determined, first of all, by the variability between individual herds within their breed. The location of herd centroids is random and is not consistent with their breed affiliation at all. When individuals belonging to the same breed are combined, the centroids of pig breeds in the space of first two axes from a Principal Coordinate Analysis form two clusters. The first one contains the only red pig breed (DR) used in the analysis, while the second one contains white pig breeds. In six pig herds the Ne estimates were below 50 inds., in two herds they were in the range of 50–100 inds., and finally in three herds the Ne estimates exceeded 100 inds. The analysis of the genetic variability of pigs of four commercial breeds showed that the high level of interbreed differences is caused, first of all, by the high variability among pig herds within each studied breed. Such intrabreed stratification can be formed due to the manifestation of many causes: different genetic basis of the founders of intrabreed genealogical groups, geographical isolation, different directions of selection within individual herds, exchange of animals between separate herds, the use of inbreeding in the practice of selection together with isolation, etc. Important consequences of intrabreed stratification are an increase in the level of interherd diversity (which is not lower than the level of interbreed diversity) against the background of a decrease in variability within individual herds, as well as a significant deficit of heterozygotes and an increase in the role of negative genetic and demographic processes. Thus, the existence of genetic heterogeneity within commercial pig breeds should be considered as an essential element in the history of their formation and breeding.
Collapse
|