1
|
Cabanzo-Olarte LC, Cardoso Bícego K, Navas Iannini CA. Behavioral responses during sickness in amphibians and reptiles: Concepts, experimental design, and implications for field studies. J Therm Biol 2024; 123:103889. [PMID: 38897001 DOI: 10.1016/j.jtherbio.2024.103889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
In ectothermic vertebrates, behavioral fever, where an individual actively seeks warmer areas, seems to be a primary response to pathogens. This is considered a broad and evolutionarily conserved response among vertebrates. Recent population declines in amphibians are associated with an increase of infectious disease driven largely by climate change, habitat degradation, and pollution. Immediate action through research is required to better understand and inform conservation efforts. The literature available, does not provide unifying concepts that can guide adequate experimental protocols and interpretation of data, especially when studying animals in the field. The aim of this review is to promote common understanding of terminology and facilitating improved comprehension and application of key concepts about the occurrence of both sickness behavior or behavioral fever in ectothermic vertebrates. We start with a conceptual synthesis of sickness behavior and behavioral fever, with examples in different taxa. Through this discussion we present possible paths to standardize terminology, starting from original use in endothermic tetrapods which was expanded to ectothermic vertebrates, particularly amphibians and reptiles. This conceptual expansion from humans (endothermic vertebrates) and then to ectothermic counterparts, gravitates around the concept of 'normality'. Thus, following this discussion, we highlight caveats with experimental protocols and state the need of a reference value considered normal (RVCN), which is different from experimental control and make recommendations regarding experimental procedures and stress the value of detailed documentation of behavioral responses. We also propose some future directions that could enhance interaction among disciplines, emphasizing relationships at different levels of biological organization. This is crucial given the increasing convergence of fields such as thermal physiology, immunology, and animal behavior due to emerging diseases and other global crises impacting biodiversity.
Collapse
Affiliation(s)
- Laura Camila Cabanzo-Olarte
- Physiology Department, Biosciences Institute, University of São Paulo, Trav. 14, N 321, CEP 05508-090 São Paulo, SP, Brazil.
| | - Kênia Cardoso Bícego
- Department of Animal Morphology and Physiology, São Paulo State University (FCAV-UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP 14884-900, Brazil.
| | - Carlos Arturo Navas Iannini
- Physiology Department, Biosciences Institute, University of São Paulo, Trav. 14, N 321, CEP 05508-090 São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Carvalho T, Belasen AM, Toledo LF, James TY. Coevolution of a generalist pathogen with many hosts: the case of the amphibian chytrid Batrachochytrium dendrobatidis. Curr Opin Microbiol 2024; 78:102435. [PMID: 38387210 DOI: 10.1016/j.mib.2024.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/22/2023] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
Generalist pathogens maintain infectivity in numerous hosts; how this broad ecological niche impacts host-pathogen coevolution remains to be widely explored. Batrachochytrium dendrobatidis (Bd) is a highly generalist pathogenic fungus that has caused devastating declines in hundreds of amphibian species worldwide. This review examines amphibian chytridiomycosis host-pathogen interactions and available evidence for coevolution between Bd and its numerous hosts. We summarize recent evidence showing that Bd genotypes vary in geographic distribution and virulence, and that amphibian species also vary in Bd susceptibility according to their geographic distribution. How much variation can be explained by phenotypic plasticity or genetic differences remains uncertain. Recent research suggests that Bd genotypes display preferences for specific hosts and that some hosts are undergoing evolution as populations rebound from Bd outbreaks. Taken together, these findings suggest the potential for coevolution to occur and illuminate a path for addressing open questions through integrating historical and contemporary genetic data.
Collapse
Affiliation(s)
- Tamilie Carvalho
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Anat M Belasen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - L Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Unicamp, Campinas, São Paulo, Brazil
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
3
|
Fu M. Evolutionary analysis of major histocompatibility complex variants in chytrid-resistant and susceptible amphibians. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105544. [PMID: 38216106 DOI: 10.1016/j.meegid.2023.105544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/09/2023] [Accepted: 12/17/2023] [Indexed: 01/14/2024]
Abstract
An amphibian emerging infectious disease (EID), chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), originated in Asia but primarily led to declines and extinctions in amphibian populations outside of Asia. Host major histocompatibility complex (MHC) molecules exhibit high polymorphism, and the evolution of MHC can be influenced by recombination and pathogens. Previous studies have indicated that host MHC class II is associated with Bd resistance. In this study, I conducted recombination and selection tests on functional MHC IIß1 alleles from an Asian Bd-resistant anuran species (Bufo gargarizans) and an Australasian Bd-susceptible species (Litoria caerulea). Recombination at the same site was identified in both species, supporting the hypothesis that recombination contributes to MHC IIß1 diversity in amphibians. Positive selection was observed in MHC IIß1 alleles in both species. In L. caerulea, at least four amino acid sites were identified under significant positive selection in the MHC IIß1, whereas these sites were either negatively selected or conserved in B. gargarizans. This suggests these sites might be selected for Bd resistance. Hydrophobicity was detected in certain amino acid sites relating to Bd resistance, suggesting this physicochemical property may be a factor selected to counteract Bd infection. These findings of this study provide an evolutionary basis for understanding how amphibian MHC IIß1 may undergo selection in response to chytrid infection.
Collapse
Affiliation(s)
- Minjie Fu
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Fleischer R, Eibner GJ, Schwensow NI, Pirzer F, Paraskevopoulou S, Mayer G, Corman VM, Drosten C, Wilhelm K, Heni AC, Sommer S, Schmid DW. Immunogenetic-pathogen networks shrink in Tome's spiny rat, a generalist rodent inhabiting disturbed landscapes. Commun Biol 2024; 7:169. [PMID: 38341501 PMCID: PMC10858909 DOI: 10.1038/s42003-024-05870-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Anthropogenic disturbance may increase the emergence of zoonoses. Especially generalists that cope with disturbance and live in close contact with humans and livestock may become reservoirs of zoonotic pathogens. Yet, whether anthropogenic disturbance modifies host-pathogen co-evolutionary relationships in generalists is unknown. We assessed pathogen diversity, neutral genome-wide diversity (SNPs) and adaptive MHC class II diversity in a rodent generalist inhabiting three lowland rainforest landscapes with varying anthropogenic disturbance, and determined which MHC alleles co-occurred more frequently with 13 gastrointestinal nematodes, blood trypanosomes, and four viruses. Pathogen-specific selection pressures varied between landscapes. Genome-wide diversity declined with the degree of disturbance, while MHC diversity was only reduced in the most disturbed landscape. Furthermore, pristine forest landscapes had more functional important MHC-pathogen associations when compared to disturbed forests. We show co-evolutionary links between host and pathogens impoverished in human-disturbed landscapes. This underscores that parasite-mediated selection might change even in generalist species following human disturbance which in turn may facilitate host switching and the emergence of zoonoses.
Collapse
Affiliation(s)
- Ramona Fleischer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Georg Joachim Eibner
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
- Smithsonian Tropical Research Institute, Panamá, República de Panamá
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nina Isabell Schwensow
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Fabian Pirzer
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Gerd Mayer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Victor Max Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Robert Koch Institute, Nordufer 20, Berlin, 13353, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Robert Koch Institute, Nordufer 20, Berlin, 13353, Germany
- German Centre for Infection Research (DZIF), Berlin, Germany
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Alexander Christoph Heni
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
- Smithsonian Tropical Research Institute, Panamá, República de Panamá
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.
| | - Dominik Werner Schmid
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
5
|
Belasen AM, Peek RA, Adams AJ, Russell ID, De León ME, Adams MJ, Bettaso J, Breedveld KGH, Catenazzi A, Dillingham CP, Grear DA, Halstead BJ, Johnson PG, Kleeman PM, Koo MS, Koppl CW, Lauder JD, Padgett-Flohr G, Piovia-Scott J, Pope KL, Vredenburg V, Westphal M, Wiseman K, Kupferberg SJ. Chytrid infections exhibit historical spread and contemporary seasonality in a declining stream-breeding frog. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231270. [PMID: 38298390 PMCID: PMC10827429 DOI: 10.1098/rsos.231270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024]
Abstract
Species with extensive geographical ranges pose special challenges to assessing drivers of wildlife disease, necessitating collaborative and large-scale analyses. The imperilled foothill yellow-legged frog (Rana boylii) inhabits a wide geographical range and variable conditions in rivers of California and Oregon (USA), and is considered threatened by the pathogen Batrachochytrium dendrobatidis (Bd). To assess drivers of Bd infections over time and space, we compiled over 2000 datapoints from R. boylii museum specimens (collected 1897-2005) and field samples (2005-2021) spanning 9° of latitude. We observed a south-to-north spread of Bd detections beginning in the 1940s and increase in prevalence from the 1940s to 1970s, coinciding with extirpation from southern latitudes. We detected eight high-prevalence geographical clusters through time that span the species' geographical range. Field-sampled male R. boylii exhibited the highest prevalence, and juveniles sampled in autumn exhibited the highest loads. Bd infection risk was highest in lower elevation rain-dominated watersheds, and with cool temperatures and low stream-flow conditions at the end of the dry season. Through a holistic assessment of relationships between infection risk, geographical context and time, we identify the locations and time periods where Bd mitigation and monitoring will be critical for conservation of this imperilled species.
Collapse
Affiliation(s)
- A. M. Belasen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - R. A. Peek
- California Department of Fish and Wildlife, West Sacramento, CA, USA
| | - A. J. Adams
- Earth Research Institute, University of California, Santa Barbara, CA, USA
| | - I. D. Russell
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - M. E. De León
- Genome Center, University of California, Davis, CA, USA
| | - M. J. Adams
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, USA
| | - J. Bettaso
- Six Rivers National Forest, Lower Trinity Ranger District, USDA Forest Service, P.O. Box 68, Willow Creek, CA, USA
| | | | - A. Catenazzi
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | | | - D. A. Grear
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI, USA
| | - B. J. Halstead
- Point Reyes Field Station, U.S. Geological Survey, Western Ecological Research Center, Point Reyes Station, CA, USA
| | - P. G. Johnson
- Pinnacles National Park, National Park Service, Paicines, CA, USA
| | - P. M. Kleeman
- Point Reyes Field Station, U.S. Geological Survey, Western Ecological Research Center, Point Reyes Station, CA, USA
| | - M. S. Koo
- Museum of Vertebrate Zoology, University of California, Berkeley, CA
| | - C. W. Koppl
- Plumas National Forest, USDA Forest Service, Quincy, CA, USA
| | | | | | - J. Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - K. L. Pope
- Pacific Southwest Research Station, USDA Forest Service, Arcata, CA, USA
| | - V. Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - M. Westphal
- Central Coast Field Office, United States Bureau of Land Management, Marina, CA, USA
| | - K. Wiseman
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - S. J. Kupferberg
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
6
|
Pröhl H, Rodríguez A. Importance of Genetic-Fitness Correlations for the Conservation of Amphibians. Animals (Basel) 2023; 13:3564. [PMID: 38003181 PMCID: PMC10668650 DOI: 10.3390/ani13223564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Endangered animals suffer from isolation of their habitats. Isolation leads to a reduction in population size as well as a decrease in genetic diversity and a concomitant increase in the risk of extinction. Amphibians are the most endangered vertebrate class. Besides habitat loss, fragmentation and isolation, amphibians are threatened by emerging diseases e.g., chytrid fungus or Ranavirus. By employing experiments, researchers investigate whether changes in genetic diversity within or among isolated populations affect amphibian fitness. While genetic diversity estimates are based on molecular markers, typically microsatellites, fitness is mostly measured as tadpole performance in rearing experiments often under varying environmental conditions. Tadpole performances (e.g., body mass, growth rate and survival) have been found to be negatively affected by low genetic diversity, as several studies have found a positive association between genetic diversity and these fitness traits. Moreover, infection with pathogens also seems to be more likely in individuals or populations with lower genetic diversity. Overall, these genetic-fitness correlations seem to be more pronounced or detectable in smaller, declining populations but not in larger populations. Genomic studies, which sample a larger fraction of the genome, are still scarce in the conservation genetic literature on amphibians. These are likely to increase in upcoming years and may reveal adaptive variants that protect against dangerous pathogens or environmental changes. Altogether, genetic-fitness correlation studies should be a priority in order to develop effective management plans for the genetic rescue of isolated, imperilled amphibian populations.
Collapse
Affiliation(s)
- Heike Pröhl
- Institute of Zoology, University of Veterinary Medicine of Hannover, Bünteweg 17, 30559 Hannover, Germany;
| | | |
Collapse
|
7
|
Haddad CF, Lopes CM, Becker CG, da Silva FR, Lyra ML. From genes to ecosystems: a synthesis of amphibian biodiversity research in Brazil. BIOTA NEOTROPICA 2022. [DOI: 10.1590/1676-0611-bn-2022-1375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract Here, we summarize examples of significant advances in amphibian research supported by the São Paulo Research Foundation (FAPESP), focusing on recent discoveries in the fields of community ecology, habitat change, infection diseases, and multipurpose DNA sequencing. We demonstrated that FAPESP has been fundamental not only by directly funding research projects and scholarships, but also through its science training policy, fostering international collaborations with world-class research institutions, improving and consolidating new lines of research that often depended on a synergetic combination of different knowledge and complex tools. We emphasized that future studies will continue to focus on basic questions, such as description of new species, as well as taxonomic and systematic corrections. Furthermore, we also expect that there will be a strong integration among different disciplines using novel bioinformatics tools and modeling approaches, such as machine learning. These new approaches will be critical to further develop our understanding of foundational questions of amphibian life-history trait variation, disease transmission, community assembly, biogeography, and population forecasts under different global change scenarios such as agricultural expansion, agrochemical use, habitat loss, and climate change.
Collapse
|