1
|
Zhou H, Ma L, Liu L, Yao X. TR Locus Annotation and Characteristics of Rhinolophus ferrumequinum. Front Immunol 2021; 12:741408. [PMID: 34659234 PMCID: PMC8514952 DOI: 10.3389/fimmu.2021.741408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
T-cell antigen receptors (TRs) in vertebrates can be divided into αβ or γδ, encoded by TRA/D, TRG, or TRB loci. TRs play a central role in mammal cellular immunity, which occurs by rearrangement of V, D, J, and C genes in the loci. The bat is the only mammal with flying ability and is considered the main host of zoonotic viruses, an important public health concern. However, at present, little is known about the composition of bat TR genes. Based on the whole genome sequence of the greater horseshoe bat (Rhinolophus ferrumequinum) and referring to the TR/IG annotation rules formulated by the international ImMunoGeneTics information system (IMGT), we present a complete annotation of TRA/D, TRG, and TRB loci of R. ferrumequinum. A total of 128 V segments, three D segments, 85 J segments, and 6 C segments were annotated and compared with other known mammalian data. The characteristics of the TR locus and germline genes of R. ferrumequinum are analyzed.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Long Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Longyu Liu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Antonacci R, Massari S, Linguiti G, Caputi Jambrenghi A, Giannico F, Lefranc MP, Ciccarese S. Evolution of the T-Cell Receptor (TR) Loci in the Adaptive Immune Response: The Tale of the TRG Locus in Mammals. Genes (Basel) 2020; 11:E624. [PMID: 32517024 PMCID: PMC7349638 DOI: 10.3390/genes11060624] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
T lymphocytes are the principal actors of vertebrates' cell-mediated immunity. Like B cells, they can recognize an unlimited number of foreign molecules through their antigen-specific heterodimer receptors (TRs), which consist of αβ or γδ chains. The diversity of the TRs is mainly due to the unique organization of the genes encoding the α, β, γ, and δ chains. For each chain, multi-gene families are arranged in a TR locus, and their expression is guaranteed by the somatic recombination process. A great plasticity of the gene organization within the TR loci exists among species. Marked structural differences affect the TR γ (TRG) locus. The recent sequencing of multiple whole genome provides an opportunity to examine the TR gene repertoire in a systematic and consistent fashion. In this review, we report the most recent findings on the genomic organization of TRG loci in mammalian species in order to show differences and similarities. The comparison revealed remarkable diversification of both the genomic organization and gene repertoire across species, but also unexpected evolutionary conservation, which highlights the important role of the T cells in the immune response.
Collapse
Affiliation(s)
- Rachele Antonacci
- Department of Biology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (S.C.)
| | - Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Giovanna Linguiti
- Department of Biology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (S.C.)
| | - Anna Caputi Jambrenghi
- Department of Agricultural and Environmental Science, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.C.J.); (F.G.)
| | - Francesco Giannico
- Department of Agricultural and Environmental Science, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.C.J.); (F.G.)
| | - Marie-Paule Lefranc
- IMGT, the International ImMunoGeneTics Information System, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR9002 CNRS, Université de Montpellier, CEDEX 5, 34396 Montpellier, France;
| | - Salvatrice Ciccarese
- Department of Biology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (S.C.)
| |
Collapse
|
3
|
Ciccarese S, Burger PA, Ciani E, Castelli V, Linguiti G, Plasil M, Massari S, Horin P, Antonacci R. The Camel Adaptive Immune Receptors Repertoire as a Singular Example of Structural and Functional Genomics. Front Genet 2019; 10:997. [PMID: 31681428 PMCID: PMC6812646 DOI: 10.3389/fgene.2019.00997] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/18/2019] [Indexed: 01/08/2023] Open
Abstract
The adaptive immune receptors repertoire is highly plastic, with its ability to produce antigen-binding molecules and select those with high affinity for their antigen. Species have developed diverse genetic and structural strategies to create their respective repertoires required for their survival in the different environments. Camelids, until now, considered as a case of evolutionary innovation because of their only heavy-chain antibodies, represent a new mammalian model particularly useful for understanding the role of diversity in the immune system function. Here, we review the structural and functional characteristics and the current status of the genomic organization of camel immunoglobulins (IG) or antibodies, α/ß and γ/δ T cell receptors (TR), and major histocompatibility complex (MHC). In camelid humoral response, in addition to the conventional antibodies, there are IG with “only-heavy-chain” (no light chain, and two identical heavy gamma chains lacking CH1 and with a VH domain designated as VHH). The unique features of these VHH offer advantages in biotechnology and for clinical applications. The TRG and TRD rearranged variable domains of Camelus dromedarius (Arabian camel) display somatic hypermutation (SHM), increasing the intrinsic structural stability in the γ/δ heterodimer and influencing the affinity maturation to a given antigen similar to immunoglobulin genes. The SHM increases the dromedary γ/δ repertoire diversity. In Camelus genus, the general structural organization of the TRB locus is similar to that of the other artiodactyl species, with a pool of TRBV genes positioned at the 5’ end of three in tandem D-J-C clusters, followed by a single TRBV gene with an inverted transcriptional orientation located at the 3’ end. At the difference of TRG and TRD, the diversity of the TRB variable domains is not shaped by SHM and depends from the classical combinatorial and junctional diversity. The MHC locus is located on chromosome 20 in Camelus dromedarius. Cytogenetic and comparative whole genome analyses revealed the order of the three major regions “Centromere-ClassII-ClassIII-ClassI”. Unexpectedly low extent of polymorphisms and haplotypes was observed in all Old World camels despite different geographic origins.
Collapse
Affiliation(s)
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro," Bari, Italy
| | - Vito Castelli
- Department of Biology, University of Bari "Aldo Moro," Bari, Italy
| | | | - Martin Plasil
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia.,CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences, RG Animal Immunogenomics, Brno, Czechia
| | - Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | - Petr Horin
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia.,CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences, RG Animal Immunogenomics, Brno, Czechia
| | | |
Collapse
|
4
|
Moulana M, Taylor EB, Edholm ES, Quiniou SMA, Wilson M, Bengtén E. Identification and characterization of TCRγ and TCRδ chains in channel catfish, Ictalurus punctatus. Immunogenetics 2014; 66:545-61. [PMID: 25129471 DOI: 10.1007/s00251-014-0793-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 07/31/2014] [Indexed: 11/28/2022]
Abstract
Channel catfish, Ictalurus punctatus, T cell receptors (TCR) γ and δ were identified by mining of expressed sequence tag databases, and full-length sequences were obtained by 5'-RACE and RT-PCR protocols. cDNAs for each of these TCR chains encode typical variable (V), diversity (D), joining (J), and constant (C) regions. Three TCRγ V families, seven TCRγ J sequences, and three TCRγ C sequences were identified from sequencing of cDNA. Primer walking on bacterial artificial chromosomes (BACs) confirmed that the TRG locus contained seven TRGJ segments and indicated that the locus consists of (Vγ3-Jγ6-Cγ2)-(Vγ1n-Jγ7-Cγ3)-(Vγ2-Jγ5-Jγ4-Jγ3-Jγ2-Jγ1-Cγ1). In comparison for TCRδ, two V families, four TCRδ D sequences, one TCRδ J sequence, and one TCRδ C sequence were identified by cDNA sequencing. Importantly, the finding that some catfish TCRδ cDNAs contain TCR Vα-D-Jδ rearrangements and some TCRα cDNAs contain Vδ-Jα rearrangements strongly implies that the catfish TRA and TRD loci are linked. Finally, primer walking on BACs and Southern blotting suggest that catfish have four TRDD gene segments and a single TRDJ and TRDC gene. As in most vertebrates, all three reading frames of each of the catfish TRDD segments can be used in functional rearrangements, and more than one TRDD segment can be used in a single rearrangement. As expected, catfish TCRδ CDR3 regions are longer and more diverse than TCRγ CDR3 regions, and as a group they utilize more nucleotide additions and contain more nucleotide deletions than catfish TCRγ rearrangements.
Collapse
Affiliation(s)
- Mohadetheh Moulana
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216-4505, USA
| | | | | | | | | | | |
Collapse
|
5
|
Vaccarelli G, Antonacci R, Tasco G, Yang F, Giordano L, El Ashmaoui HM, Hassanane MS, Massari S, Casadio R, Ciccarese S. Generation of diversity by somatic mutation in theCamelus dromedariusT-cell receptor gamma variable domains. Eur J Immunol 2012; 42:3416-28. [DOI: 10.1002/eji.201142176] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 08/20/2012] [Accepted: 09/03/2012] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Gianluca Tasco
- Biocomputing Group; CIRI-Health Science and Technologies/Department of Biology; University of Bologna; Bologna Italy
| | - Fengtang Yang
- Cytogenetics Core Facility,; Wellcome Trust Sanger Institute; Hinxton Cambridge UK
| | - Luca Giordano
- Department of Biosciences,; Biotechnologies and Pharmacological Sciences; University of Bari; Bari Italy
| | - Hassan M. El Ashmaoui
- Cell Biology Department National Research Center; Dokki Giza Egypt
- King Abdulaziz University; Biological Sciences; Jeddah Saudi Arabia
| | | | - Serafina Massari
- Department of Biological and Environmental Science e Technologies; University of Salento; Lecce Italy
| | - Rita Casadio
- Biocomputing Group; CIRI-Health Science and Technologies/Department of Biology; University of Bologna; Bologna Italy
| | | |
Collapse
|
6
|
Vaccarelli G, Miccoli MC, Antonacci R, Pesole G, Ciccarese S. Genomic organization and recombinational unit duplication-driven evolution of ovine and bovine T cell receptor gamma loci. BMC Genomics 2008; 9:81. [PMID: 18282289 PMCID: PMC2270265 DOI: 10.1186/1471-2164-9-81] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 02/18/2008] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In humans and mice ("gammadelta low species") less than 5% of the peripheral blood T lymphocytes are gamma/delta T cells, whereas in chicken and artiodactyls ("gammadelta high species") gamma/delta T cells represent about half of the T cells in peripheral blood. In cattle and sheep (Bovidae) two paralogous T cell receptor gamma loci (TRG1 and TRG2) have been found. TRG1 is located on 4q3.1, within a region of homology with the human TRG locus on chromosome 7, while TRG2 localizes on 4q2.2 and appears to be unique to ruminants. The purpose of this study was the sequencing of the genomic regions encompassing both loci in a "gammadelta high" organism and the analysis of their evolutionary history. RESULTS We obtained the contiguous genomic sequences of the complete sheep TRG1 and TRG2 loci gene repertoire and we performed cattle/sheep sequence analysis comparison using data available through public databases. Dot plot similarity matrix comparing the two sheep loci with each other has shown that variable (V), joining (J) and constant (C) genes have evolved through a series of duplication events involving either entire cassettes, each containing the basic V-J-J-C recombinational unit, or single V genes. The phylogenetic behaviour of the eight enhancer-like elements found in the sheep, compared with the single copy present in the human TRG locus, and evidence from concordant insertions of repetitive elements in all analyzed TRGJ blocks allowed us to infer an evolutionary scenario which highlights the genetic "flexibility" of this region and the duplication-driven evolution of gene cassettes. The strong similarity of the human and Bovidae intergenic J-J-C regions, which display an enhancer-like element at their 3' ends, further supports their key role in duplications. CONCLUSION We propose that only duplications of entire J-J-C regions that possessed an enhancer-like element at their 3' end, and acquired at least one V segment at their 5' end, were selected and fixed as functional recombinational units.
Collapse
Affiliation(s)
- Giovanna Vaccarelli
- Department of Genetics and Microbiology, University of Bari, via Amendola 165/A, 70126 Bari, Italy.
| | | | | | | | | |
Collapse
|
7
|
Conrad ML, Mawer MA, Lefranc MP, McKinnell L, Whitehead J, Davis SK, Pettman R, Koop BF. The genomic sequence of the bovine T cell receptor gamma TRG loci and localization of the TRGC5 cassette. Vet Immunol Immunopathol 2007; 115:346-56. [PMID: 17141331 DOI: 10.1016/j.vetimm.2006.10.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 09/29/2006] [Accepted: 10/26/2006] [Indexed: 02/04/2023]
Abstract
The bovine and ovine TRG genes have previously been shown to be located in two loci, TRG1 and TRG2, in contrast to human and mouse TRG genes that are located in a single locus. The bovine TRG1 and TRG2 loci are located on chromosome 4 at 4q3.1 and 4q1.5-2.2, respectively. The complete genomic organization of the two bovine loci is described: each locus comprises three cassettes, each one includes one or several variable genes (TRGV) and one or several joining genes (TRGJ) preceding a constant (TRGC) gene. The location of the TRGC5 cassette is conclusively described in 5' of the TRG1 locus. Analysis of 17 TRGV belonging to 10 different subgroups, 8 TRGJ and 6 TRGC genes is conducted which comprises the most comprehensive list to date.
Collapse
Affiliation(s)
- Melanie L Conrad
- University of Victoria, Centre for Biomedical Research, Victoria, British Columbia, Canada V8W 3N5.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Herzig C, Blumerman S, Lefranc MP, Baldwin C. Bovine T cell receptor gamma variable and constant genes: combinatorial usage by circulating gammadelta T cells. Immunogenetics 2006; 58:138-51. [PMID: 16541255 DOI: 10.1007/s00251-006-0097-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 01/29/2006] [Indexed: 10/24/2022]
Abstract
Studies here describe expression and sequence of several new bovine T cell receptor gamma (TRG) genes to yield a total of 11 TRG variable (TRGV) genes (in eight subgroups) and six TRG constant (TRGC) genes. Publicly available genomic sequences were annotated to show their placement. Homologous TRG genes in cattle and sheep were assigned, using four accepted criteria. New genes described here include the bovine TRGC6, TRGV2, and TRGV4, homologues of ovine TRGC4, TRGV2, and TRGV4, respectively. The bovine Vgamma7 and BTGV1 clones (previously TRGV4 and TRGV2, respectively) were reassigned to new subgroups TRGV7 and TRGV8, respectively, with approval by the IMGT Nomenclature Committee. Three TRGV subgroups (TRGV5, TRGV6, and TRGV8) were further designated as TRGV5-1 and TRGV5-2, TRGV6-1 and TRGV6-2, and TRGV8-1 and TRGV8-2 because each subgroup is comprised of two mapped genes. The complete sequence of bovine TRGC5 is also reported, for which a limited number of nucleotides was previously available, and shown to be most closely related to ovine TRGC5. Analysis of circulating gammadelta T cells revealed that rearrangement of TRGV genes with TRGC genes is largely dictated by their proximity within one of the six genomic V-J-C cassettes, with all TRG genes expressed by bovine peripheral blood gammadelta T cells. Cattle are useful models for gammadelta T cell biology because they have gammadelta T cells that respond to isopentenylpyrophosphate (IPP) antigens, while mice do not, and some bovine TRGV genes cluster closely with human genes.
Collapse
Affiliation(s)
- Carolyn Herzig
- Paige Laboratory, Department of Veterinary and Animal Sciences and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | |
Collapse
|
9
|
Parra ZE, Arnold T, Nowak MA, Hellman L, Miller RD. TCR gamma chain diversity in the spleen of the duckbill platypus (Ornithorhynchus anatinus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:699-710. [PMID: 16303181 DOI: 10.1016/j.dci.2005.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 10/03/2005] [Accepted: 10/05/2005] [Indexed: 05/05/2023]
Abstract
TCR gamma (TRG) chain diversity in splenic gammadelta T cells was determined for an egg-laying mammal (or monotreme), the duckbill platypus. Three distinct V subgroups were found in the expressed TRG chains and these three subgroups are members of a clade not found so far in eutherian mammals or birds. Each subgroup contains approximately five V gene segments, and their overall divergence is much less than is found in eutherians and birds, consistent with their recent evolution from an ancestral V gene segment. The platypus TRG locus also contains three C region genes and many of the residues involved in TCR function, such as interactions with CD3, were conserved in the monotreme C regions. All non-eutherian mammals (monotremes and marsupials) lacked the second cysteine residue necessary to form the intradomain disulfide bond in the C region, a loss apparently due to independent mutations in marsupials and monotremes. Monotreme TRGC regions also had among the most variation in the length of the connecting peptide region described for any species due to repeated motifs.
Collapse
Affiliation(s)
- Zuly E Parra
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
10
|
Vaccarelli G, Miccoli MC, Lanave C, Massari S, Cribiu EP, Ciccarese S. Genomic organization of the sheep TRG1@ locus and comparative analyses of Bovidae and human variable genes. Gene 2005; 357:103-14. [PMID: 16125878 DOI: 10.1016/j.gene.2005.05.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 02/23/2005] [Accepted: 05/17/2005] [Indexed: 12/01/2022]
Abstract
gammadelta T cells commonly account for 0.5%-5% of human (gammadelta low species) circulating T cells, whereas they are very common in chickens, and they may account for >70% of peripheral cells in ruminants (gammadelta high species). We have previously reported the ovine TRG2@ locus structure, the first complete physical map of any ruminant animal TCR locus. Here we determined the TRG1@ locus organization in sheep, reported all variable (V) gamma gene segments in their germline configuration and included human and cattle sequences in a three species comparison. The TRG1@ locus spans about 140 kb and consists of three clusters named TRG5, TRG3, and TRG1 according to the constant (C) genes. The predicted tertiary structure of cattle and sheep V proteins showed a remarkably high degree of conservation between the experimentally determined human Vgamma9 and the proteins belonging to TRG5 Vgamma subgroup. However systematic comparison of primary and tertiary structure highligthed that in Bovidae the overall conformation of the gammadelta TCR, is more similar to the Fab fragment of an antibody than any TCR heterodimer. Phylogenetic analysis showed that the evolution of cattle and sheep V genes is related to the rearrangement process of V segments with the relevant C, and consequentely to the appartenence of the V genes to a given cluster. The TRG cluster evolution in cattle and sheep pointed out the existence of a TRG5 ancient cluster and the occurrence of duplications of its minimal structural scheme of one V, two joining (J), and one C.
Collapse
Affiliation(s)
- G Vaccarelli
- Dipartimento di Anatomia Patologica e di Genetica, University of Bari, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Miccoli MC, Vaccarelli G, Lanave C, Cribiu EP, Ciccarese S. Comparative analyses of sheep and human TRG joining regions: evolution of J genes in Bovidae is driven by sequence conservation in their promoters for germline transcription. Gene 2005; 355:67-78. [PMID: 16039073 DOI: 10.1016/j.gene.2005.05.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 02/23/2005] [Accepted: 05/17/2005] [Indexed: 11/20/2022]
Abstract
The availability of genomic clones representative of the T cell receptor gamma (TRG1@ and TRG2@) ovine loci enabled us to compare the germline genomic organization and nucleotide diversity of joining (J) segments and reconstruct their evolutionary history by phylogenetic analysis of cattle, sheep and human expressed sequences. Expression profiling (RT-PCR data) in fetus and adult indicated that only the ovine J genes in which two or more of the key sequence features, such as recombination signal sequences (RSS), 3' splice sites, and core sequences, are missing or severely altered fail to be transcribed. Comparative genomic examination of the two human with the six sheep germline transcription promoters located at 5' of the relevant constant (C)-distal J segments showed a strong conservation of the redundant STAT consensus motifs, indicating that TRG1@ and TRG2@ loci are under the influence of IL-7 and STAT signalling. These findings support the phylogenetic analysis of human and Bovidae (cattle and sheep) that revealed a different grouping pattern of C-distal compared to C-proximal J segments. Likewise, the phylogenetic behaviour of either C-distal and C-proximal J segments is in accordance with the Bovidae TRG clusters evolution. Comparison of sheep and human structures of recombination signal sequences (RSS) has highlighted a greater conservation in sheep 12 RSS rather than 23 RSS thus suggesting that the initial recruitment of recombination activating genes (RAG) products requires at least one relatively high-affinity RSS per recombination event.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites/genetics
- Cattle
- Conserved Sequence/genetics
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins/metabolism
- Evolution, Molecular
- Gene Expression Regulation
- Humans
- Immunoglobulin J-Chains/genetics
- Milk Proteins/metabolism
- Molecular Sequence Data
- Multigene Family/genetics
- Phylogeny
- Promoter Regions, Genetic/genetics
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Recombination, Genetic/genetics
- STAT5 Transcription Factor
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Sheep/genetics
- Signal Transduction/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- M C Miccoli
- Dipartimento di Anatomia Patologica e di Genetica, University of Bari, Italy
| | | | | | | | | |
Collapse
|