1
|
Shibasaki S, Ueda M. Utilization of Macroalgae for the Production of Bioactive Compounds and Bioprocesses Using Microbial Biotechnology. Microorganisms 2023; 11:1499. [PMID: 37375001 DOI: 10.3390/microorganisms11061499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
To achieve sustainable development, alternative resources should replace conventional resources such as fossil fuels. In marine ecosystems, many macroalgae grow faster than terrestrial plants. Macroalgae are roughly classified as green, red, or brown algae based on their photosynthetic pigments. Brown algae are considered to be a source of physiologically active substances such as polyphenols. Furthermore, some macroalgae can capture approximately 10 times more carbon dioxide from the atmosphere than terrestrial plants. Therefore, they have immense potential for use in the environment. Recently, macroalgae have emerged as a biomass feedstock for bioethanol production owing to their low lignin content and applicability to biorefinery processes. Herein, we provided an overview of the bioconversion of macroalgae into bioactive substances and biofuels using microbial biotechnology, including engineered yeast designed using molecular display technology.
Collapse
Affiliation(s)
- Seiji Shibasaki
- Laboratory of Natural Science, Faculty of Economics, Toyo University, Hakusan Bunkyo-ku, Tokyo 112-8606, Japan
| | - Mitsuyoshi Ueda
- Office of Society-Academia Collaboration for Innovation (SACI), Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Progress of Molecular Display Technology Using Saccharomyces cerevisiae to Achieve Sustainable Development Goals. Microorganisms 2023; 11:microorganisms11010125. [PMID: 36677416 PMCID: PMC9864768 DOI: 10.3390/microorganisms11010125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
In the long history of microorganism use, yeasts have been developed as hosts for producing biologically active compounds or for conventional fermentation. Since the introduction of genetic engineering, recombinant proteins have been designed and produced using yeast or bacterial cells. Yeasts have the unique property of expressing genes derived from both prokaryotes and eukaryotes. Saccharomyces cerevisiae is one of the well-studied yeasts in genetic engineering. Recently, molecular display technology, which involves a protein-producing system on the yeast cell surface, has been established. Using this technology, designed proteins can be displayed on the cell surface, and novel abilities are endowed to the host yeast strain. This review summarizes various molecular yeast display technologies and their principles and applications. Moreover, S. cerevisiae laboratory strains generated using molecular display technology for sustainable development are described. Each application of a molecular displayed yeast cell is also associated with the corresponding Sustainable Development Goals of the United Nations.
Collapse
|
3
|
Yi J, Leveau JH, Nitin N. Role of multiscale leaf surface topography in antimicrobial efficacy of chlorine-based sanitizers. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Ranjbar S, Malcata FX. Is Genetic Engineering a Route to Enhance Microalgae-Mediated Bioremediation of Heavy Metal-Containing Effluents? Molecules 2022; 27:1473. [PMID: 35268582 PMCID: PMC8911655 DOI: 10.3390/molecules27051473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
Contamination of the biosphere by heavy metals has been rising, due to accelerated anthropogenic activities, and is nowadays, a matter of serious global concern. Removal of such inorganic pollutants from aquatic environments via biological processes has earned great popularity, for its cost-effectiveness and high efficiency, compared to conventional physicochemical methods. Among candidate organisms, microalgae offer several competitive advantages; phycoremediation has even been claimed as the next generation of wastewater treatment technologies. Furthermore, integration of microalgae-mediated wastewater treatment and bioenergy production adds favorably to the economic feasibility of the former process-with energy security coming along with environmental sustainability. However, poor biomass productivity under abiotic stress conditions has hindered the large-scale deployment of microalgae. Recent advances encompassing molecular tools for genome editing, together with the advent of multiomics technologies and computational approaches, have permitted the design of tailor-made microalgal cell factories, which encompass multiple beneficial traits, while circumventing those associated with the bioaccumulation of unfavorable chemicals. Previous studies unfolded several routes through which genetic engineering-mediated improvements appear feasible (encompassing sequestration/uptake capacity and specificity for heavy metals); they can be categorized as metal transportation, chelation, or biotransformation, with regulation of metal- and oxidative stress response, as well as cell surface engineering playing a crucial role therein. This review covers the state-of-the-art metal stress mitigation mechanisms prevalent in microalgae, and discusses putative and tested metabolic engineering approaches, aimed at further improvement of those biological processes. Finally, current research gaps and future prospects arising from use of transgenic microalgae for heavy metal phycoremediation are reviewed.
Collapse
Affiliation(s)
- Saeed Ranjbar
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Francisco Xavier Malcata
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
5
|
Kuroda K, Ueda M. Generation of Arming Yeasts with Active Proteins and Peptides via Cell Surface Display System: Cell Surface Engineering, Bio-Arming Technology. Methods Mol Biol 2022; 2513:59-77. [PMID: 35781200 DOI: 10.1007/978-1-0716-2399-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The cell surface display system in yeast enables the innovative strategy for improving cellular functions in a wide range of applications such as biofuel production, bioremediation, synthesis of valuable chemicals, recovery of rare metal ions, development of biosensors, and high-throughput screening of protein/peptide library. Display of enzymes for polysaccharide degradation enables the construction of metabolically engineered whole-cell biocatalyst owing to the accessibility of the displayed enzymes to high-molecular-weight polysaccharides. In addition, along with fluorescence-based activity evaluation, fluorescence-activated cell sorting (FACS), and yeast cell chip, the cell surface display system is an effective molecular tool for high-throughput screening of mutated protein/peptide library. In this article, we describe the methods for cell surface display of proteins/peptides of interest on yeast, evaluation of display efficiency, and harvesting of the displayed proteins/peptides from cell surface.
Collapse
Affiliation(s)
- Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
6
|
Yi J, Huang K, Nitin N. Modeling bioaffinity-based targeted delivery of antimicrobials to Escherichia coli biofilms using yeast microparticles. Part II: Parameter evaluation and validation. Biotechnol Bioeng 2021; 119:247-256. [PMID: 34693998 DOI: 10.1002/bit.27969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
The design of bioaffinity-based targeted delivery systems for biofilm inactivation may require a comprehensive understanding of physicochemical and biochemical properties of biobased antimicrobial particles and their interactions with biofilm. In this study, Escherichia coli biofilm inactivation by chlorine-charged yeast microparticles was numerically simulated, and the roles of chemical stability, binding affinity, and controlled release of this targeted delivery system were assessed using this numerical simulation. The simulation results were experimentally validated using two different types of yeast microparticles. The results of this study illustrate that chorine stability achieved by yeast microparticles was a key factor for improved biofilm inactivation in an organic-rich environment (>6 additional log reduction in 20 min compared to the free chlorine treatment). Moreover, the binding affinity of yeast microparticles to E. coli biofilms was another key factor for an enhanced inactivation of biofilm, as a 10-fold increase in binding rate resulted in a 4.2-fold faster inactivation. Overall, the mechanistic modeling framework developed in this study could guide the design and development of biobased particles for targeted inactivation of biofilms.
Collapse
Affiliation(s)
- Jiyoon Yi
- Department of Food Science and Technology, University of California-Davis, Davis, California, USA
| | - Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Nitin Nitin
- Department of Food Science and Technology, University of California-Davis, Davis, California, USA.,Department of Biological and Agricultural Engineering, University of California-Davis, Davis, California, USA
| |
Collapse
|
7
|
Kim D, Kim W, Kim J. New Bacterial Surface Display System Development and Application Based on Bacillus subtilis YuaB Biofilm Component as an Anchoring Motif. BIOTECHNOL BIOPROC E 2021; 26:39-46. [PMID: 33584103 PMCID: PMC7872719 DOI: 10.1007/s12257-020-0397-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Bacterial surface display system has been adopted in various biotechnological applications. In the case of Bacillus subtilis, most of the studies have been developed using spore based surface display system utilizing the inherent rigidity of spore against heat, alkali, and shear stress. But, spore harvest, purification and separation need additional cost and labor. To eliminate this procedure and to use the gram-positive nature of B. subtilis, YuaB, which is one of the major B. subtilis biofilm components and locates in the cell wall, based cell surface display system, is developed. P43 promoter driven overexpression of YuaB-His6 tag does not hamper bacterial cell growth and promoted biofilm formation of recombinant strain. Flow cytometry of recombinant strain and its protoplast using FITC-Anti His6 antibody, verified that YuaB locate in plasma membrane and protrude to the outside of cell wall, which means YuaB can be used as very efficient anchoring motif. Using surface expressed YuaB-His6 tag, removal of divalent metal ion, Cu2+ and Ni2+, was tried to test its possibility for the environmental application of developed system.
Collapse
Affiliation(s)
- Daeun Kim
- Department of Chemical Engineer, Dong-A University, Busan, 49315 Korea
| | - Wooil Kim
- Department of Chemical Engineer, Dong-A University, Busan, 49315 Korea
| | - Junehyung Kim
- Department of Chemical Engineer, Dong-A University, Busan, 49315 Korea.,Center for Sliver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Busan, 49315 Korea
| |
Collapse
|
8
|
Abstract
Enzyme immobilization to solid matrices often presents a challenge due to protein conformation sensitivity, desired enzyme purity, and requirements for the particular carrier properties and immobilization technique. Surface display of enzymes at the cell walls of microorganisms presents an alternative that has been the focus of many research groups worldwide in different fields, such as biotechnology, energetics, pharmacology, medicine, and food technology. The range of systems by which a heterologous protein can be displayed at the cell surface allows the appropriate one to be found for almost every case. However, the efficiency of display systems is still quite low. The most frequently used yeast for the surface display of proteins is Saccharomyces cerevisiae. However, apart from its many advantages, Saccharomyces cerevisiae has some disadvantages, such as low robustness in industrial applications, hyperglycosylation of some heterologous proteins, and relatively low efficiency of surface display. Thus, in the recent years the display systems for alternative yeast hosts with better performances including Pichia pastoris, Hansenula polymorpha, Blastobotrys adeninivorans, Yarrowia lipolytica, Kluyveromyces marxianus, and others have been developed. Different strategies of surface display aimed to increase the amount of displayed protein, including new anchoring systems and new yeast hosts are reviewed in this paper.
Collapse
|
9
|
Ruta LL, Kissen R, Nicolau I, Neagoe AD, Petrescu AJ, Bones AM, Farcasanu IC. Heavy metal accumulation by Saccharomyces cerevisiae cells armed with metal binding hexapeptides targeted to the inner face of the plasma membrane. Appl Microbiol Biotechnol 2017; 101:5749-5763. [PMID: 28577027 DOI: 10.1007/s00253-017-8335-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/02/2017] [Accepted: 05/06/2017] [Indexed: 11/30/2022]
Abstract
Accumulation of heavy metals without developing toxicity symptoms is a phenotype restricted to a small group of plants called hyperaccumulators, whose metal-related characteristics suggested the high potential in biotechnologies such as bioremediation and bioextraction. In an attempt to extrapolate the heavy metal hyperaccumulating phenotype to yeast, we obtained Saccharomyces cerevisiae cells armed with non-natural metal-binding hexapeptides targeted to the inner face of the plasma membrane, expected to sequester the metal ions once they penetrated the cell. We describe the construction of S. cerevisiae strains overexpressing metal-binding hexapeptides (MeBHxP) fused to the carboxy-terminus of a myristoylated green fluorescent protein (myrGFP). Three non-toxic myrGFP-MeBHxP (myrGFP-H6, myrGFP-C6, and myrGFP-(DE)3) were investigated against an array of heavy metals in terms of their effect on S. cerevisiae growth, heavy metal (hyper) accumulation, and capacity to remove heavy metal from contaminated environments.
Collapse
Affiliation(s)
- Lavinia Liliana Ruta
- Faculty of Chemistry, University of Bucharest, Sos. Panduri 90-92, Bucharest, Romania
| | - Ralph Kissen
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Ioana Nicolau
- Faculty of Chemistry, University of Bucharest, Sos. Panduri 90-92, Bucharest, Romania
| | - Aurora Daniela Neagoe
- Faculty of Biology, University of Bucharest, Spl. Independentei 91-95, Bucharest, Romania
| | - Andrei José Petrescu
- Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, Romania
| | - Atle M Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | | |
Collapse
|
10
|
Ruta LL, Lin YF, Kissen R, Nicolau I, Neagoe AD, Ghenea S, Bones AM, Farcasanu IC. Anchoring plant metallothioneins to the inner face of the plasma membrane of Saccharomyces cerevisiae cells leads to heavy metal accumulation. PLoS One 2017; 12:e0178393. [PMID: 28562640 PMCID: PMC5451056 DOI: 10.1371/journal.pone.0178393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 05/14/2017] [Indexed: 11/18/2022] Open
Abstract
In this study we engineered yeast cells armed for heavy metal accumulation by targeting plant metallothioneins to the inner face of the yeast plasma membrane. Metallothioneins (MTs) are cysteine-rich proteins involved in the buffering of excess metal ions, especially Cu(I), Zn(II) or Cd(II). The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b) and four Noccaea caerulescens MTs (NcMT1, NcMT2a, NcMT2b and NcMT3) were each translationally fused to the C-terminus of a myristoylation green fluorescent protein variant (myrGFP) and expressed in Saccharomyces cerevisiae cells. The myrGFP cassette introduced a yeast myristoylation sequence which allowed directional targeting to the cytosolic face of the plasma membrane along with direct monitoring of the intracellular localization of the recombinant protein by fluorescence microscopy. The yeast strains expressing plant MTs were investigated against an array of heavy metals in order to identify strains which exhibit the (hyper)accumulation phenotype without developing toxicity symptoms. Among the transgenic strains which could accumulate Cu(II), Zn(II) or Cd(II), but also non-canonical metal ions, such as Co(II), Mn(II) or Ni(II), myrGFP-NcMT3 qualified as the best candidate for bioremediation applications, thanks to the robust growth accompanied by significant accumulative capacity.
Collapse
Affiliation(s)
| | - Ya-Fen Lin
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ralph Kissen
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ioana Nicolau
- Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | | | - Simona Ghenea
- Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Atle M. Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
11
|
Liu Z, Ho SH, Hasunuma T, Chang JS, Ren NQ, Kondo A. Recent advances in yeast cell-surface display technologies for waste biorefineries. BIORESOURCE TECHNOLOGY 2016; 215:324-333. [PMID: 27039354 DOI: 10.1016/j.biortech.2016.03.132] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 06/05/2023]
Abstract
Waste biorefinery aims to maximize the output of value-added products from various artificial/agricultural wastes by using integrated bioprocesses. To make waste biorefinery economically feasible, it is thus necessary to develop a low-cost, environment-friendly technique to perform simultaneous biodegradation and bioconversion of waste materials. Cell-surface display engineering is a novel, cost-effective technique that can auto-immobilize proteins on the cell exterior of microorganisms, and has been applied for use with waste biofinery. Through tethering different enzymes (e.g., cellulase, lipase, and protease) or metal-binding peptides on cell surfaces, various yeast strains can effectively produce biofuels and biochemicals from sugar/protein-rich waste materials, catalyze waste oils into biodiesels, or retrieve heavy metals from wastewater. This review critically summarizes recent applications of yeast cell-surface display on various types of waste biorefineries, highlighting its potential and future challenges with regard to commercializing this technology.
Collapse
Affiliation(s)
- Zhuo Liu
- Department of Chemical Science and Engineering, Kobe University, Kobe, Japan
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute Technology, Harbin, PR China.
| | - Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, Kobe, Japan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Taiwan
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute Technology, Harbin, PR China
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Kobe University, Kobe, Japan
| |
Collapse
|
12
|
Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.11.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Abstract
The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine.
Collapse
|
14
|
GTS1Induction Causes Derepression of Tup1-Cyc8-Repressing Genes and Chromatin Remodeling through the Interaction of Gts1p with Cyc8p. Biosci Biotechnol Biochem 2014; 75:740-7. [DOI: 10.1271/bbb.100860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Inhibition of Heat Tolerance and Nuclear Import of Gts1p by Ssa1p and Ssa2p. Biosci Biotechnol Biochem 2014; 75:323-30. [DOI: 10.1271/bbb.100743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
SHIBASAKI SEIJI, UEDA MITSUYOSHI. Bioadsorption Strategies with Yeast Molecular Display Technology. Biocontrol Sci 2014; 19:157-64. [DOI: 10.4265/bio.19.157] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- SEIJI SHIBASAKI
- Graduate School of Pharmacy, Hyogo University of Health Sciences
- General Education Center, Hyogo University of Health Sciences
| | - MITSUYOSHI UEDA
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
17
|
Generation of arming yeasts with active proteins and peptides via cell surface display system: cell surface engineering, bio-arming technology. Methods Mol Biol 2014; 1152:137-55. [PMID: 24744031 DOI: 10.1007/978-1-4939-0563-8_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cell surface display system in yeast enables the innovative strategy for improving cellular functions in a wide range of applications such as biofuel production, bioremediation, synthesis of valuable chemicals, recovery of rare metal ions, development of biosensors, and high-throughput screening of proteins/peptides library. Display of enzymes for polysaccharide degradation enables the construction of metabolically engineered whole-cell biocatalyst owing to the accessibility of the displayed enzymes to high-molecular-weight polysaccharides. In addition, along with fluorescence-based activity evaluation, fluorescence-activated cell sorting (FACS), and yeast cell chip, the cell surface display system is an effective molecular tool for high-throughput screening of mutated proteins/peptides library. In this article, we describe the methods for cell surface display of proteins/peptides of interest on yeast, evaluation of display efficiency, and harvesting of the displayed proteins/peptides from cell surface.
Collapse
|
18
|
Li PS, Tao HC. Cell surface engineering of microorganisms towards adsorption of heavy metals. Crit Rev Microbiol 2013; 41:140-9. [DOI: 10.3109/1040841x.2013.813898] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Soares EV, Soares HMVM. Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:1066-1083. [PMID: 22139299 DOI: 10.1007/s11356-011-0671-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 11/14/2011] [Indexed: 05/31/2023]
Abstract
The release of heavy metals into the environment, mainly as a consequence of anthropogenic activities, constitutes a worldwide environmental pollution problem. Unlike organic pollutants, heavy metals are not degraded and remain indefinitely in the ecosystem, which poses a different kind of challenge for remediation. It seems that the "best treatment technologies" available may not be completely effective for metal removal or can be expensive; therefore, new methodologies have been proposed for the detoxification of metal-bearing wastewaters. The present work reviews and discusses the advantages of using brewing yeast cells of Saccharomyces cerevisiae in the detoxification of effluents containing heavy metals. The current knowledge of the mechanisms of metal removal by yeast biomass is presented. The use of live or dead biomass and the influence of biomass inactivation on the metal accumulation characteristics are outlined. The role of chemical speciation for predicting and optimising the efficiency of metal removal is highlighted. The problem of biomass separation, after treatment of the effluents, and the use of flocculent characteristics, as an alternative process of cell-liquid separation, are also discussed. The use of yeast cells in the treatment of real effluents to bridge the gap between fundamental and applied studies is presented and updated. The convenient management of the contaminated biomass and the advantages of the selective recovery of heavy metals in the development of a closed cycle without residues (green technology) are critically reviewed.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory, Chemical Engineering Department, Superior Institute of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4200-072 Porto, Portugal.
| | | |
Collapse
|
20
|
Kuroda K, Ueda M. Molecular design of the microbial cell surface toward the recovery of metal ions. Curr Opin Biotechnol 2011; 22:427-33. [PMID: 21247751 DOI: 10.1016/j.copbio.2010.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 12/25/2010] [Accepted: 12/27/2010] [Indexed: 10/18/2022]
Abstract
The genetic engineering of microorganisms to adsorb metal ions is an attractive method to facilitate the environmental cleanup of metal pollution and to enrich the recovery of metal ions such as rare metal ions. For the recovery of metal ions by microorganisms, cell surface design is an effective strategy for the molecular breeding of bioadsorbents as an alternative to intracellular accumulation. The cell surface display of known metal-binding proteins/peptides and the molecular design of novel metal-binding proteins/peptides have been performed using a cell surface engineering approach. The adsorption of specific metal ions is the important challenge for the practical recovery of metal ions. In this paper, we discuss the recent progress in surface-engineered bioadsorbents for the recovery of metal ions.
Collapse
Affiliation(s)
- Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | |
Collapse
|
21
|
Engineering of microorganisms towards recovery of rare metal ions. Appl Microbiol Biotechnol 2010; 87:53-60. [PMID: 20393699 DOI: 10.1007/s00253-010-2581-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 03/16/2010] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
Abstract
The bioadsorption of metal ions using microorganisms is an attractive technology for the recovery of rare metal ions as well as removal of toxic heavy metal ions from aqueous solution. In initial attempts, microorganisms with the ability to accumulate metal ions were isolated from nature and intracellular accumulation was enhanced by the overproduction of metal-binding proteins in the cytoplasm. As an alternative, the cell surface design of microorganisms by cell surface engineering is an emerging strategy for bioadsorption and recovery of metal ions. Cell surface engineering was firstly applied to the construction of a bioadsorbent to adsorb heavy metal ions for bioremediation. Cell surface adsorption of metal ions is rapid and reversible. Therefore, adsorbed metal ions can be easily recovered without cell breakage, and the bioadsorbent can be reused or regenerated. These advantages are suitable for the recovery of rare metal ions. Actually, the cell surface display of a molybdate-binding protein on yeast led to the enhanced adsorption of molybdate, one of the rare metal ions. An additional advantage is that the cell surface display system allows high-throughput screening of protein/peptide libraries owing to the direct evaluation of the displayed protein/peptide without purification and concentration. Therefore, the creation of novel metal-binding protein/peptide and engineering of microorganisms towards the recovery of rare metal ions could be simultaneously achieved.
Collapse
|
22
|
Cell surface engineering of yeast for applications in white biotechnology. Biotechnol Lett 2010; 33:1-9. [PMID: 20872167 DOI: 10.1007/s10529-010-0403-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 08/31/2010] [Indexed: 10/19/2022]
Abstract
Cell surface engineering is a promising strategy for the molecular breeding of whole-cell biocatalysts. By using this strategy, yeasts can be constructed by the cell surface display of functional proteins; these yeasts are referred to as arming yeasts. Because reactions using arming yeasts as whole-cell biocatalysts occur on the cell surface, materials that cannot enter the cell can be used as reaction substrates. Numerous arming yeasts have therefore been constructed for a wide range of uses such as biofuel production, synthesis of valuable chemicals, adsorption or degradation of environmental pollutants, recovery of rare metal ions, and biosensors. Here, we review the science of yeast cell surface modification as well as current applications and future opportunities.
Collapse
|
23
|
Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnol Adv 2009; 27:195-226. [PMID: 19103274 DOI: 10.1016/j.biotechadv.2008.11.002] [Citation(s) in RCA: 1071] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/18/2008] [Accepted: 11/21/2008] [Indexed: 11/26/2022]
Abstract
A vast array of biological materials, especially bacteria, algae, yeasts and fungi have received increasing attention for heavy metal removal and recovery due to their good performance, low cost and large available quantities. The biosorbent, unlike mono functional ion exchange resins, contains variety of functional sites including carboxyl, imidazole, sulphydryl, amino, phosphate, sulfate, thioether, phenol, carbonyl, amide and hydroxyl moieties. Biosorbents are cheaper, more effective alternatives for the removal of metallic elements, especially heavy metals from aqueous solution. In this paper, based on the literatures and our research results, the biosorbents widely used for heavy metal removal were reviewed, mainly focusing on their cellular structure, biosorption performance, their pretreatment, modification, regeneration/reuse, modeling of biosorption (isotherm and kinetic models), the development of novel biosorbents, their evaluation, potential application and future. The pretreatment and modification of biosorbents aiming to improve their sorption capacity was introduced and evaluated. Molecular biotechnology is a potent tool to elucidate the mechanisms at molecular level, and to construct engineered organisms with higher biosorption capacity and selectivity for the objective metal ions. The potential application of biosorption and biosorbents was discussed. Although the biosorption application is facing the great challenge, there are two trends for the development of the biosorption process for metal removal. One trend is to use hybrid technology for pollutants removal, especially using living cells. Another trend is to develop the commercial biosorbents using immobilization technology, and to improve the biosorption process including regeneration/reuse, making the biosorbents just like a kind of ion exchange resin, as well as to exploit the market with great endeavor.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China.
| | | |
Collapse
|
24
|
SHIBASAKI S, MAEDA H, UEDA M. Molecular Display Technology Using Yeast-Arming Technology-. ANAL SCI 2009; 25:41-9. [DOI: 10.2116/analsci.25.41] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Seiji SHIBASAKI
- Laboratory of Bioanalytical Chemistry, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences
| | - Hatsuo MAEDA
- Laboratory of Bioanalytical Chemistry, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences
| | - Mitsuyoshi UEDA
- Laboratory of Biomacromolecular Chemistry, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
25
|
McLean JS, Pinchuk GE, Geydebrekht OV, Bilskis CL, Zakrajsek BA, Hill EA, Saffarini DA, Romine MF, Gorby YA, Fredrickson JK, Beliaev AS. Oxygen-dependent autoaggregation in Shewanella oneidensis MR-1. Environ Microbiol 2008; 10:1861-76. [PMID: 18412550 DOI: 10.1111/j.1462-2920.2008.01608.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In aerobic chemostat cultures maintained at 50% dissolved O(2) tension (3.5 mg l(-1) dissolved O(2)), Shewanella oneidensis strain MR-1 rapidly aggregated upon addition of 0.68 mM CaCl(2) and retained this multicellular phenotype at high dilution rates. Confocal microscopy analysis of the extracellular matrix material contributing to the stability of the aggregate structures revealed the presence of extracellular DNA, protein and glycoconjugates. Upon onset of O(2)-limited growth (dissolved O(2) below detection) however, the Ca(2+)-supplemented chemostat cultures of strain MR-1 rapidly disaggregated and grew as motile dispersed cells. Global transcriptome analysis comparing aerobic aggregated to O(2)-limited unaggregated cells identified genes encoding cell-to-cell and cell-to-surface adhesion factors whose transcription increased upon exposure to increased O(2) concentrations. The aerobic aggregated cells also revealed increased expression of putative anaerobic electron transfer and homologues of metal reduction genes, including mtrD (SO1782), mtrE (SO1781) and mtrF (SO1780). Our data indicate that mechanisms involved in autoaggregation of MR-1 are dependent on the function of pilD gene which encodes a putative prepilin peptidase. Mutants of S. oneidensis strain MR-1 deficient in PilD and associated pathways, including type IV and Msh pili biogenesis, displayed a moderate increase in sensitivity to H(2)O(2). Taken together, our evidence indicates that aggregate formation in S. oneidensis MR-1 may serve as an alternative or an addition to biochemical detoxification to reduce the oxidative stress associated with production of reactive oxygen species during aerobic metabolism while facilitating the development of hypoxic conditions within the aggregate interior.
Collapse
Affiliation(s)
- J S McLean
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA99352, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Saleem M, Brim H, Hussain S, Arshad M, Leigh M, Zia-ul-hassan. Perspectives on microbial cell surface display in bioremediation. Biotechnol Adv 2008; 26:151-61. [DOI: 10.1016/j.biotechadv.2007.10.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 10/04/2007] [Accepted: 10/18/2007] [Indexed: 11/29/2022]
|
27
|
Kadonosono T, Kato M, Ueda M. Substrate specificity of rat brain neurolysin disclosed by molecular display system and putative substrates in rat tissues. Appl Microbiol Biotechnol 2007; 75:1353-60. [PMID: 17401561 DOI: 10.1007/s00253-007-0943-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 03/05/2007] [Accepted: 03/07/2007] [Indexed: 11/24/2022]
Abstract
To search for the substrates, other than neurotensin, of rat brain neurolysin, a novel method of determining peptidase activity was developed using a yeast molecular display system. This is a useful and convenient method of handling homogenously pure proteins to evaluate the properties of neurolysin. The neurolysin gene was ligated to the C-terminal half of the alpha-agglutinin gene with a FLAG tag sequence and a yeast cell-surface molecular displaying plasmid was constructed. Display of neurolysin with correct folding and appropriate activity was verified by immunofluorescence staining and activity measurement of a bradykinin-related peptide. The cleavage sites of peptides were determined by high-performance liquid chromatography (HPLC) and matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The results showed the amino acid preferences of hydrophobic, aromatic, and basic residues, which were the same as those of soluble neurolysin. Moreover, this method clearly showed the presence of two recognition motifs in neurolysin. By using these motifs, novel substrate candidates of neurolysin in rat tissues were screened, and several bioactive peptides that regulate feeding were found. We also discussed the ubiquitous distribution of neurolysin in rat tissues and the functions of substrate candidate peptides.
Collapse
Affiliation(s)
- Tetsuya Kadonosono
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
28
|
Wang J, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnol Adv 2006; 24:427-51. [PMID: 16737792 DOI: 10.1016/j.biotechadv.2006.03.001] [Citation(s) in RCA: 527] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2006] [Indexed: 11/26/2022]
Abstract
Heavy metal pollution has become one of the most serious environmental problems today. Biosorption, using biomaterials such as bacteria, fungi, yeast and algae, is regarded as a cost-effective biotechnology for the treatment of high volume and low concentration complex wastewaters containing heavy metal(s) in the order of 1 to 100 mg/L. Among the promising biosorbents for heavy metal removal which have been researched during the past decades, Saccharomyces cerevisiae has received increasing attention due to the unique nature in spite of its mediocre capacity for metal uptake compared with other fungi. S. cerevisiae is widely used in food and beverage production, is easily cultivated using cheap media, is also a by-product in large quantity as a waste of the fermentation industry, and is easily manipulated at molecular level. The state of the art in the field of biosorption of heavy metals by S. cerevisiae not only in China, but also worldwide, is reviewed in this paper, based on a substantial number of relevant references published recently on the background of biosorption achievements and development. Characteristics of S. cerevisiae in heavy metal biosorption are extensively discussed. The yeast can be studied in various forms for different purposes. Metal-binding capacity for various heavy metals by S. cerevisiae under different conditions is compared. Lead and uranium, for instances, could be removed from dilute solutions more effectively in comparison with other metals. The yeast biosorption largely depends on parameters such as pH, the ratio of the initial metal ion and initial biomass concentration, culture conditions, presence of various ligands and competitive metal ions in solution and to a limited extent on temperature. An assessment of the isotherm equilibrium model, as well as kinetics was performed. The mechanisms of biosorption are understood only to a limited extent. Elucidation of the mechanism of metal uptake is a real challenge in the field of biosorption. Various mechanism assumptions of metal uptake by S. cerevisiae are summarized.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | | |
Collapse
|
29
|
Kuroda K, Ueda M. Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Appl Microbiol Biotechnol 2006; 70:458-63. [PMID: 16091929 DOI: 10.1007/s00253-005-0093-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 07/08/2005] [Accepted: 07/09/2005] [Indexed: 11/26/2022]
Abstract
To increase the level of adsorption of heavy metal ions in surface-engineered yeasts, a yeast metallothionein (YMT) was tandemly fused and displayed by means of an alpha-agglutinin-based display system. The display of the YMT and its tandem repeats was examined by immunofluorescent labeling. The adsorption and recovery of Cd(2+) on the cell surface was increasingly enhanced with increasing number of tandem repeats. All Cd(2+)-binding sites in the YMT tandem repeats were suggested to be completely occupied. To investigate the relationship between cell-surface adsorption and protection against heavy metal ion toxicity, the tolerance of these surface-engineered yeasts to Cd(2+) was examined by growing in Cd(2+)-containing liquid medium. The rate of growth was found to be dependent on the number of displayed tandem repeats of YMT. These results suggest that the characteristics of surface-engineered yeasts as a bioadsorbent were dependent on the ability of the displayed proteins to bind metal ions, and the adsorption of heavy metal ions on the cell surface plays a major role in the ability of the cells to resist the toxic effects of metal ions.
Collapse
Affiliation(s)
- Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Japan
| | | |
Collapse
|
30
|
Current Awareness on Yeast. Yeast 2003. [DOI: 10.1002/yea.940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|