1
|
Li J, Wen Y, Fang Z, Yang W, Song X. Application of cold-adapted microbial agents in soil contaminate remediation: biodegradation mechanisms, case studies, and safety assessments. RSC Adv 2024; 14:12720-12734. [PMID: 38645519 PMCID: PMC11027001 DOI: 10.1039/d4ra01510j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024] Open
Abstract
The microbial agent technology has made significant progress in remediating nitro-aromatic compounds (NACs), such as p-nitrophenol, 2,4-dinitrophenol, and 2,4,6-Trinitrotoluene, in farmland soil over the past decade. However, there are still gaps in our understanding of the bioavailability and degradation mechanisms of these compounds in low-temperature environments. In this review, we provide a comprehensive summary of the strategies employed by cold-adapted microorganisms and elucidate the degradation pathways of NACs pollutants. To further analyze their metabolic mechanisms, we propose using mass balance to improve our understanding of biochemical processes and refine the degradation pathways through stoichiometry analysis. Additionally, we suggest employing 13C-metabolic flux analysis to track enzyme activity and intermediate products during bio-degradation processes with the aim of accelerating the remediation of nitro-aromatic compounds, particularly in cold regions. Through a comprehensive analysis of pollutant metabolic activities and a commitment to the 'One Health' approach, with an emphasis on selecting non-pathogenic strains, the environmental management strategies for soil remediation could be positioned to develop and implement safe and effective measure.
Collapse
Affiliation(s)
- Jiaxin Li
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University Shenyang 110044 China +86(24)62269636
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University Shenyang 110044 China +86(24)62269636
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang University Shenyang 110044 China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources China
| | - Zheng Fang
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University Shenyang 110044 China +86(24)62269636
| | - Wenqi Yang
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University Shenyang 110044 China +86(24)62269636
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University Shenyang 110044 China +86(24)62269636
| |
Collapse
|
2
|
Porter R, Černoša A, Fernández-Sanmartín P, Cortizas AM, Aranda E, Luo Y, Zalar P, Podlogar M, Gunde-Cimerman N, Gostinčar C. Degradation of polypropylene by fungi Coniochaeta hoffmannii and Pleurostoma richardsiae. Microbiol Res 2023; 277:127507. [PMID: 37793281 DOI: 10.1016/j.micres.2023.127507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
The urgent need for better disposal and recycling of plastics has motivated a search for microbes with the ability to degrade synthetic polymers. While microbes capable of metabolizing polyurethane and polyethylene terephthalate have been discovered and even leveraged in enzymatic recycling approaches, microbial degradation of additive-free polypropylene (PP) remains elusive. Here we report the isolation and characterization of two fungal strains with the potential to degrade pure PP. Twenty-seven fungal strains, many isolated from hydrocarbon contaminated sites, were screened for degradation of commercially used textile plastic. Of the candidate strains, two identified as Coniochaeta hoffmannii and Pleurostoma richardsiae were found to colonize the plastic fibers using scanning electron microscopy (SEM). Further experiments probing degradation of pure PP films were performed using C. hoffmannii and P. richardsiae and analyzed using SEM, Raman spectroscopy and Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). The results showed that the selected fungi were active against pure PP, with distinct differences in the bonds targeted and the degree to which each was altered. Whole genome and transcriptome sequencing was conducted for both strains and the abundance of carbohydrate active enzymes, GC content, and codon usage bias were analyzed in predicted proteomes for each. Enzymatic assays were conducted to assess each strain's ability to degrade naturally occurring compounds as well as synthetic polymers. These investigations revealed potential adaptations to hydrocarbon-rich environments and provide a foundation for further investigation of PP degrading activity in C. hoffmannii and P. richardsiae.
Collapse
Affiliation(s)
- Rachel Porter
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Anja Černoša
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Paola Fernández-Sanmartín
- CRETUS, EcoPast Research Group (GI-1553), Departamento de Edafoloxía e Química Agrícola, Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - Antonio Martínez Cortizas
- CRETUS, EcoPast Research Group (GI-1553), Departamento de Edafoloxía e Química Agrícola, Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - Elisabet Aranda
- University of Granada, Institute of Water Research, Environmental Microbiology Group, Ramón y Cajal n4, 18071 Granada, Spain
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao 266555, China
| | - Polona Zalar
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Matejka Podlogar
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Cene Gostinčar
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, Ljubljana, Slovenia.
| |
Collapse
|
3
|
A Botybirnavirus Isolated from Alternaria tenuissima Confers Hypervirulence and Decreased Sensitivity of Its Host Fungus to Difenoconazole. Viruses 2022; 14:v14102093. [DOI: 10.3390/v14102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Alternaria alternata botybirnavirus 1 (AaBRV1) was isolated from a strain of Alternaria alternata, causing watermelon leaf blight in our previous research. The effect of AaBRV1 on the phenotype of its host fungus, however, was not determined. In the present study, a novel strain of AaBRV1 was identified in A. tenuissima strain TJ-NH-51S-4, the causal agent of cotton Alternaria leaf spot, and designated as AaBRV1-AT1. A mycovirus AaBRV1-AT1-free strain TJ-NH-51S-4-VF was obtained by protoplast regeneration, which eliminated AaBRV1-AT1 from the mycovirus AaBRV1-AT1-infected strain TJ-NH-51S-4. Colony growth rate, spore production, and virulence of strain TJ-NH-51S-4 were greater than they were in TJ-NH-51S-4-VF, while the sensitivity of strain TJ-NH-51S-4 to difenoconazole, as measured by the EC50, was lower. AaBRV1-AT1 was capable of vertical transmission via asexual spores and horizontal transmission from strain TJ-NH-51S-4 to strain XJ-BZ-5-1hyg (another strain of A. tenuissima) through hyphal contact in pairing cultures. A total of 613 differentially expressed genes (DEGs) were identified in a comparative transcriptome analysis between TJ-NH-51S-4 and TJ-NH-51S-4-VF. Relative to strain TJ-NH-51S-4-VF, the number of up-regulated and down-regulated DEGs in strain TJ-NH-51S-4 was 286 and 327, respectively. Notably, the expression level of one DEG-encoding cytochrome P450 sterol 14α-demethylase and four DEGs encoding siderophore iron transporters were significantly up-regulated. To our knowledge, this is the first documentation of hypervirulence and reduced sensitivity to difenoconazole induced by AaBRV1-AT1 infection in A. tenuissima.
Collapse
|
4
|
Zhu C, Huang H, Chen Y. Recent advances in biological removal of nitroaromatics from wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119570. [PMID: 35667518 DOI: 10.1016/j.envpol.2022.119570] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Various nitroaromatic compounds (NACs) released into the environment cause potential threats to humans and animals. Biological treatment is valued for cost-effectiveness, environmental friendliness, and availability when treating wastewater containing NACs. Considering the significance and wide use of NACs, this review focuses on recent advances in biological treatment systems for NACs removal from wastewater. Meanwhile, factors affecting biodegradation and methods to enhance removal efficiency of NACs are discussed. The selection of biological treatment system needs to consider NACs loading and cost, and its performance is affected by configuration and operation strategy. Generally, sequential anaerobic-aerobic biological treatment systems perform better in mineralizing NACs and removing co-pollutants. Future research on mechanism exploration of NACs biotransformation and performance optimization will facilitate the large-scale application of biological treatment systems.
Collapse
Affiliation(s)
- Cuicui Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
5
|
Lin S, Wei J, Yang B, Zhang M, Zhuo R. Bioremediation of organic pollutants by white rot fungal cytochrome P450: The role and mechanism of CYP450 in biodegradation. CHEMOSPHERE 2022; 301:134776. [PMID: 35500631 DOI: 10.1016/j.chemosphere.2022.134776] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Cytochrome P450 (CYP450) is a well-known protein family that is widely distributed in many organisms. Members of this family have been implicated in a broad range of reactions involved in the metabolism of various organic compounds. Recently, an increasing number of studies have shown that the CYP450 enzyme also participates in the elimination and degradation of organic pollutants, by white rot fungi (WRF), a famous group of natural degraders. This paper reviews previous investigations of white rot fungal CYP450 involved in the biodegradation of organic pollutants, with a special focus on inhibitory experiments, and the direct and indirect evidence of the role of white rot fungal CYP450 in bioremediation. The catalytic mechanisms of white rot fungal CYP450, its application potential, and future prospect for its use in bioremediation are then discussed.
Collapse
Affiliation(s)
- Shuqi Lin
- Institute of Plant and Microbiology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, PR China
| | - Jinchao Wei
- Zhongye Changtian International Engineering Co., Ltd., Changsha, 410205, PR China
| | - Bentao Yang
- Zhongye Changtian International Engineering Co., Ltd., Changsha, 410205, PR China
| | - Meng Zhang
- Institute of Plant and Microbiology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, PR China
| | - Rui Zhuo
- Institute of Plant and Microbiology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
6
|
Li Y, Li S, Liang Z, Cai Q, Zhou T, Zhao C, Wu X. RNA-seq Analysis of Rhizoctonia solani AG-4HGI Strain BJ-1H Infected by a New Viral Strain of Rhizoctonia solani Partitivirus 2 Reveals a Potential Mechanism for Hypovirulence. PHYTOPATHOLOGY 2022; 112:1373-1385. [PMID: 34965159 DOI: 10.1094/phyto-08-21-0349-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rhizoctonia solani partitivirus 2 (RsPV2), in the genus Alphapartitivirus, confers hypovirulence on R. solani AG-1-IA, the causal agent of rice sheath blight. In this study, a new strain of RsPV2 obtained from R. solani AG-4HGI strain BJ-1H, the causal agent of black scurf on potato, wasidentified and designated as Rhizoctonia solani partitivirus 2 strain BJ-1H (RsPV2-BJ). An RNA sequencing analysis of strain BJ-1H and the virus RsPV2-BJ-free strain BJ-1H-VF derived from strain BJ-1H was conducted to investigate the potential molecular mechanism of hypovirulence induced by RsPV2-BJ. In total, 14,319 unigenes were obtained, and 1,341 unigenes were identified as differentially expressed genes (DEGs), with 570 DEGs being down-regulated and 771 being up-regulated. Notably, several up-regulated DEGs were annotated to cell wall degrading enzymes, including β-1,3-glucanases. Strain BJ-1H exhibited increased expression of β-1,3-glucanase after RsPV2-BJ infection, suggesting that cell wall autolysis activity in R. solani AG-4HGI strain BJ-1H might be promoted by RsPV2-BJ, inducing hypovirulence in its host fungus R. solani AG-4HGI. To the best of our knowledge, this is the first report on the potential mechanism of hypovirulence induced by a mycovirus in R. solani.
Collapse
Affiliation(s)
- Yuting Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Siwei Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Zhijian Liang
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Qingnian Cai
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Tao Zhou
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Can Zhao
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
- College of Horticulture, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| |
Collapse
|
7
|
Bilal M, Bagheri AR, Bhatt P, Chen S. Environmental occurrence, toxicity concerns, and remediation of recalcitrant nitroaromatic compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112685. [PMID: 33930637 DOI: 10.1016/j.jenvman.2021.112685] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Nitroaromatic compounds (NACs) are considered important groups of chemicals mainly produced by human and industrial activities. The large-scale application of these xenobiotics creates contamination of the water and soil environment. Despite applicability, NACs have been caused severe hazardous side effects in animals and human systems like different cancers, anemia, skin irritation, liver damage and mutagenic effects. The effective remediation of the NACs from the environment is a significant concern. Researchers have implemented physicochemical and biological methods for the remediation of NACs from the environment. Most of the applied methods are based on adsorption and degradation approaches. Among these methods, degradation is considered a versatile method for the subsequent removal of NACs due to its exceptional properties like simplicity, easy operation, cost-effectiveness, and availability. Most importantly, the degradation process does not generate hazardous side products and wastes compared to other methods. Hence, the importance of NACs, their remediation, and supreme attributes of the degradation method have encouraged us to review the recent progress and development for the removal of these perilous materials using degradation as a versatile method. Therefore, in this review, (i) NACs, physicochemical properties, and their hazardous side effects on humans and animals are discussed; (ii) Physicochemical methods, microbial, anaerobic bioremediation, mycoremediation, and aerobic degradation approaches for the degradation of NACs were thoroughly vetted; (iii) The possible mechanisms for degradation of NACs were investigated and discussed. (iv) The applied kinetic models for evaluation of the rate of degradation were also assessed and discussed. Finally, (vi) current challenges and future prospects of proposed methods for degradation and removal of NACs were also directed.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | | | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Linde D, Ayuso-Fernández I, Ruiz-Dueñas FJ, Martínez AT. Different fungal peroxidases oxidize nitrophenols at a surface catalytic tryptophan. Arch Biochem Biophys 2019; 668:23-28. [PMID: 31095936 DOI: 10.1016/j.abb.2019.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/30/2019] [Accepted: 05/11/2019] [Indexed: 10/26/2022]
Abstract
Dye-decolorizing peroxidase (DyP) from Auricularia auricula-judae and versatile peroxidase (VP) from Pleurotus eryngii oxidize the three mononitrophenol isomers. Both enzymes have been overexpressed in Escherichia coli and in vitro activated. Despite their very different three-dimensional structures, the nitrophenol oxidation site is located at a solvent-exposed aromatic residue in both DyP (Trp377) and VP (Trp164), as revealed by liquid chromatography coupled to mass spectrometry and kinetic analyses of nitrophenol oxidation by the native enzymes and their tryptophan-less variants (the latter showing 10-60 fold lower catalytic efficiencies).
Collapse
Affiliation(s)
- Dolores Linde
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Iván Ayuso-Fernández
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | | | - Angel T Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040, Madrid, Spain.
| |
Collapse
|
9
|
Biochemical Characterization of CYP505D6, a Self-Sufficient Cytochrome P450 from the White-Rot Fungus Phanerochaete chrysosporium. Appl Environ Microbiol 2018; 84:AEM.01091-18. [PMID: 30171007 DOI: 10.1128/aem.01091-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/29/2018] [Indexed: 12/29/2022] Open
Abstract
The activity of a self-sufficient cytochrome P450 enzyme, CYP505D6, from the lignin-degrading basidiomycete Phanerochaete chrysosporium was characterized. Recombinant CYP505D6 was produced in Escherichia coli and purified. In the presence of NADPH, CYP505D6 used a series of saturated fatty alcohols with C9-18 carbon chain lengths as the substrates. Hydroxylation occurred at the ω-1 to ω-6 positions of such substrates with C9-15 carbon chain lengths, except for 1-dodecanol, which was hydroxylated at the ω-1 to ω-7 positions. Fatty acids were also substrates of CYP505D6. Based on the sequence alignment, the corresponding amino acid of Tyr51, which is located at the entrance to the active-site pocket in CYP102A1, was Val51 in CYP505D6. To understand the diverse hydroxylation mechanism, wild-type CYP505D6 and its V51Y variant and wild-type CYP102A1 and its Y51V variant were generated, and the products of their reaction with dodecanoic acid were analyzed. Compared with wild-type CYP505D6, its V51Y variant generated few products hydroxylated at the ω-4 to ω-6 positions. The products generated by wild-type CYP102A1 were hydroxylated at the ω-1 to ω-4 positions, whereas its Y51V variant generated ω-1 to ω-7 hydroxydodecanoic acids. These observations indicated that Val51 plays an important role in determining the regiospecificity of fatty acid hydroxylation, at least that at the ω-4 to ω-6 positions. Aromatic compounds, such as naphthalene and 1-naphthol, were also hydroxylated by CYP505D6. These findings highlight a unique broad substrate spectrum of CYP505D6, rendering it an attractive candidate enzyme for the biotechnological industry.IMPORTANCE Phanerochaete chrysosporium is a white-rot fungus whose metabolism of lignin, aromatic pollutants, and lipids has been most extensively studied. This fungus harbors 154 cytochrome P450-encoding genes in the genome. As evidenced in this study, P. chrysosporium CYP505D6, a fused protein of P450 and its reductase, hydroxylates fatty alcohols (C9-15) and fatty acids (C9-15) at the ω-1 to ω-7 or ω-1 to ω-6 positions, respectively. Naphthalene and 1-naphthol were also hydroxylated, indicating that the substrate specificity of CYP505D6 is broader than those of the known fused proteins CYP102A1 and CYP505A1. The substrate versatility of CYP505D6 makes this enzyme an attractive candidate for biotechnological applications.
Collapse
|
10
|
Biological valorization of low molecular weight lignin. Biotechnol Adv 2016; 34:1318-1346. [DOI: 10.1016/j.biotechadv.2016.10.001] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/06/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022]
|
11
|
Rodrigues GN, Alvarenga N, Vacondio B, de Vasconcellos SP, Passarini MR, Seleghim MH, Porto AL. Biotransformation of methyl parathion by marine-derived fungi isolated from ascidian Didemnum ligulum. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Mycoremediation with mycotoxin producers: a critical perspective. Appl Microbiol Biotechnol 2015; 100:17-29. [DOI: 10.1007/s00253-015-7032-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/18/2022]
|
13
|
Büttner E, Ullrich R, Strittmatter E, Piontek K, Plattner DA, Hofrichter M, Liers C. Oxidation and nitration of mononitrophenols by a DyP-type peroxidase. Arch Biochem Biophys 2015; 574:86-92. [PMID: 25796533 DOI: 10.1016/j.abb.2015.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/23/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
Abstract
Substantial conversion of nitrophenols, typical high-redox potential phenolic substrates, by heme peroxidases has only been reported for lignin peroxidase (LiP) so far. But also a dye-decolorizing peroxidase of Auricularia auricula-judae (AauDyP) was found to be capable of acting on (i) ortho-nitrophenol (oNP), (ii) meta-nitrophenol (mNP) and (iii) para-nitrophenol (pNP). The pH dependency for pNP oxidation showed an optimum at pH 4.5, which is typical for phenol conversion by DyPs and other heme peroxidases. In the case of oNP and pNP conversion, dinitrophenols (2,4-DNP and 2,6-DNP) were identified as products and for pNP additionally p-benzoquinone. Moreover, indications were found for the formation of random polymerization products originating from initially formed phenoxy radical intermediates. Nitration was examined using (15)N-labeled pNP and Na(14)NO2 as an additional source of nitro-groups. Products were identified by HPLC-MS, and mass-to-charge ratios were evaluated to clarify the origin of nitro-groups. The additional nitrogen in DNPs formed during enzymatic conversion was found to originate both from (15)N-pNP and (14)NO2Na. Based on these results, a hypothetical reaction scheme and a catalytically responsible confine of the enzyme's active site are postulated.
Collapse
Affiliation(s)
- Enrico Büttner
- TU Dresden, International Institute Zittau, Markt 23, 02763 Zittau, Germany
| | - René Ullrich
- TU Dresden, International Institute Zittau, Markt 23, 02763 Zittau, Germany
| | - Eric Strittmatter
- University of Freiburg, Institute of Organic Chemistry, Albertstrasse 21, 79104 Freiburg, Germany
| | - Klaus Piontek
- University of Freiburg, Institute of Organic Chemistry, Albertstrasse 21, 79104 Freiburg, Germany
| | - Dietmar A Plattner
- University of Freiburg, Institute of Organic Chemistry, Albertstrasse 21, 79104 Freiburg, Germany
| | - Martin Hofrichter
- TU Dresden, International Institute Zittau, Markt 23, 02763 Zittau, Germany
| | - Christiane Liers
- TU Dresden, International Institute Zittau, Markt 23, 02763 Zittau, Germany.
| |
Collapse
|
14
|
|
15
|
Fungal microsomes in a biotransformation perspective: protein nature of membrane-associated reactions. Appl Microbiol Biotechnol 2013; 97:10263-73. [DOI: 10.1007/s00253-013-5347-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 12/27/2022]
|
16
|
Ichinose H. Cytochrome P450 of wood-rotting basidiomycetes and biotechnological applications. Biotechnol Appl Biochem 2013; 60:71-81. [PMID: 23586994 DOI: 10.1002/bab.1061] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/09/2012] [Indexed: 12/23/2022]
Abstract
Wood-rotting basidiomycetes possess superior metabolic functions to degrade woody biomass, and these activities are indispensable for the carbon cycle of the biosphere. As well as basic studies of the biochemistry of basidiomycetes, many researchers have been focusing on utilizing basidiomycetes and/or their enzymes in the biotechnology sector; therefore, the unique activities of their extracellular and intracellular enzymes have been widely demonstrated. A rich history of applied study has established that basidiomycetes are capable of metabolizing a series of endogeneous and exogeneous compounds using cytochrome P450s (P450s). Recently, whole genome sequence analyses have revealed large-scale divergences in basidiomycetous P450s. The tremendous variation in P450s implies that basidiomycetes have vigorously diversified monooxygenase functions to acquire metabolic adaptations such as lignin degradation, secondary metabolite production, and xenobiotics detoxification. However, fungal P450s discovered from genome projects are often categorized into novel families and subfamilies, making it difficult to predict catalytic functions by sequence comparison. Experimental screening therefore remains essential to elucidate the catalytic potential of individual P450s, even in this postgenomic era. This paper archives the known metabolic capabilities of basidiomycetes, focusing on their P450s, outlines the molecular diversity of basidiomycetous P450s, and introduces new functions revealed by functionomic studies using a recently developed, rapid, functional screening system.
Collapse
|
17
|
Syed K, Yadav JS. P450 monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium. Crit Rev Microbiol 2012; 38:339-63. [PMID: 22624627 PMCID: PMC3567848 DOI: 10.3109/1040841x.2012.682050] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phanerochaete chrysosporium, the model white rot fungus, has been the focus of research for the past about four decades for understanding the mechanisms and processes of biodegradation of the natural aromatic polymer lignin and a broad range of environmental toxic chemicals. The ability to degrade this vast array of xenobiotic compounds was originally attributed to its lignin-degrading enzyme system, mainly the extracellular peroxidases. However, subsequent physiological, biochemical, and/or genetic studies by us and others identified the involvement of a peroxidase-independent oxidoreductase system, the cytochrome P450 monooxygenase system. The whole genome sequence revealed an extraordinarily large P450 contingent (P450ome) with an estimated 149 P450s in this organism. This review focuses on the current status of understanding on the P450 monooxygenase system of P. chrysosproium in terms of pre-genomic and post-genomic identification, structural and evolutionary analysis, transcriptional regulation, redox partners, and functional characterization for its biodegradative potential. Future research on this catalytically diverse oxidoreductase enzyme system and its major role as a newly emerged player in xenobiotic metabolism/degradation is discussed.
Collapse
Affiliation(s)
- Khajamohiddin Syed
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Jagjit S Yadav
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| |
Collapse
|
18
|
Ning D, Wang H. Involvement of cytochrome P450 in pentachlorophenol transformation in a white rot fungus Phanerochaete chrysosporium. PLoS One 2012; 7:e45887. [PMID: 23029295 PMCID: PMC3447798 DOI: 10.1371/journal.pone.0045887] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/27/2012] [Indexed: 12/22/2022] Open
Abstract
The occurrence of cytochrome P450 and P450-mediated pentachlorophenol oxidation in a white rot fungus Phanerochaete chrysosporium was demonstrated in this study. The carbon monoxide difference spectra indicated induction of P450 (103±13 pmol P450 per mg protein in the microsomal fraction) by pentachlorophenol. The pentachlorophenol oxidation by the microsomal P450 was NADPH-dependent at a rate of 19.0±1.2 pmol min−1 (mg protein)−1, which led to formation of tetrachlorohydroquinone and was significantly inhibited by piperonyl butoxide (a P450 inhibitor). Tetrachlorohydroquinone was also found in the cultures, while the extracellular ligninases which were reported to be involved in tetrachlorohydroquinone formation were undetectable. The formation of tetrachlorohydroquinone was not detectable in the cultures added with either piperonyl butoxide or cycloheximide (an inhibitor of de novo protein synthesis). These results revealed the pentachlorophenol oxidation by induced P450 in the fungus, and it should be the first time that P450-mediated pentachlorophenol oxidation was demonstrated in a microorganism. Furthermore, the addition of the P450 inhibitor to the cultures led to obvious increase of pentachlorophenol, suggesting that the relationship between P450 and pentachlorophenol methylation is worthy of further research.
Collapse
Affiliation(s)
- Daliang Ning
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
19
|
Xie B, Yang J, Yang Q. Biotransformation of nitro-polycyclic aromatic compounds by vegetable and fruit cell extracts. J Zhejiang Univ Sci B 2012; 13:248-53. [PMID: 22467365 DOI: 10.1631/jzus.b1100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Extracts from various vegetables and fruits were investigated for their abilities to reduce nitro-polycyclic aromatic hydrocarbons (NPAHs). The extracts from grape and onion exhibited an interesting selectivity, yielding corresponding hydroxylamines or amines as major products under mild conditions of 30 °C and pH 7.0. Grape extracts reduced the 4-nitro-1,8-naphthalic anhydride with the highest conversion rate (>99%) and the highest ratio of hydroxylamine to amine (95:5). In contrast, the onion extracts reduced 4-nitro-1,8-naphthalic anhydride with a conversion rate of 94% and a ratio of hydroxylamine to amine of 8:92. The thiol-reducing agent, β-mercaptoethanol, and metal cations, Ca(2+) and Mg(2+), greatly increased the reductive efficiency. This work provides an alternative strategy for biotransformation of nitro-polycyclic compounds.
Collapse
Affiliation(s)
- Bo Xie
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | | | | |
Collapse
|
20
|
Tripathi A, Upadhyay RC, Singh S. Mineralization of mono-nitrophenols by Bjerkandera adusta and Lentinus squarrosulus and their extracellular ligninolytic enzymes. J Basic Microbiol 2011; 51:635-49. [DOI: 10.1002/jobm.201000436] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/22/2011] [Indexed: 11/10/2022]
|
21
|
Crešnar B, Petrič S. Cytochrome P450 enzymes in the fungal kingdom. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:29-35. [PMID: 20619366 DOI: 10.1016/j.bbapap.2010.06.020] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/18/2010] [Accepted: 06/28/2010] [Indexed: 01/13/2023]
Abstract
Cytochrome P450 monooxygenases of fungi are involved in many essential cellular processes and play diverse roles. The enzymes catalyze the conversion of hydrophobic intermediates of primary and secondary metabolic pathways, detoxify natural and environmental pollutants and allow fungi to grow under different conditions. Fungal genome sequencing projects have enabled the annotation of several thousand novel cytochromes P450, many of which constitute new families. This review presents the characteristics of fungal cytochrome P450 systems and updates information on the functions of characterized fungal P450 monooxygenases as well as outlines the currently used strategies for determining the function of the many putative P450 enzymes.
Collapse
Affiliation(s)
- B Crešnar
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | | |
Collapse
|
22
|
Cytochrome P450 monooxygenases involved in anthracene metabolism by the white-rot basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 2010; 87:1907-16. [DOI: 10.1007/s00253-010-2616-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/26/2010] [Accepted: 04/15/2010] [Indexed: 11/30/2022]
|
23
|
Ning D, Wang H, Ding C, Lu H. Novel evidence of cytochrome P450-catalyzed oxidation of phenanthrene in Phanerochaete chrysosporium under ligninolytic conditions. Biodegradation 2010; 21:889-901. [PMID: 20333538 DOI: 10.1007/s10532-010-9349-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 03/08/2010] [Indexed: 11/29/2022]
Abstract
The presence of cytochrome P450 and P450-mediated phenanthrene oxidation in the white rot fungus Phanerochaete chrysosporium under ligninolytic condition was first demonstrated in this study. The carbon monoxide difference spectra indicated induction of P450 (130 pmol mg(-1) in the microsomal fraction) by phenanthrene. The microsomal P450 degraded phenanthrene with a NADPH-dependent activity of 0.44 ± 0.02 min(-1). One of major detectable metabolites of phenanthrene in the ligninolytic cultures and microsomal fractions was identified as phenanthrene trans-9,10-dihydrodiol. Piperonyl butoxide, a P450 inhibitor which had no effect on manganese peroxidase activity, significantly inhibited phenanthrene degradation and the trans-9,10-dihydrodiol formation in both intact cultures and microsomal fractions. Furthermore, phenanthrene was also efficiently degraded by the extracellular fraction with high manganese peroxidase activity. These results indicate important roles of both manganese peroxidase and cytochrome P450 in phenanthrene metabolism by ligninolytic P. chrysosporium.
Collapse
Affiliation(s)
- Daliang Ning
- Department of Environmental Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | | | | | | |
Collapse
|
24
|
Ning D, Wang H, Zhuang Y. Induction of functional cytochrome P450 and its involvement in degradation of benzoic acid by Phanerochaete chrysosporium. Biodegradation 2009; 21:297-308. [DOI: 10.1007/s10532-009-9301-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 09/15/2009] [Indexed: 11/28/2022]
|
25
|
Li N, Zhang Y, Feng H. Biochemical characterization and transcriptional analysis of the epoxide hydrolase from white-rot fungus Phanerochaete chrysosporium. Acta Biochim Biophys Sin (Shanghai) 2009; 41:638-47. [PMID: 19657565 DOI: 10.1093/abbs/gmp052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The white-rot basidiomycetes Phanerochaete chrysosporium is a model fungus used to investigate the secondary metabolism and lignin degradation. Genomic sequencing reveals the presence of at least 18 genes encoding putative epoxide hydrolases (EHs). One cDNA encoding EH (designated as PchEHA) was cloned and expressed in Escherichia coli. Transcriptional analysis demonstrated that the transcripts of PchEHA could be detected under the ligninolytic and nonligninolytic conditions as well as amended with anthracene. The recombinant enzyme exhibits broad hydrolytic activity toward several racemic epoxides including styrene oxide, epichlorohydrin, and 1,2-epoxybutane, but with different specificity. Using racemic styrene oxide as the substrate, the optimal pH and temperature are pH 9.0 and 40 degrees C, respectively. The enzyme is not sensitive to EDTA, and is inhibited by H2O2, and several metal ions including Zn(2+), Cd(2+), and Hg(2+) at various extents. Several organic cosolvents including acetone, dimethylsulfoxide, formamide, glycerol and ethanol at 10% (v/v) cause slight or no inhibition of the hydrolytic reaction. More importantly, the recombinant enzyme displays distinct enantioselective preference to several chiral epoxides. The enzyme showed good enantioselectivity toward chiral styrene oxide with preferential hydrolysis of (R)-enantiomer. PchEHA is likely a novel soluble EH based on the sequence analysis and catalytic properties, and is a great potential biocatalyst for the preparation of enantiopure styrene oxide in racemic kinetic resolution.
Collapse
Affiliation(s)
- Nian Li
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, China
| | | | | |
Collapse
|
26
|
Tortella GR, Diez MC, Duran N. Fungal Diversity and Use in Decomposition of Environmental Pollutants. Crit Rev Microbiol 2008; 31:197-212. [PMID: 16417201 DOI: 10.1080/10408410500304066] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This article presents a critical review of the actual state of fungal activities on environmental pollutants, fungal diversity, the use of fungi in the degradation of chemical pollutants, enzyme degrading systems and perspectives on the use of fungi in bioremediation and unexplored research. The ability of fungi to transform or metabolize chemical pollutants has received much attention due to environmental persistence and chemical toxicity. The fungal degradation of xenobiotics is looked upon as an effective method of removing these pollutants from the environment by a process which is currently known as bioremediation. This review summarizes information from fundamental works that have revealed that a wide variety of fungi are capable of degrading an equally wide range of toxical chemical. The capacity of non-ligninolytic and ligninolytic fungi in the bioremediation of polycyclic aromatic hydrocarbon (PAHs), benzene-toluene-ethylbenzene-xylene (BTEX), chlorophenols, polychlorinated biphenyl, munitions waste and pesticides have been discussed. Besides this, several extracellular enzymes are involved in the metabolism of xenobiotic compounds as well as other factors related to these processes.
Collapse
Affiliation(s)
- Gonzalo R Tortella
- Facultad de Ingeniería, Depto de Ingeniería Química Universidad de La Frontera Temuco, Chile.
| | | | | |
Collapse
|
27
|
Matsuzaki F, Shimizu M, Wariishi H. Proteomic and metabolomic analyses of the white-rot fungus Phanerochaete chrysosporium exposed to exogenous benzoic acid. J Proteome Res 2008; 7:2342-50. [PMID: 18435559 DOI: 10.1021/pr700617s] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intracellular processes of the white-rot basidiomycete Phanerochaete chrysosporium involved in the metabolism of benzoic acid (BA) were investigated at the proteome and metabolome level. Up-regulation of aryl-alcohol dehydrogenase, arylaldehyde dehydrogenase, and cytochrome P450s was observed upon addition of exogenous BA, suggesting that these enzymes play key roles in its metabolism. Intracellular metabolic shifts from the short-cut TCA/glyoxylate bicycle system to the TCA cycle and an increased flux in the TCA cycle indicated activation of the heme biosynthetic pathway and the production of NAD(P)H. In addition, combined analyses of proteome and metabolome clearly indicated the role of trehalose as a storage disaccharide and that the mannitol cycle plays a role in an alternative energy-producing pathway.
Collapse
Affiliation(s)
- Fumiko Matsuzaki
- Faculty of Agriculture, Bio-Architecture Center, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
28
|
Biotransformations of nitro-aromatic compounds to amines and acetamides by tuberous roots of Arracacia xanthorrhiza and Beta vulgaris and associated microorganism (Candida guilliermondii). Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Matsuzaki F, Wariishi H. Molecular characterization of cytochrome P450 catalyzing hydroxylation of benzoates from the white-rot fungus Phanerochaete chrysosporium. Biochem Biophys Res Commun 2005; 334:1184-90. [PMID: 16039998 DOI: 10.1016/j.bbrc.2005.07.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
We cloned full-length cDNA (PcCYP1f) encoding one of the cytochrome P450s in the lignin-degrading basidiomycete Phanerochaete chrysosporium, which showed high homology to P450s in the CYP53 family. PcCYP1f was expressed as an active microsomal protein using the methylotrophic yeast Pichia pastoris expression system. Using the microsomal fraction containing PcCYP1f, a typical P450 CO-difference spectrum was obtained with absorption maximum at 448nm. Recombinant PcCYP1f catalyzed the hydroxylation of benzoic acid into 4-hydroxybenzoic acid in the presence of NADPH and P. chrysosporium cytochrome P450 oxidoreductase. In contrast to other CYP53 P450s, this enzyme was shown to catalyze the hydroxylation of 3-hydroxybenzoate into 3,4-dihydroxybenzoate. Furthermore, 2- and 3-methylbenzoate were also shown to be substrates of PcCYP1f. This is the first report showing the expression of a functionally active Phanerochaete P450. Finally, real-time quantitative PCR analysis revealed that PcCYP1f is induced at a transcriptional level by exogenous addition of benzoic acid.
Collapse
Affiliation(s)
- Fumiko Matsuzaki
- Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | |
Collapse
|
30
|
Phanerochaete chrysosporium Genomics. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1874-5334(05)80016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Teramoto H, Tanaka H, Wariishi H. Fungal cytochrome P450s catalyzing hydroxylation of substituted toluenes to form their hydroxymethyl derivatives. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09541.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|