1
|
Xu Z, Xu C, Lu J, He C, Wang X, Zhu D, Wang A, Zhang Z, Jiang C. Cytochrome P450 F3 promotes colorectal cancer via inhibiting NRF2-mediated ferroptosis. Transl Oncol 2024; 48:102077. [PMID: 39106550 PMCID: PMC11357859 DOI: 10.1016/j.tranon.2024.102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/27/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024] Open
Abstract
Cytochrome P450 F3 (CYP4F3) is recognized as a disease-associated immune response initiator that is involved in the synthesis of cholesterol, steroids, and lipids. This study identified the upregulation of CYP4F3 expression in colorectal cancer (CRC) and its association with poor patient prognosis through a comparative analysis between CRC tumor tissues with normal tissues from public databases. The overexpression of CYP4F3 in CT26.wt and SW620, promoted cell proliferation and migration, a reduction of cellular oxidative stress, an up-regulation of the oxidative stress-related pathway NRF2, and an inhibition of cellular ferroptosis. Additionally, inhibition of NRF2 activity stimulated cellular ferroptosis when CYP4F3 was overexpressed. Ferroptosis, characterized by iron-dependent lipid peroxidation, is a non-apoptotic way of cell death with a critical role in cancer development. When given a ferroptosis agonist to CYP4F3-overexpression CRC cells, NRF2 was activated, and cell proliferation and migration were reduced. Furthermore, the mice subcutaneously injected with CYP4F3-overexpression CT26.wt cells formed significantly larger tumors compared to the CYP4F3-vector CT26.wt cell group. This study systematically identified an important role of CYP4F3 in CRC development as a regulator of CRC cells to escape ferroptosis via NRF2, highlighting the significance of CYP4F3 as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Ziyang Xu
- The Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China
| | - Cheng Xu
- The Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China
| | - Jie Lu
- The Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China
| | - Chenfeng He
- The Department of Integrative Bioanalytics, Aging and Cancer (IDAC), Institute of Development, Tohoku University, Sendai, Japan
| | - Xinyue Wang
- The Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Dongfei Zhu
- The Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aizhong Wang
- The Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China.
| | - Zhengyun Zhang
- The Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China.
| | - Can Jiang
- The Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China.
| |
Collapse
|
2
|
Cai S, Gou Y, Chen Y, Hou X, Zhang J, Bi C, Gu P, Yang M, Zhang H, Zhong W, Yuan H. Luteolin exerts anti-tumour immunity in hepatocellular carcinoma by accelerating CD8 + T lymphocyte infiltration. J Cell Mol Med 2024; 28:e18535. [PMID: 39267250 PMCID: PMC11392827 DOI: 10.1111/jcmm.18535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 09/17/2024] Open
Abstract
Luteolin, a commonly used traditional Chinese medicine, has been utilized for several decades in the treatment of hepatocellular carcinoma (HCC). Previous research has demonstrated its anti-tumour efficacy, but its underlying mechanism remains unclear. This study aimed to assess the therapeutic effects of luteolin in H22 tumour-bearing mice. luteolin effectively inhibited the growth of solid tumours in a well-established mouse model of HCC. High-throughput sequencing revealed that luteolin treatment could enhance T-cell activation, cell chemotaxis and cytokine production. In addition, luteolin helped sustain a high ratio of CD8+ T lymphocytes in the spleen, peripheral blood and tumour tissues. The effects of luteolin on the phenotypic and functional changes in tumour-infiltrating CD8+ T lymphocytes were also investigated. Luteolin restored the cytotoxicity of tumour-infiltrating CD8+ T lymphocytes in H22 tumour-bearing mice. The CD8+ T lymphocytes exhibited intensified phenotype activation and increased production of granzyme B, IFN-γ and TNF-α in serum. The combined administration of luteolin and the PD-1 inhibitor enhanced the anti-tumour effects in H22 tumour-bearing mice. Luteolin could exert an anti-tumour immune response by inducing CD8+ T lymphocyte infiltration and enhance the anti-tumour effects of the PD-1 inhibitor on H22 tumour-bearing mice.
Collapse
Affiliation(s)
- Shijiao Cai
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Yidan Gou
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanyan Chen
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoran Hou
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Chongwen Bi
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Gu
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Miao Yang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Hanxu Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Weilong Zhong
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Hengjie Yuan
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
3
|
Chen Y, Wang L, Wang Y, Fang Y, Shen W, Si Y, Zheng X, Zeng S. Integrative Analysis of Histone Acetylation Regulated CYP4F12 in Esophageal Cancer Development. Drug Metab Dispos 2024; 52:813-823. [PMID: 38811154 DOI: 10.1124/dmd.124.001674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
Current therapeutic strategies for esophageal cancer (EC) patients have yielded limited improvements in survival rates. Recent research has highlighted the influence of drug metabolism enzymes on both drug response and EC development. Our study aims to identify specific drug metabolism enzymes regulated by histone acetylation and to elucidate its molecular and clinical features. CYP4F12 exhibited a notable upregulation subsequent to trichostatin A treatment as evidenced by RNA sequencing analysis conducted on the KYSE-150 cell line. The change in gene expression was associated with increased acetylation level of histone 3 K18 and K27 in the promoter. The regulation was dependent on p300. In silicon analysis of both The Cancer Genome Atlas esophageal carcinoma and GSE53624 dataset suggested a critical role of CYP4F12 in EC development, because CYP4F12 was downregulated in tumor tissues and predicted better disease-free survival. Gene ontology analysis has uncovered a robust correlation between CYP4F12 and processes related to cell migration, as well as its involvement in cytosine-mediated immune activities. Further investigation into the relationship between immune cells and CYP4F12 expression has indicated an increased level of B cell infiltration in samples with high CYP4F12 expression. CYP4F12 was also negatively correlated with the expression of inhibitory checkpoints. An accurate predictive nomogram model was established combining with clinical factors and CYP4F12 expression. In conclusion, CYP4F12 was crucial in EC development, and targeting CYP4F12 may improve the therapeutic efficacy of current treatment in EC patients. SIGNIFICANCE STATEMENT: CYP4F12 expression was downregulated in esophageal cancer (EC) patients and could be induced by trichostatin A. During EC development, CYP4F12 was linked to reduced cell migration and increased infiltration of B cells. CYP4F12 also is a biomarker as prognostic predictors and therapeutic guide in EC patients.
Collapse
Affiliation(s)
- Yanhong Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China (L.W., W.S., Y.S., X.Z.)
| | - Li Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China (L.W., W.S., Y.S., X.Z.)
| | - Yuchen Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China (L.W., W.S., Y.S., X.Z.)
| | - Yanyan Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China (L.W., W.S., Y.S., X.Z.)
| | - Wenyang Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China (L.W., W.S., Y.S., X.Z.)
| | - Yingxue Si
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China (L.W., W.S., Y.S., X.Z.)
| | - Xiaoli Zheng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China (L.W., W.S., Y.S., X.Z.)
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Y.C., Y.W., Y.F., S.Z.); and Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China (L.W., W.S., Y.S., X.Z.)
| |
Collapse
|
4
|
Le Z, Chen S, Feng Y, Lu W, Liu M. SERPINC1, a new prognostic predictor of colon cancer, promote colon cancer progression through EMT. Cancer Rep (Hoboken) 2024; 7:e2079. [PMID: 38923313 PMCID: PMC11194682 DOI: 10.1002/cnr2.2079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Liver metastasis of CRC is still the main cause of poor prognosis in patients with CRC. Previous studies have suggested that serpin family C member 1(SERPINC1) is involved in the development of a variety of tumours, but its effect on colorectal cancer progression has been poorly elucidated. METHODS Based on the GEO database, this study identifies the core gene SERPINC1 associated with liver metastasis in CRC. We used transcriptomic data and immunohistochemical staining to explore the expression of SERPINC1 in normal, cancer, and liver metastases tissue from CRC patients. Clinical data obtained from our hospital were used to explore the impact of SERPINC1 on the prognosis of colon cancer patients. Mechanistically, the biological functions exerted by SERPINC1 in CRC were predicted by bioinformatics, and the results were validated by the results of the experiments in vitro. Cell lines with knockdown of SERPINC1 were performed a series assay such as trans well, CCK-8 and colony formation assay to explore the relationship between SERPINC1 and proliferation and metastasis of CRC cells. Finally, the effect of SERPINC1 on the sensitivity of colon cancer patients to immune checkpoint therapy was evaluated. RESULTS In CRC liver metastatic tissues, we found significantly high expression of SERPINC1. Briefly, 212 CRC cohorts showed that SERPINC1 was significantly associated with TNM stage and plasma CA19-9 and CEA in CRC patients. Univariate and multivariate Cox demonstrated that SERPINC1 was significantly associated with 5-year survival after radical surgery for colorectal cancer (p < 0.001). Bioinformatics predicted that SERPINC1 affects metastasis of colon cancer through epithelial-mesenchymal transition (EMT). Colony formation assay and CCK-8 assay showed that SERPINC1 promotes malignant proliferation of CRC cells, trans well assay showed that SERPINC1 promotes distant migratory behaviour of CRC cells and protein blotting assay showed that SERPINC1 may promote migration by promoting the TGF-β1-mediated EMT of CRC cells. In addition, several immunotherapy cohorts also reflected that the expression of SERPINC1 reduced the sensitivity of CRC patients to immune checkpoint therapy. CONCLUSION Our study identified SERPINC1 as a novel liver metastasis-associated gene in CRC. Targeting SERPINC1 may be a novel therapeutic strategy for patients with liver metastases from CRC.
Collapse
Affiliation(s)
- Zhenghong Le
- The First Affiliated Hospital of Jinan UniversityGuangzhouChina
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Shuran Chen
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Yan Feng
- Department of GastroenterologyBengbu Third People's HospitalBengbuChina
| | - Weichen Lu
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Mulin Liu
- The First Affiliated Hospital of Jinan UniversityGuangzhouChina
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| |
Collapse
|
5
|
Tang XL, Xu ZY, Guan J, Yao J, Tang XL, Zhou ZQ, Zhang ZY. Establishment of a neutrophil extracellular trap-related prognostic signature for colorectal cancer liver metastasis and expression validation of CYP4F3. Clin Exp Med 2024; 24:112. [PMID: 38795162 PMCID: PMC11127854 DOI: 10.1007/s10238-024-01378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/13/2024] [Indexed: 05/27/2024]
Abstract
Liver metastasis stands as the primary contributor to mortality among patients diagnosed with colorectal cancer (CRC). Neutrophil extracellular traps (NETs) emerge as pivotal players in the progression and metastasis of cancer, showcasing promise as prognostic biomarkers. Our objective is to formulate a predictive model grounded in genes associated with neutrophil extracellular traps and identify novel therapeutic targets for combating CRLM. We sourced gene expression profiles from the Gene Expression Omnibus (GEO) database. Neutrophil extracellular trap-related gene set was obtained from relevant literature and cross-referenced with the GEO datasets. Differentially expressed genes (DEGs) were identified through screening via the least absolute shrinkage and selection operator regression and random forest modeling, leading to the establishment of a nomogram and subtype analysis. Subsequently, a thorough analysis of the characteristic gene CYP4F3 was undertaken, and our findings were corroborated through immunohistochemical staining. We identified seven DEGs (ATG7, CTSG, CYP4F3, F3, IL1B, PDE4B, and TNF) and established nomograms for the occurrence and prognosis of CRLM. CYP4F3 is highly expressed in CRC and colorectal liver metastasis (CRLM), exhibiting a negative correlation with CRLM prognosis. It may serve as a potential therapeutic target for CRLM. A novel prognostic signature related to NETs has been developed, with CYP4F3 identified as a risk factor and potential target for CRLM.
Collapse
Affiliation(s)
- Xiao-Li Tang
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zi-Yang Xu
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Jiao Guan
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Jing Yao
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Xiao-Long Tang
- Department of General Surgery, Shanghai Eighth People's Hospital, 8 Caobao Road, Shanghai, 200235, China.
| | - Zun-Qiang Zhou
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| | - Zheng-Yun Zhang
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
6
|
Meng YW, Liu JY. Pathological and pharmacological functions of the metabolites of polyunsaturated fatty acids mediated by cyclooxygenases, lipoxygenases, and cytochrome P450s in cancers. Pharmacol Ther 2024; 256:108612. [PMID: 38369063 DOI: 10.1016/j.pharmthera.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Oxylipins have garnered increasing attention because they were consistently shown to play pathological and/or pharmacological roles in the development of multiple cancers. Oxylipins are the metabolites of polyunsaturated fatty acids via both enzymatic and nonenzymatic pathways. The enzymes mediating the metabolism of PUFAs include but not limited to lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P450s (CYPs) pathways, as well as the down-stream enzymes. Here, we systematically summarized the pleiotropic effects of oxylipins in different cancers through pathological and pharmacological aspects, with specific reference to the enzyme-mediated oxylipins. We discussed the specific roles of oxylipins on cancer onset, growth, invasion, and metastasis, as well as the expression changes in the associated metabolic enzymes and the associated underlying mechanisms. In addition, we also discussed the clinical application and potential of oxylipins and related metabolic enzymes as the targets for cancer prevention and treatment. We found the specific function of most oxylipins in cancers, especially the underlying mechanisms and clinic applications, deserves and needs further investigation. We believe that research on oxylipins will provide not only more therapeutic targets for various cancers but also dietary guidance for both cancer patients and healthy humans.
Collapse
Affiliation(s)
- Yi-Wen Meng
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China
| | - Jun-Yan Liu
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
7
|
Ichinose Y, Hasebe T, Hirasaki M, Sakakibara A, Yokogawa H, Nukui A, Hiratsuka M, Fujimoto A, Iso C, Wakui N, Shibasaki S, Kamada K, Suzuki N, Kamakura Y, Yasuda M, Aya A, Shimada H, Matsuura K, Ishiguro H, Osaki A, Saeki T. Vimentin-positive invasive breast carcinoma of no special type: A breast carcinoma with lethal biological characteristics. Pathol Int 2023; 73:413-433. [PMID: 37378453 DOI: 10.1111/pin.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Vimentin is a stable mesenchymal immunohistochemical marker and is widely recognized as a major marker of mesenchymal tumors. The purpose of the present study was to investigate if the vimentin expression status might serve as a significant predictor of outcomes in patients with invasive breast carcinoma of no special type (IBC-NST) and to investigate, by comprehensive RNA sequencing analyses, the mechanisms involved in the heightened malignant potential of vimentin-positive IBC-NSTs. This study, conducted using the data of 855 patients with IBC-NST, clearly identified vimentin expression status as a very important independent biological parameter for accurately predicting the outcomes in patients with IBC-NST. RNA sequence analyses clearly demonstrated significant upregulation of coding RNAs known to be closely associated with cell proliferation or cellular senescence, and significant downregulation of coding RNAs known to be closely associated with transmembrane transport in vimentin-positive IBC-NSTs. We conclude that vimentin-positive IBC-NSTs show heightened malignant biological characteristics, possibly attributable to the upregulation of RNAs closely associated with proliferative activity and cellular senescence, and downregulation of RNAs closely associated with transmembrane transport in IBC-NSTs.
Collapse
Affiliation(s)
- Yuki Ichinose
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Takahiro Hasebe
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Masataka Hirasaki
- Department of Clinical Cancer Genomics, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Ayaka Sakakibara
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Hideki Yokogawa
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Asami Nukui
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Miyuki Hiratsuka
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Akihiro Fujimoto
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Chihiro Iso
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Noriko Wakui
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Satomi Shibasaki
- Community Health Science Center, Saitama Medical University, Iruma, Saitama, Japan
| | - Koichi Kamada
- Department of Pathology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Nobuyuki Suzuki
- Department of Pathology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Yasuo Kamakura
- Department of Clinical Cancer Genomics, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Masanori Yasuda
- Department of Pathology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Asano Aya
- Department of Breast Oncology, Saitama Medical University, Iruma, Saitama, Japan
| | - Hiroko Shimada
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Kazuo Matsuura
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Hiroshi Ishiguro
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Akihiko Osaki
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Toshiaki Saeki
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| |
Collapse
|
8
|
Zeng W, Wang J, Yang J, Chen Z, Cui Y, Li Q, Luo G, Ding H, Ju S, Li B, Chen J, Xie Y, Tong X, Liu M, Zhao J. Identification of immune activation-related gene signature for predicting prognosis and immunotherapy efficacy in lung adenocarcinoma. Front Immunol 2023; 14:1217590. [PMID: 37492563 PMCID: PMC10364982 DOI: 10.3389/fimmu.2023.1217590] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a major subtype of non-small cell lung cancer (NSCLC) with a highly heterogeneous tumor microenvironment. Immune checkpoint inhibitors (ICIs) are more effective in tumors with a pre-activated immune status. However, the potential of the immune activation-associated gene (IAG) signature for prognosis prediction and immunotherapy response assessment in LUAD has not been established. Therefore, it is critical to explore such gene signatures. Methods RNA sequencing profiles and corresponding clinical parameters of LUAD were extracted from the TCGA and GEO databases. Unsupervised consistency clustering analysis based on immune activation-related genes was performed on the enrolled samples. Subsequently, prognostic models based on genes associated with prognosis were built using the last absolute shrinkage and selection operator (LASSO) method and univariate Cox regression. The expression levels of four immune activation related gene index (IARGI) related genes were validated in 12 pairs of LUAD tumor and normal tissue samples using qPCR. Using the ESTIMATE, TIMER, and ssGSEA algorithms, immune cell infiltration analysis was carried out for different groups, and the tumor immune dysfunction and rejection (TIDE) score was used to evaluate the effectiveness of immunotherapy. Results Based on the expression patterns of IAGs, the TCGA LUAD cohort was classified into two clusters, with those in the IAG-high pattern demonstrating significantly better survival outcomes and immune cell infiltration compared to those in the IAG-low pattern. Then, we developed an IARGI model that effectively stratified patients into different risk groups, revealing differences in prognosis, mutation profiles, and immune cell infiltration within the tumor microenvironment between the high and low-risk groups. Notably, significant disparities in TIDE score between the two groups suggest that the low-risk group may exhibit better responses to ICIs therapy. The IARGI risk model was validated across multiple datasets and demonstrated exceptional performance in predicting overall survival in LUAD, and an IARGI-integrated nomogram was established as a quantitative tool for clinical practice. Conclusion The IARGI can serve as valuable biomarkers for evaluating the tumor microenvironment and predicting the prognosis of LUAD patients. Furthermore, these genes probably provide valuable guidance for establishing effective immunotherapy regimens for LUAD patients.
Collapse
Affiliation(s)
- Weibiao Zeng
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Wang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jian Yang
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhike Chen
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuan Cui
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qifan Li
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gaomeng Luo
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Ding
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sheng Ju
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Baisong Li
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jun Chen
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yufeng Xie
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Tong
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mi Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jun Zhao
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Zhang J, Liu X, Huang Z, Wu C, Zhang F, Han A, Stalin A, Lu S, Guo S, Huang J, Liu P, Shi R, Zhai Y, Chen M, Zhou W, Bai M, Wu J. T cell-related prognostic risk model and tumor immune environment modulation in lung adenocarcinoma based on single-cell and bulk RNA sequencing. Comput Biol Med 2023; 152:106460. [PMID: 36565482 DOI: 10.1016/j.compbiomed.2022.106460] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND T cells are present in all stages of tumor formation and play an important role in the tumor microenvironment. We aimed to explore the expression profile of T cell marker genes, constructed a prognostic risk model based on these genes in Lung adenocarcinoma (LUAD), and investigated the link between this risk model and the immunotherapy response. METHODS We obtained the single-cell sequencing data of LUAD from the literature, and screened out 6 tissue biopsy samples, including 32,108 cells from patients with non-small cell lung cancer, to identify T cell marker genes in LUAD. Combined with TCGA database, a prognostic risk model based on T-cell marker gene was constructed, and the data from GEO database was used for verification. We also investigated the association between this risk model and immunotherapy response. RESULTS Based on scRNA-seq data 1839 T-cell marker genes were identified, after which a risk model consisting of 9 gene signatures for prognosis was constructed in combination with the TCGA dataset. This risk model divided patients into high-risk and low-risk groups based on overall survival. The multivariate analysis demonstrated that the risk model was an independent prognostic factor. Analysis of immune profiles showed that high-risk groups presented discriminative immune-cell infiltrations and immune-suppressive states. Risk scores of the model were closely correlated with Linoleic acid metabolism, intestinal immune network for IgA production and drug metabolism cytochrome P450. CONCLUSION Our study proposed a novel prognostic risk model based on T cell marker genes for LUAD patients. The survival of LUAD patients as well as treatment outcomes may be accurately predicted by the prognostic risk model, and make the high-risk population present different immune cell infiltration and immunosuppression state.
Collapse
Affiliation(s)
- Jingyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xinkui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhihong Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fanqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Aiqing Han
- School of Management, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Shan Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Siyu Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiaqi Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Pengyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yiyan Zhai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Meilin Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wei Zhou
- Pharmacy Department, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Meirong Bai
- Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Tongliao, 028000, China.
| | - Jiarui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
10
|
D’Angelo A, Kilili H, Chapman R, Generali D, Tinhofer I, Luminari S, Donati B, Ciarrocchi A, Giannini R, Moretto R, Cremolini C, Pietrantonio F, Sobhani N, Bonazza D, Prins R, Song SG, Jeon YK, Pisignano G, Cinelli M, Bagby S, Urrutia AO. Immune-related pan-cancer gene expression signatures of patient survival revealed by NanoString-based analyses. PLoS One 2023; 18:e0280364. [PMID: 36649303 PMCID: PMC9844904 DOI: 10.1371/journal.pone.0280364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The immune system plays a central role in the onset and progression of cancer. A better understanding of transcriptional changes in immune cell-related genes associated with cancer progression, and their significance in disease prognosis, is therefore needed. NanoString-based targeted gene expression profiling has advantages for deployment in a clinical setting over RNA-seq technologies. We analysed NanoString PanCancer Immune Profiling panel gene expression data encompassing 770 genes, and overall survival data, from multiple previous studies covering 10 different cancer types, including solid and blood malignancies, across 515 patients. This analysis revealed an immune gene signature comprising 39 genes that were upregulated in those patients with shorter overall survival; of these 39 genes, three (MAGEC2, SSX1 and ULBP2) were common to both solid and blood malignancies. Most of the genes identified have previously been reported as relevant in one or more cancer types. Using Cibersort, we investigated immune cell levels within individual cancer types and across groups of cancers, as well as in shorter and longer overall survival groups. Patients with shorter survival had a higher proportion of M2 macrophages and γδ T cells. Patients with longer overall survival had a higher proportion of CD8+ T cells, CD4+ T memory cells, NK cells and, unexpectedly, T regulatory cells. Using a transcriptomics platform with certain advantages for deployment in a clinical setting, our multi-cancer meta-analysis of immune gene expression and overall survival data has identified a specific transcriptional profile associated with poor overall survival.
Collapse
Affiliation(s)
- Alberto D’Angelo
- Department of Life Sciences, University of Bath, Bath, United Kingdom
- Oncology Department, Royal United Hospital, Bath, United Kingdom
- * E-mail:
| | - Huseyin Kilili
- Milner Centre, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Robert Chapman
- Department of Medicine, The Princess Alexandra Hospital, Harlow, United Kingdom
| | - Daniele Generali
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy
| | - Ingeborg Tinhofer
- Department of Radiooncology and Radiotherapy, Charite´ University Hospital, Berlin, Germany
| | - Stefano Luminari
- Hematology Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Benedetta Donati
- Translational Research Laboratory, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Translational Research Laboratory, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Riccardo Giannini
- Department of Surgery, Clinical, Molecular and Critical Care Pathology, University of Pisa, Pisa, Italy
| | - Roberto Moretto
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Navid Sobhani
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Debora Bonazza
- Department of Medical, Surgical and Health Sciences, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Robert Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Seung Geun Song
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | | | - Mattia Cinelli
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Stefan Bagby
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Araxi O. Urrutia
- Milner Centre, Department of Life Sciences, University of Bath, Bath, United Kingdom
- Instituto de Ecologia, UNAM, Ciudad de Mexico, Mexico
| |
Collapse
|
11
|
Liang M, Meng X, Zhou B, Gao Y. RASAL3 predicts overall survival and CD8+ T lymphocyte infiltration in lung adenocarcinoma. J Cell Mol Med 2022; 26:6056-6065. [PMID: 36420686 PMCID: PMC9753442 DOI: 10.1111/jcmm.17625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/22/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022] Open
Abstract
RAS-activating protein-like 3 (RASAL3) is a synaptic Ras GTPase-activating protein (SynGAP) and a potential novel biomarker of CD8+ T cell infiltration in lung adenocarcinoma (LUAD). This study explored RASAL3 expression in LUAD, the prognostic impact of RASAL3 and the relationship with immune cell infiltration. RASAL3 expression in LUAD tissues was considerably low, with high RASAL3 expression associated with better overall survival, whereas the low expression was linked to advanced T, N, M classifications, TNM stage and lower grade. Furthermore, RASAL3 expression positively correlated with CD8+ T lymphocyte infiltration. In conclusion, RASAL3 expression is a potential prognostic and immunological biomarker of LUAD.
Collapse
Affiliation(s)
- Mei Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiangzhi Meng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Boxuan Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
12
|
Aberrant Expression and Prognostic Potential of IL-37 in Human Lung Adenocarcinoma. Biomedicines 2022; 10:biomedicines10123037. [PMID: 36551790 PMCID: PMC9775426 DOI: 10.3390/biomedicines10123037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Interleukin-37 (IL-37) is a relatively new IL-1 family cytokine that, due to its immunoregulatory properties, has lately gained increasing attention in basic and translational biomedical research. Emerging evidence supports the implication of this protein in any human disorder in which immune homeostasis is compromised, including cancer. The aim of this study was to explore the prognostic and/or diagnostic potential of IL-37 and its receptor SIGIRR (single immunoglobulin IL-1-related receptor) in human tumors. We utilized a series of bioinformatics tools and -omics datasets to unravel possible associations of IL-37 and SIGIRR expression levels and genetic aberrations with tumor development, histopathological parameters, distribution of tumor-infiltrating immune cells, and survival rates of patients. Our data revealed that amongst the 17 human malignancies investigated, IL-37 exhibits higher expression levels in tumors of lung adenocarcinoma (LUAD). Moreover, the expression profiles of IL-37 and SIGIRR are associated with LUAD development and tumor stage, whereas their high mRNA levels are favorable prognostic factors for the overall survival of patients. What is more, IL-37 correlates positively with a LUAD-associated transcriptomic signature, and its nucleotide changes and expression levels are linked with distinct infiltration patterns of certain cell subsets known to control LUAD anti-tumor immune responses. Our data indicate the potential value of IL-37 and its receptor SIGIRR to serve as biomarkers and/or immune-checkpoint therapeutic targets for LUAD patients. Further, the data highlight the urgent need for further exploration of this cytokine and the underlying pathogenetic mechanisms to fully elucidate its implication in LUAD development and progression.
Collapse
|
13
|
Direct Comparison of HPV16 Viral Genomic Integration, Copy Loss, and Structural Variants in Oropharyngeal and Uterine Cervical Cancers Reveal Distinct Relationships to E2 Disruption and Somatic Alteration. Cancers (Basel) 2022; 14:cancers14184488. [PMID: 36139648 PMCID: PMC9496734 DOI: 10.3390/cancers14184488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Squamous cell carcinoma of the oropharynx caused by HPV type 16 (HPV16+ OPSCC) is the most common HPV-associated malignancy in the USA and has many molecular differences from uterine cervical squamous cell carcinoma (UCSCC). Our understanding of HPV oncogenesis relied on studies of UCSCC revealing a consensus model reliant on HPV integration with a loss of E2. Here, we compare patterns of HPV integration in UCSCC and OPSCC by analysis of affinity capture sequencing of the HPV16 genome in 104 OPSCC and 44 UCSCC tumors. These cohorts were contemporaneously sequenced using an identical strategy. Integration was identified using discordant read pair clustering and assembly-based approaches. Viral integration sites, structural variants, and copy losses were examined. While large-scale deep losses of HPV16 genes were common in UCSCC and were associated with E2 loss, deep copy losses of the HPV16 genome were infrequent in HPV16+ OPSCC. Similarly, structural variants within HPV16 favored E2 loss in UCSCC but not OPSCC. HPV16 integration sites were non-random, with recurrent integration hot-spots identified. OPSCC tumors had many more integration sites per tumor when compared to UCSCC and had more integration sites in genomic regions with high gene density. These data show that viral integration and E2 disruption are distinct in UCSCC and OPSCC. Our findings also add to growing literature suggesting that HPV tumorigenesis in OPSCC does not follow the model developed based on UCSCC.
Collapse
|
14
|
Zhang J, Tang Z, Guo X, Wang Y, Zhou Y, Cai W. Synergistic effects of nab-PTX and anti-PD-1 antibody combination against lung cancer by regulating the Pi3K/AKT pathway through the Serpinc1 gene. Front Oncol 2022; 12:933646. [PMID: 35992834 PMCID: PMC9381811 DOI: 10.3389/fonc.2022.933646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is a type of cancer with higher morbidity and mortality. In spite of the impressive response rates of nab-paclitaxel (nab-PTX) or programmed cell death-1 (PD-1) and its ligand inhibitors, the effective treatment remains limited. Currently, alternative strategies aim at drug combination of nab-PTX and PD-1/PD-L1 inhibitors. Even as the clinical impact of the combined agents continues to increase, basic research studies are still limited and the mechanisms underlying this synergy are not well studied. In this study, we evaluated the antitumor efficacy and the molecular mechanisms of action of nab-PTX in combination with anti-PD-1 antibody, using Lewis lung carcinoma (LLC) cell and subcutaneously transplanted tumor models. The combination of nab-PTX and anti-PD-1 antibody displayed stronger antitumor effects, manifested at tumor volume, proliferation and apoptosis through Ki67 and TUNEL staining. In-vivo experiments showed significant increases in CD4+ T cells, CD8+ T cells, IFN-γ, TNF-α, IL-2, PF, and Gzms-B, exerting antitumor effects with reductions in MDSCs and IL-10 after the treatments. Furthermore, transcriptomic analysis indicated 20 overlapped differentially expressed genes, and Serpin peptidase inhibitor clade C Member 1 (Serpinc1) was downregulated during treatment in vivo, whose expression level was markedly related to metastasis and overall survival of lung cancer patients. Functional enrichment analysis of the target gene revealed primary GO terms related to tumor, which warrants further investigation. We also found that Serpinc1 overexpression promoted cell proliferation, migration, and invasion and inhibited cell apoptosis of LLC cells in vitro, possibly regulating the associated factors via the Pi3K/AKT pathway. In summary, our results reveal the synergistic antitumor responses of nab-PTX combined with anti-PD-1 antibody, in which Serpinc1 may play an important role, providing a target gene for combination treatment strategy.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhijia Tang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Xi Guo
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunxia Wang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weimin Cai
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Esworthy RS, Doroshow JH, Chu FF. The beginning of GPX2 and 30 years later. Free Radic Biol Med 2022; 188:419-433. [PMID: 35803440 PMCID: PMC9341242 DOI: 10.1016/j.freeradbiomed.2022.06.232] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
We published the first paper to characterize GPX2 (aka GSHPx-GI) as a selenoenzyme with glutathione peroxidase activity in 1993. Among the four Se-GPX isozymes, GPX1-4, GPX1 and GPX2 are closely related in terms of structure, substrate specificities, and subcellular localization. What sets them apart are distinct patterns of gene regulation, tissue distribution and response to selenium. While we identified the digestive tract epithelium as the main site of GPX2 expression, later work has shown GPX2 is found more widely in epithelial tissues with concentration of expression in stem cell and proliferative compartments. GPX2 expression is regulated over a wide range of levels by many pathways, including NRF2, WNT, p53, RARE and this often results in attaching undue significance to GPX2 as GPX2 is only a part of a system of hydroperoxidase activities, including GPX1, peroxiredoxins and catalase. These other activities may play equal or greater roles, particularly in cell lines cultured without selenium supplementation and often with very low GPX2 levels. This could be assessed by examining levels of mRNA and protein among these various peroxidases at the outset of studies. As an example, it was found that GPX1 responds to the absence of GPX2 in mouse ileum and colon epithelium with higher expression. As such, both Gpx1 and Gpx2 had to be knocked out in mice to produce ileocolitis. However, we note that the actual role of GPX1 and GPX2 in relation to peroxiredoxin function is unclear. There may be an interdependence that requires only low amounts of GPX1 and/or GPX2 in a supporting role to maintain proper peroxiredoxin function. GPX2 levels may be prognostic for cancer progression in colon, breast, prostate and liver, however, there is no consistent trend for higher or lower levels to be favorable.
Collapse
Affiliation(s)
- R Steven Esworthy
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute of City of Hope. Duarte, California, USA, 91010.
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Fong-Fong Chu
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute of City of Hope. Duarte, California, USA, 91010.
| |
Collapse
|
16
|
A Novel Prognostic Signature Revealed the Interaction of Immune Cells in Tumor Microenvironment Based on Single-Cell RNA Sequencing for Lung Adenocarcinoma. J Immunol Res 2022; 2022:6555810. [PMID: 35812244 PMCID: PMC9270162 DOI: 10.1155/2022/6555810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Background The tumor immune microenvironment (TIME) played an important role in immunotherapy prognosis and treatment response. Immune cells constitute a large part of the tumor microenvironment and regulate tumor progression. Our research is dedicated to studying the infiltrating immune cell in lung adenocarcinoma (LUAD) and seeking potential targets. Methods The scRNA-seq data were collected from our FDZSH and two public datasets. The code for cell-type mapping algorithms was downloaded from the CIBERSORTx portal. The bioinformatics data of LUAD patients could be approached from The Cancer Genome Atlas (TCGA) portal. Weighted gene coexpression network analysis (WGCNA) and least absolute shrinkage and selection operator (LASSO) analyses were performed to construct a risk model. TIMER2 and TIDE helped with the immune infiltration estimation, while PROGENy helped the cancer-related pathways' enrichment analysis. GSE31210 dataset and IMVigor ICB therapy cohort validated our findings as the external validation datasets. Results We clustered the scRNA-seq dataset (integrating our FDZSH datasets and other public datasets) into 23 subpopulations. After curated cell annotation, we implemented Cibersort and WGCNA analysis to anchor the brown module and natural killer cell cluster1 due to the most relationship with tumor trait. The overlap of the brown module gene, natural killer cell signature, and DEGs of tumor and adjacent normal samples was screened by LASSO Cox regression. The obtained 5-gene risk model showed an excellent prognostic performance in the validation dataset. Furthermore, there was a correlation between risk score and tumor-infiltrating immune cells and tumor genomics abnormity. Patients with higher risk scores had a significantly lower immunotherapy response rate. Conclusion Our observations implied that immune cells played a pivotal role in TIME and established a 5-gene signature (including IDH2, ADRB2, SFTPC, CCDC69, and CCND2) on the basement of nature killer markers targeted by WGCNA analysis. The significance of clinical outcome and immunotherapy response prediction was validated robustly.
Collapse
|
17
|
Ma L, Chen H, Zhang Z, Liu L, Zhao Y, Li Y, Zhao Z, Chen H, Kang L. Association Study Between Polymorphic Loci in Cholesterol Metabolism Pathway and Gallstone in the Tibetan Population. Front Genet 2022; 13:902553. [PMID: 35651949 PMCID: PMC9149373 DOI: 10.3389/fgene.2022.902553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Background: The incidence of gallstones in the Tibetan population is increasing rapidly. Previous studies indicated that genetic variation located in the cholesterol metabolism pathway may be associated with the incidence of gallstones. Methods: By recruiting 132 Tibetan gallstone patients and 52 normal Tibetan controls, we performed next-generation sequencing for 508 genes in the cholesterol metabolism pathway. Additionally, by integrating the sequence data of 41 normal Tibetan subjects in the public database, we finally obtained 93 normal Tibetan controls. Single nucleotide polymorphisms (SNPs) calling were performed by using the GATK pipeline. The quality control criteria for SNPs were: missing rate <0.05; minor allele frequency (MAF) > 0.01; and p value >0.001 in the Hardy-Weinberg Equilibrium (HWE) test. To eliminate the influence of population heterogeneity, Principal Component Analysis (PCA) was carried out by using the smartpca software. Association analyses were performed by Plink software. Multiple tests were adjusted by the false discovery rate (FDR) method. Results: A total of 2,401 SNPs were obtained by analyzing 508 genes, and 2,011 SNPs left after quality control. After adjusting the eigen vectors, we found that 10 SNPs (SNV05997, rs80145081, rs80005560, rs79074685, rs748546375, rs201880593, rs142559357, rs750769471, rs869789 and rs4072341) were significantly associated with gallstone. Subsequently, by comparing the case group with our control group and the public database control group separately, we further found that the SNP rs869789 was consistently significantly associated with gallstone (p = 9.04 × 10–3 in cases vs. our controls and 5.73 × 10–3 in cases vs. public controls, respectively). Conclusion: By systematically analyzed SNPs in the cholesterol metabolism pathway, we identified one polymorphic locus rs869789 significantly associated with the pathogenesis of gallstone in the Tibetan population. This study will provide clue for further mechanism study of gallstone in the Tibetan population.
Collapse
Affiliation(s)
- Lifeng Ma
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Hui Chen
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Zhiying Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Lijun Liu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Yiduo Zhao
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Yansong Li
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Zhipeng Zhao
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Haitao Chen
- School of Public Health, Sun Yat-sen University, Shenzhen, China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| |
Collapse
|
18
|
Zhao Y, Chen D, Yin J, Xie J, Sun CY, Lu M. Comprehensive Analysis of Tumor Immune Microenvironment Characteristics for the Prognostic Prediction and Immunotherapy of Oral Squamous Cell Carcinoma. Front Genet 2022; 13:788580. [PMID: 35464860 PMCID: PMC9024147 DOI: 10.3389/fgene.2022.788580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Oral squamous cell carcinoma (OSCC) is the most common cancer of oral and maxillofacial region. A recent clinical research has shown that tumor immune microenvironment (TIME)cells are closely related to immunotherapy sensitivity and OSCC prognosis. Nonetheless, a comprehensive analysis of TIME in OSCC has not been reported. Methods: Bioinformatics and computational algorithms were employed to determine the significance of TIME cells in 257 OSCC patients. TIME scores were measured by three TIME models, and then used to evaluate the prognosis of OSCC patients. Results: High TIME score was characterized by better prognosis in OSCC patients less than 60 years old, overexpression of immunotherapy targets (e.g., PD-1 and CLTA-4), and higher T-cell activity to inhibit tumor growth. Besides, poor prognosis was associated with low time score. Conclusion: TIME score exhibited potential as a prognostic biomarker and an indicator in predict immunotherapeutic outcomes. Through the understanding of TIME model, this study can provide a better scheme for immunotherapy as the effective treatment of OSCC patients in the future.
Collapse
Affiliation(s)
- Yijie Zhao
- Department of Oral and Maxillofacial Surgery, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Dongyi Chen
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Junhao Yin
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Xie
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Chun-yu Sun
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengmeng Lu
- Department of Oral and Maxillofacial Surgery, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- *Correspondence: Mengmeng Lu,
| |
Collapse
|
19
|
An immune-related nomogram model that predicts the overall survival of patients with lung adenocarcinoma. BMC Pulm Med 2022; 22:114. [PMID: 35354459 PMCID: PMC8969384 DOI: 10.1186/s12890-022-01902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/14/2022] [Indexed: 11/20/2022] Open
Abstract
Background Lung adenocarcinoma accounts for approximately 40% of all primary lung cancers; however, the mortality rates remain high. Successfully predicting progression and overall (OS) time will provide clinicians with more options to manage this disease.
Methods We analyzed RNA sequencing data from 510 cases of lung adenocarcinoma from The Cancer Genome Atlas database using CIBERSORT, ImmuCellAI, and ESTIMATE algorithms. Through these data we constructed 6 immune subtypes and then compared the difference of OS, immune infiltration level and gene expression between these immune subtypes. Also, all the subtypes and immune cells infiltration level were used to evaluate the relationship with prognosis and we introduced lasso-cox method to constructe an immune-related prognosis model. Finally we validated this model in another independent cohort. Results The C3 immune subtype of lung adenocarcinoma exhibited longer survival, whereas the C1 subtype was associated with a higher mutation rate of MUC17 and FLG genes compared with other subtypes. A multifactorial correlation analysis revealed that immune cell infiltration was closely associated with overall survival. Using data from 510 cases, we constructed a nomogram prediction model composed of clinicopathologic factors and immune signatures. This model produced a C-index of 0.73 and achieved a C-index of 0.844 using a validation set. Conclusions Through this study we constructed an immune related prognosis model to instruct lung adenocarcinoma’s OS and validated its value in another independent cohost. These results will be useful in guiding treatment for lung adenocarcinoma based on tumor immune profiles. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01902-6.
Collapse
|
20
|
Tan Z, Chen M, Wang Y, Peng F, Zhu X, Li X, Zhang L, Li Y, Liu Y. CHEK1: a hub gene related to poor prognosis for lung adenocarcinoma. Biomark Med 2021; 16:83-100. [PMID: 34882011 DOI: 10.2217/bmm-2021-0919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The study aims to pinpoint hub genes and investigate their functions in order to gain insightful understandings of lung adenocarcinoma (LUAD). Methods: Bioinformatic approaches were adopted to investigate genes in databases including Gene Expression Omnibus, WebGestalt, STRING and Cytoscape, GEPIA2, Oncomine, Human Protein Atlas, TIMER2.0, UALCAN, cBioPortal, TargetScanHuman, OncomiR, ENCORI, Kaplan-Meier plotter, UCSC Xena, European Molecular Biology Laboratory - European Bioinformatics Institute Single Cell Expression Atlas and CancerSEA. Results: Five hub genes were ascertained. CHEK1 was overexpressed in a range of cancers, including LUAD. Promoter methylation, amplification and miRNA regulation might trigger CHEK1 upregulation, signaling poor prognosis. CHEK1 with its coexpressed genes were enriched in the cell cycle pathway. Intratumor heterogeneity of CHEK1 expression could be observed. Cell clusters with CHEK1 expression were more prone to metastasis and epithelial-to-mesenchymal transition. Conclusion: CHEK1 might potentially act as a prognostic biomarker for LUAD.
Collapse
Affiliation(s)
- Zhibo Tan
- Department of Radiation Oncology, Peking University Shenzhen Hospital, no. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong Province, 518036, China.,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Shenzhen-Peking University-Hong Kong University of Science & Technology Medical Center, Peking University Shenzhen Hospital, No. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong Province, 518036, China
| | - Min Chen
- Department of Radiation Oncology, Peking University Shenzhen Hospital, no. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong Province, 518036, China.,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Shenzhen-Peking University-Hong Kong University of Science & Technology Medical Center, Peking University Shenzhen Hospital, No. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong Province, 518036, China
| | - Ying Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 113, Baohe Avenue, Longgang District, Shenzhen, Guangdong Province, 518116, China
| | - Feng Peng
- Department of Radiation Oncology, Peking University Shenzhen Hospital, no. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong Province, 518036, China.,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Shenzhen-Peking University-Hong Kong University of Science & Technology Medical Center, Peking University Shenzhen Hospital, No. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong Province, 518036, China
| | - Xiaopeng Zhu
- Department of Radiation Oncology, Peking University Shenzhen Hospital, no. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong Province, 518036, China.,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Shenzhen-Peking University-Hong Kong University of Science & Technology Medical Center, Peking University Shenzhen Hospital, No. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong Province, 518036, China
| | - Xin Li
- Department of Radiation Oncology, Peking University Shenzhen Hospital, no. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong Province, 518036, China.,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Shenzhen-Peking University-Hong Kong University of Science & Technology Medical Center, Peking University Shenzhen Hospital, No. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong Province, 518036, China
| | - Lei Zhang
- Department of Radiation Oncology, Peking University Shenzhen Hospital, no. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong Province, 518036, China.,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Shenzhen-Peking University-Hong Kong University of Science & Technology Medical Center, Peking University Shenzhen Hospital, No. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong Province, 518036, China
| | - Ying Li
- Department of Radiation Oncology, Peking University Shenzhen Hospital, no. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong Province, 518036, China.,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Shenzhen-Peking University-Hong Kong University of Science & Technology Medical Center, Peking University Shenzhen Hospital, No. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong Province, 518036, China
| | - Yajie Liu
- Department of Radiation Oncology, Peking University Shenzhen Hospital, no. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong Province, 518036, China.,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Shenzhen-Peking University-Hong Kong University of Science & Technology Medical Center, Peking University Shenzhen Hospital, No. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong Province, 518036, China
| |
Collapse
|
21
|
Ma W, Li W, Xu L, Liu L, Xia Y, Yang L, Da M. Identification of a Gene Prognostic Model of Gastric Cancer Based on Analysis of Tumor Mutation Burden. Pathol Oncol Res 2021; 27:1609852. [PMID: 34566519 PMCID: PMC8460769 DOI: 10.3389/pore.2021.1609852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/27/2021] [Indexed: 01/06/2023]
Abstract
Introduction: Gastric cancer is one of the most common cancers. Although some progress has been made in the treatment of gastric cancer with the improvement of surgical methods and the application of immunotherapy, the prognosis of gastric cancer patients is still unsatisfactory. In recent years, there has been increasing evidence that tumor mutational load (TMB) is strongly associated with survival outcomes and response to immunotherapy. Given the variable response of patients to immunotherapy, it is important to investigate clinical significance of TMB and explore appropriate biomarkers of prognosis in patients with gastric cancer (GC). Material and Methods: All data of patients with gastric cancer were obtained from the database of The Cancer Genome Atlas (TCGA). Samples were divided into two groups based on median TMB. Differently expressed genes (DEGs) between the high- and low-TMB groups were identified and further analyzed. We identified TMB-related genes using Lasso, univariate and multivariate Cox regression analysis and validated the survival result of 11 hub genes using Kaplan-Meier Plotter. In addition, “CIBERSORT” package was utilized to estimate the immune infiltration. Results: Single nucleotide polymorphism (SNP), C > T transition were the most common variant type and single nucleotide variant (SNV), respectively. Patients in the high-TMB group had better survival outcomes than those in the low-TMB group. Besides, eleven TMB-related DEGs were utilized to construct a prognostic model that could be an independent risk factor to predict the prognosis of patients with GC. What’s more, the infiltration levels of CD4+ memory-activated T cells, M0 and M1 macrophages were significantly increased in the high-TMB group compared with the low-TMB group. Conclusions: Herein, we found that patients with high TMB had better survival outcomes in GC. In addition, higher TMB might promote immune infiltration, which could provide new ideas for immunotherapy.
Collapse
Affiliation(s)
- Weijun Ma
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China
| | - Weidong Li
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China
| | - Lei Xu
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China.,The First Clinical Medical College, Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Lu Liu
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China.,The First Clinical Medical College, Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Yu Xia
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China.,First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Liping Yang
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China
| | - Mingxu Da
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|