1
|
Chow V, Nong G, St John FJ, Sawhney N, Rice JD, Preston JF. Bacterial xylan utilization regulons: Systems for coupling depolymerization of methylglucuronoxylans with assimilation and metabolism. J Ind Microbiol Biotechnol 2021; 49:6420245. [PMID: 34734267 DOI: 10.1093/jimb/kuab080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/25/2021] [Indexed: 11/14/2022]
Abstract
Bioconversion of lignocellulosic resources to fuels and chemicals offers an economically promising path to renewable energy. Technological challenges to achieving bioconversion include the development of cost-effective processes that render the cellulose and hemicellulose components of these resources to fermentable hexoses and pentoses. Natural bioprocessing of the hemicellulose fraction of lignocellulosic biomass requires depolymerization of methylglucuronoxylans. This depends upon the secretion of endoxylanases that release xylooligosaccharides and aldouronates. Physiological, biochemical and genetic studies with selected bacteria support a process in which a cell-anchored multimodular GH10 endoxylanase catalyzes the release of the hydrolysis products, aldotetrauronate, xylotriose, and xylobiose that are directly assimilated and metabolized. Gene clusters encoding intracellular enzymes, including α-glucuronidase, endo-xylanase, β-xylosidase, ABC transporter proteins, and transcriptional regulators are coordinately responsive to substrate induction or repression. The rapid rates of glucuronoxylan utilization and microbial growth, along with the absence of detectable products of depolymerization in the medium, indicate that assimilation and depolymerization are coupled processes. Genomic comparisons provide evidence that such systems occur in xylanolytic species in several genera, including Clostridium, Geobacillus, Paenibacillus, and Thermotoga. These systems offer promise, either in their native configurations or through gene transfer to other organisms, to develop biocatalysts for efficient production of fuels and chemicals from the hemicellulose fractions of lignocellulosic resources.
Collapse
Affiliation(s)
- Virgina Chow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, USA
| | - Guang Nong
- Department of Microbiology and Cell Science, University of Florida, Gainesville, USA
| | - Franz J St John
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, USA
| | - Neha Sawhney
- Department of Microbiology and Cell Science, University of Florida, Gainesville, USA
| | - John D Rice
- Department of Microbiology and Cell Science, University of Florida, Gainesville, USA
| | - James F Preston
- Department of Microbiology and Cell Science, University of Florida, Gainesville, USA
| |
Collapse
|
2
|
Li J, Chen C, Liu YJ, Cui Q, Bayer EA, Feng Y. NMR chemical shift assignments of a module of unknown function in the cellulosomal secondary scaffoldin ScaF from Clostridium thermocellum. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:329-334. [PMID: 33876380 DOI: 10.1007/s12104-021-10025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
The cellulosome is a highly efficient cellulolytic complex containing cellulolytic enzymes and non-catalytic subunits, i.e. scaffoldins, which are assembled by the interactions between the dockerin modules of the enzymes and the cohesin modules of the primary scaffoldins. The cellulosome attaches to the cell surface via the S-layer homology (SLH) modules of the anchoring scaffoldins. Clostridium thermocellum DSM1313 is a thermophilic cellulosome-producing bacterium with great potential in lignocellulose bioconversion and biofuel production. The bacterium contains four anchoring scaffoldins ScaB, ScaC, ScaD and ScaF, among which ScaF is the only one that contains an additional module of unknown function (ScaF-X) between the cohesin and SLH modules. The gene of ScaF is located outside the scaffoldin gene cluster of scaA, scaB, scaC and scaD. Previous studies showed unique regulation properties and function of ScaF compared to other anchoring scaffoldins, which might be related to the additional ScaF-X module. Here we report the NMR chemical shift assignments of ScaF-X from C. thermocellum DSM1313. The well-dispersed NMR spectrum and the secondary structure prediction based on the chemical shifts of ScaF-X indicated that ScaF-X is a well-folded protein module. The chemical shift assignments provide the basis for future studies on the structure of this module and its function in cellulosomes.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Energy Institute, Qingdao, 266101, Shandong, China
- New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Energy Institute, Qingdao, 266101, Shandong, China
- New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Energy Institute, Qingdao, 266101, Shandong, China
- New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Energy Institute, Qingdao, 266101, Shandong, China
- New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 8499000, Beer-Sheva, Israel
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China.
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China.
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China.
- Shandong Energy Institute, Qingdao, 266101, Shandong, China.
- New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
The Cellulosome Paradigm in An Extreme Alkaline Environment. Microorganisms 2019; 7:microorganisms7090347. [PMID: 31547347 PMCID: PMC6780208 DOI: 10.3390/microorganisms7090347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/01/2019] [Accepted: 09/10/2019] [Indexed: 11/19/2022] Open
Abstract
Rapid decomposition of plant biomass in soda lakes is associated with microbial activity of anaerobic cellulose-degrading communities. The alkaliphilic bacterium, Clostridium alkalicellulosi, is the single known isolate from a soda lake that demonstrates cellulolytic activity. This microorganism secretes cellulolytic enzymes that degrade cellulose under anaerobic and alkaliphilic conditions. A previous study indicated that the protein fraction of cellulose-grown cultures showed similarities in composition and size to known components of the archetypical cellulosome Clostridium thermocellum. Bioinformatic analysis of the C. alkalicellulosi draft genome sequence revealed 44 cohesins, organized into 22 different scaffoldins, and 142 dockerin-containing proteins. The modular organization of the scaffoldins shared similarities to those of C. thermocellum and Acetivibrio cellulolyticus, whereas some exhibited unconventional arrangements containing peptidases and oxidative enzymes. The binding interactions among cohesins and dockerins assessed by ELISA, revealed a complex network of cellulosome assemblies and suggested both cell-associated and cell-free systems. Based on these interactions, C. alkalicellulosi cellulosomal systems have the genetic potential to create elaborate complexes, which could integrate up to 105 enzymatic subunits. The alkalistable C. alkalicellulosi cellulosomal systems and their enzymes would be amenable to biotechnological processes, such as treatment of lignocellulosic biomass following prior alkaline pretreatment.
Collapse
|
4
|
Desvaux M, Candela T, Serror P. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display. Front Microbiol 2018; 9:100. [PMID: 29491848 PMCID: PMC5817068 DOI: 10.3389/fmicb.2018.00100] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| | - Thomas Candela
- EA4043 Unité Bactéries Pathogènes et Santé, Châtenay-Malabry, France
| | - Pascale Serror
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
5
|
Zhivin O, Dassa B, Moraïs S, Utturkar SM, Brown SD, Henrissat B, Lamed R, Bayer EA. Unique organization and unprecedented diversity of the Bacteroides (Pseudobacteroides) cellulosolvens cellulosome system. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:211. [PMID: 28912832 PMCID: PMC5590126 DOI: 10.1186/s13068-017-0898-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/29/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND (Pseudo) Bacteroides cellulosolvens is an anaerobic, mesophilic, cellulolytic, cellulosome-producing clostridial bacterium capable of utilizing cellulose and cellobiose as carbon sources. Recently, we sequenced the B. cellulosolvens genome, and subsequent comprehensive bioinformatic analysis, herein reported, revealed an unprecedented number of cellulosome-related components, including 78 cohesin modules scattered among 31 scaffoldins and more than 200 dockerin-bearing ORFs. In terms of numbers, the B. cellulosolvens cellulosome system represents the most intricate, compositionally diverse cellulosome system yet known in nature. RESULTS The organization of the B. cellulosolvens cellulosome is unique compared to previously described cellulosome systems. In contrast to all other known cellulosomes, the cohesin types are reversed for all scaffoldins i.e., the type II cohesins are located on the enzyme-integrating primary scaffoldin, whereas the type I cohesins are located on the anchoring scaffoldins. Many of the type II dockerin-bearing ORFs include X60 modules, which are known to stabilize type II cohesin-dockerin interactions. In the present work, we focused on revealing the architectural arrangement of cellulosome structure in this bacterium by examining numerous interactions between the various cohesin and dockerin modules. In total, we cloned and expressed 43 representative cohesins and 27 dockerins. The results revealed various possible architectures of cell-anchored and cell-free cellulosomes, which serve to assemble distinctive cellulosome types via three distinct cohesin-dockerin specificities: type I, type II, and a novel-type designated R (distinct from type III interactions, predominant in ruminococcal cellulosomes). CONCLUSIONS The results of this study provide novel insight into the architecture and function of the most intricate and extensive cellulosomal system known today, thereby extending significantly our overall knowledge base of cellulosome systems and their components. The robust cellulosome system of B. cellulosolvens, with its unique binding specificities and reversal of cohesin-dockerin types, has served to amend our view of the cellulosome paradigm. Revealing new cellulosomal interactions and arrangements is critical for designing high-efficiency artificial cellulosomes for conversion of plant-derived cellulosic biomass towards improved production of biofuels.
Collapse
Affiliation(s)
- Olga Zhivin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Moraïs
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sagar M. Utturkar
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37919 USA
- BioEnergy Science Center, Oak Ridge, TN USA
| | - Steven D. Brown
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37919 USA
- BioEnergy Science Center, Oak Ridge, TN USA
- Biosciences Division, Energy and Environment Directorate, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille University and CNRS, Marseille, France
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Edward A. Bayer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Arntzen MØ, Várnai A, Mackie RI, Eijsink VGH, Pope PB. Outer membrane vesicles from Fibrobacter succinogenes S85 contain an array of carbohydrate-active enzymes with versatile polysaccharide-degrading capacity. Environ Microbiol 2017; 19:2701-2714. [PMID: 28447389 DOI: 10.1111/1462-2920.13770] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/18/2017] [Indexed: 11/30/2022]
Abstract
Fibrobacter succinogenes is an anaerobic bacterium naturally colonising the rumen and cecum of herbivores where it utilizes an enigmatic mechanism to deconstruct cellulose into cellobiose and glucose, which serve as carbon sources for growth. Here, we illustrate that outer membrane vesicles (OMVs) released by F. succinogenes are enriched with carbohydrate-active enzymes and that intact OMVs were able to depolymerize a broad range of linear and branched hemicelluloses and pectin, despite the inability of F. succinogenes to utilize non-cellulosic (pentose) sugars for growth. We hypothesize that the degradative versatility of F. succinogenes OMVs is used to prime hydrolysis by destabilising the tight networks of polysaccharides intertwining cellulose in the plant cell wall, thus increasing accessibility of the target substrate for the host cell. This is supported by observations that OMV-pretreatment of the natural complex substrate switchgrass increased the catalytic efficiency of a commercial cellulose-degrading enzyme cocktail by 2.4-fold. We also show that the OMVs contain a putative multiprotein complex, including the fibro-slime protein previously found to be important in binding to crystalline cellulose. We hypothesize that this complex has a function in plant cell wall degradation, either by catalysing polysaccharide degradation itself, or by targeting the vesicles to plant biomass.
Collapse
Affiliation(s)
- Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Roderick I Mackie
- Institute for Genomic Biology, and Department of Animal Sciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Phillip B Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
7
|
Kojima S, Muramoto K, Kusano T. Outer Membrane Proteins Derived from Non-cyanobacterial Lineage Cover the Peptidoglycan of Cyanophora paradoxa Cyanelles and Serve as a Cyanelle Diffusion Channel. J Biol Chem 2016; 291:20198-209. [PMID: 27502278 DOI: 10.1074/jbc.m116.746131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Indexed: 11/06/2022] Open
Abstract
The cyanelle is a primitive chloroplast that contains a peptidoglycan layer between its inner and outer membranes. Despite the fact that the envelope structure of the cyanelle is reminiscent of Gram-negative bacteria, the Cyanophora paradoxa genome appears to lack genes encoding homologs of putative peptidoglycan-associated outer membrane proteins and outer membrane channels. These are key components of Gram-negative bacterial membranes, maintaining structural stability and regulating permeability of outer membrane, respectively. Here, we discovered and characterized two dominant peptidoglycan-associated outer membrane proteins of the cyanelle (∼2 × 10(6) molecules per cyanelle). We named these proteins CppF and CppS (cyanelle peptidoglycan-associated proteins). They are homologous to each other and function as a diffusion channel that allows the permeation of compounds with Mr <1,000 as revealed by permeability measurements using proteoliposomes reconstituted with purified CppS and CppF. Unexpectedly, amino acid sequence analysis revealed no evolutionary linkage to cyanobacteria, showing only a moderate similarity to cell surface proteins of bacteria belonging to Planctomycetes phylum. Our findings suggest that the C. paradoxa cyanelle adopted non-cyanobacterial lineage proteins as its main outer membrane components, providing a physical link with the underlying peptidoglycan layer and functioning as a diffusion route for various small substances across the outer membrane.
Collapse
Affiliation(s)
- Seiji Kojima
- From the Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan and Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Koji Muramoto
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
8
|
Munir R, Levin DB. Enzyme Systems of Anaerobes for Biomass Conversion. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 156:113-138. [PMID: 26907548 DOI: 10.1007/10_2015_5002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biofuels from abundantly available cellulosic biomass are an attractive alternative to current petroleum-based fuels (fossil fuels). Although several strategies exist for commercial production of biofuels, conversion of biomass to biofuels via consolidated bioprocessing offers the potential to reduce production costs and increase processing efficiencies. In consolidated bioprocessing (CBP), enzyme production, cellulose hydrolysis, and fermentation are all carried out in a single-step by microorganisms that efficiently employ a multitude of intricate enzymes which act synergistically to breakdown cellulose and its associated cell wall components. Various strategies employed by anaerobic cellulolytic bacteria for biomass hydrolysis are described in this chapter. In addition, the regulation of CAZymes, the role of "omics" technologies in assessing lignocellulolytic ability, and current strategies for improving biomass hydrolysis for optimum biofuel production are highlighted.
Collapse
Affiliation(s)
- Riffat Munir
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada, R3T 5V6
| | - David B Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada, R3T 5V6.
| |
Collapse
|
9
|
Jeon SD, Kim SJ, Park SH, Choi GW, Han SO. Hydrolytic effects of scaffolding proteins CbpB and CbpC on crystalline cellulose mediated by the major cellulolytic complex from Clostridium cellulovorans. BIORESOURCE TECHNOLOGY 2015; 191:505-511. [PMID: 25748018 DOI: 10.1016/j.biortech.2015.02.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 06/04/2023]
Abstract
The role of the scaffolding proteins, cellulose binding protein B and C (CbpB and CbpC, respectively) were identified in cellulolytic complex (cellulosome) of Clostridium cellulovorans for efficient degradation of cellulose. Recombinant CbpB and CbpC directly anchored to the cell surface of C. cellulovorans. In addition, CbpB and CbpC showed increased hydrolytic activity on crystalline cellulose incubated with exoglucanase S (ExgS) and endoglucanase Z (EngZ) compared with the activity of free enzymes. Moreover, the results showed synergistic effects of crystalline cellulose hydrolytic activity (1.8- to 2.2-fold) when CbpB and CbpC complex with ExgS and EngZ are incubated with cellulolytic complex containing mini-CbpA. The results suggest C. cellulovorans critically uses CbpB and CbpC, which can directly anchor cells for the hydrolysis of cellulosic material with the major cellulosome complex.
Collapse
Affiliation(s)
- Sang Duck Jeon
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Su Jung Kim
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Sung Hyun Park
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Gi-Wook Choi
- Changhae Advanced Institute of Technology, Changhae Ethanol Co., Ltd., Jeonju 561-203, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
10
|
Hamberg Y, Ruimy-Israeli V, Dassa B, Barak Y, Lamed R, Cameron K, Fontes CMGA, Bayer EA, Fried DB. Elaborate cellulosome architecture of Acetivibrio cellulolyticus revealed by selective screening of cohesin-dockerin interactions. PeerJ 2014; 2:e636. [PMID: 25374780 PMCID: PMC4217186 DOI: 10.7717/peerj.636] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/02/2014] [Indexed: 11/20/2022] Open
Abstract
Cellulosic waste represents a significant and underutilized carbon source for the biofuel industry. Owing to the recalcitrance of crystalline cellulose to enzymatic degradation, it is necessary to design economical methods of liberating the fermentable sugars required for bioethanol production. One route towards unlocking the potential of cellulosic waste lies in a highly complex class of molecular machines, the cellulosomes. Secreted mainly by anaerobic bacteria, cellulosomes are structurally diverse, cell surface-bound protein assemblies that can contain dozens of catalytic components. The key feature of the cellulosome is its modularity, facilitated by the ultra-high affinity cohesin-dockerin interaction. Due to the enormous number of cohesin and dockerin modules found in a typical cellulolytic organism, a major bottleneck in understanding the biology of cellulosomics is the purification of each cohesin- and dockerin-containing component, prior to analyses of their interaction. As opposed to previous approaches, the present study utilized proteins contained in unpurified whole-cell extracts. This strategy was made possible due to an experimental design that allowed for the relevant proteins to be "purified" via targeted affinity interactions as a function of the binding assay. The approach thus represents a new strategy, appropriate for future medium- to high-throughput screening of whole genomes, to determine the interactions between cohesins and dockerins. We have selected the cellulosome of Acetivibrio cellulolyticus for this work due to its exceptionally complex cellulosome systems and intriguing diversity of its cellulosomal modular components. Containing 41 cohesins and 143 dockerins, A. cellulolyticus has one of the largest number of potential cohesin-dockerin interactions of any organism, and contains unusual and novel cellulosomal features. We have surveyed a representative library of cohesin and dockerin modules spanning the cellulosome's total cohesin and dockerin sequence diversity, emphasizing the testing of unusual and previously-unknown protein modules. The screen revealed several novel cell-bound cellulosome architectures, thus expanding on those previously known, as well as soluble cellulose systems that are not bound to the bacterial cell surface. This study sets the stage for screening the entire complement of cellulosomal components from A. cellulolyticus and other organisms with large cellulosome systems. The knowledge gained by such efforts brings us closer to understanding the exceptional catalytic abilities of cellulosomes and will allow the use of novel cellulosomal components in artificial assemblies and in enzyme cocktails for sustainable energy-related research programs.
Collapse
Affiliation(s)
- Yuval Hamberg
- Department of Biological Chemistry, The Weizmann Institute of Science , Rehovot , Israel
| | - Vered Ruimy-Israeli
- Department of Biological Chemistry, The Weizmann Institute of Science , Rehovot , Israel
| | - Bareket Dassa
- Department of Biological Chemistry, The Weizmann Institute of Science , Rehovot , Israel
| | - Yoav Barak
- Department of Biological Chemistry, The Weizmann Institute of Science , Rehovot , Israel ; Chemical Research Support, The Weizmann Institute of Science , Rehovot , Israel
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University , Ramat Aviv , Israel
| | - Kate Cameron
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa , Avenida da Universidade Técnica, Lisboa , Portugal
| | - Carlos M G A Fontes
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa , Avenida da Universidade Técnica, Lisboa , Portugal
| | - Edward A Bayer
- Department of Biological Chemistry, The Weizmann Institute of Science , Rehovot , Israel
| | - Daniel B Fried
- Department of Biological Chemistry, The Weizmann Institute of Science , Rehovot , Israel
| |
Collapse
|
11
|
Zhao G, Li H, Wamalwa B, Sakka M, Kimura T, Sakka K. Different Binding Specificities of S-Layer Homology Modules fromClostridium thermocellumAncA, Slp1, and Slp2. Biosci Biotechnol Biochem 2014; 70:1636-41. [PMID: 16861798 DOI: 10.1271/bbb.50699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
S-layer homology (SLH) module polypeptides were derived from Clostridium thermocellum S-layer proteins Slp1 and Slp2 and cellulosome anchoring protein AncA as rSlp1-SLH, rSlp2-SLH, and rAncA-SLH respectively. Their binding specificities were investigated using C. thermocellum cell-wall preparations. rAncA-SLH associated with native peptidoglycan-containing sacculi from C. thermocellum, including both peptidoglycan and secondary cell wall polymers (SCWP), but not to hydrofluoric acid-extracted peptidoglycan-containing sacculi (HF-EPCS) lacking SCWPs, suggesting that SCWPs are responsible for binding with SLH modules of AncA. On the other hand, rSlp1-SLH and rSlp2-SLH associated with HF-EPCS, suggesting that these polypeptides had an affinity for peptidoglycan. A binding assay using a peptidoglycan fraction prepared from Escherichia coli cells definitely confirmed that rSlp1-SLH and rSlp2-SLH specifically interacted with peptidoglycan but not with SCWP.
Collapse
Affiliation(s)
- Guangshan Zhao
- Faculty of Bioresources, Mie University, Tsu 514-8507, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Unique contribution of the cell wall-binding endoglucanase G to the cellulolytic complex in Clostridium cellulovorans. Appl Environ Microbiol 2013; 79:5942-8. [PMID: 23872560 DOI: 10.1128/aem.01400-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cellulosomes produced by Clostridium cellulovorans are organized by the specific interactions between the cohesins in the scaffolding proteins and the dockerins of the catalytic components. Using a cohesin biomarker, we identified a cellulosomal enzyme which belongs to the glycosyl hydrolase family 5 and has a domain of unknown function 291 (DUF291) with functions similar to those of the surface layer homology domain in C. cellulovorans. The purified endoglucanase G (EngG) had the highest synergistic degree with exoglucanase (ExgS) in the hydrolysis of crystalline cellulose (EngG/ExgS ratio = 3:1; 1.71-fold). To measure the binding affinity of the dockerins in EngG for the cohesins of the main scaffolding protein, a competitive enzyme-linked interaction assay was performed. Competitors, such as ExgS, reduced the percentage of EngG that were bound to the cohesins to less than 20%; the results demonstrated that the cohesins prefer to bind to the common cellulosomal enzymes rather than to EngG. Additionally, in surface plasmon resonance analysis, the dockerin in EngG had a relatively weak affinity (30- to 123-fold) for cohesins compared with the other cellulosomal enzymes. In the cell wall affinity assay, EngG anchored to the cell surfaces of C. cellulovorans using its DUF291 domain. Immunofluorescence microscopy confirmed the cell surface display of the EngG complex. These results indicated that in C. cellulovorans, EngG assemble into both the cellulolytic complex and the cell wall complex to aid in the hydrolysis of cellulose substrates.
Collapse
|
13
|
Ruiz N. A bird's eye view of the bacterial landscape. Methods Mol Biol 2013; 966:1-14. [PMID: 23299725 DOI: 10.1007/978-1-62703-245-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bacteria interact with the environment through their cell surface. Activities as diverse as attaching to a catheter, crawling on a surface, swimming through a pond, or being preyed on by a bacteriophage depend on the composition and structure of the cell surface. The cell surface must also protect bacteria from harmful chemicals present in the environment while allowing the intake of nutrients and excretion of toxic molecules. Bacteria have evolved four main types of bacterial cell surfaces to accomplish these functions: those of the typical gram-negative and gram-positive bacteria, and those of the Actinobacteria and Mollicutes. So few types seems remarkable since bacteria are very diverse and abundant, and they can live in many different environments. However, each species has tweaked these stereotypical bacterial surfaces to best fit its needs. The result is an amazing diversity of the bacterial landscape, most of which remains unexplored. Here I give an overview of the main features of the bacterial cell surface and highlight how advances in methodology have moved forward this field of study.
Collapse
Affiliation(s)
- Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
14
|
Are the surface layer homology domains essential for cell surface display and glycosylation of the S-layer protein from Paenibacillus alvei CCM 2051T? J Bacteriol 2012. [PMID: 23204458 DOI: 10.1128/jb.01487-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Paenibacillus alvei CCM 2051(T) cells are decorated with a two-dimensional (2D) crystalline array comprised of the glycosylated S-layer protein SpaA. At its N terminus, SpaA possesses three consecutive surface layer (S-layer) homology (SLH) domains containing the amino acid motif TRAE, known to play a key role in cell wall binding, as well as the TVEE and TRAQ variations thereof. SpaA is predicted to be anchored to the cell wall by interaction of the SLH domains with a peptidoglycan (PG)-associated, nonclassical, pyruvylated secondary cell wall polymer (SCWP). In this study, we have analyzed the role of the three predicted binding motifs within the SLH domains by mutating them into TAAA motifs, either individually, pairwise, or all of them. Effects were visualized in vivo by homologous expression of chimeras made of the mutated S-layer proteins and enhanced green fluorescent protein and in an in vitro binding assay using His-tagged SpaA variants and native PG-containing cell wall sacculi that either contained SCWP or were deprived of it. Experimental data indicated that (i) the TRAE, TVEE, and TRAQ motifs are critical for the binding function of SLH domains, (ii) two functional motifs are sufficient for cell wall binding, regardless of the domain location, (iii) SLH domains have a dual-recognition function for the SCWP and the PG, and (iv) cell wall anchoring is not necessary for SpaA glycosylation. Additionally, we showed that the SLH domains of SpaA are sufficient for in vivo cell surface display of foreign proteins at the cell surface of P. alvei.
Collapse
|
15
|
Molecular and biochemical characterization of a new alkaline active multidomain xylanase from alkaline wastewater sludge. World J Microbiol Biotechnol 2012; 29:327-34. [PMID: 23117673 DOI: 10.1007/s11274-012-1186-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/03/2012] [Indexed: 01/17/2023]
Abstract
A xylanase gene, xyn-b39, coding for a multidomain glycoside hydrolase (GH) family 10 protein was cloned from the genomic DNA of the alkaline wastewater sludge of a paper mill. Its deduced amino acid sequence of 1,481 residues included two carbohydrate-binding modules (CBM) of family CBM_4_9, one catalytic domain of GH 10, one family 9 CBM and three S-layer homology (SLH) domains. xyn-b39 was expressed heterologously in Escherichia coli, and the recombinant enzyme was purified and characterized. Xyn-b39 exhibited maximum activity at pH 7.0 and 60 °C, and remained highly active under alkaline conditions (more than 80 % activity at pH 9.0 and 40 % activity at pH 10.0). The enzyme was thermostable at 55 °C, retaining more than 90 % of the initial activity after 2 h pre-incubation. Xyn-b39 had wide substrate specificity and hydrolyzed soluble substrates (birchwood xylan, beechwood xylan, oat spelt xylan, wheat arabinoxylan) and insoluble substrates (oat spelt xylan and wheat arabinoxylan). Hydrolysis product analysis indicated that Xyn-b39 was an endo-type xylanase. The K (m) and V (max) values of Xyn-b39 for birchwood xylan were 1.01 mg/mL and 73.53 U/min/mg, respectively. At the charge of 10 U/g reed pulp for 1 h, Xyn-b39 significantly reduced the Kappa number (P < 0.05) with low consumption of chlorine dioxide alone.
Collapse
|
16
|
Demishtein A, Karpol A, Barak Y, Lamed R, Bayer EA. Characterization of a dockerin-based affinity tag: application for purification of a broad variety of target proteins. J Mol Recognit 2010; 23:525-35. [PMID: 21038354 DOI: 10.1002/jmr.1029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Cellulose, a major component of plant matter, is degraded by a cell surface multiprotein complex called the cellulosome produced by several anaerobic bacteria. This complex coordinates the assembly of different glycoside hydrolases, via a high-affinity Ca(2+)-dependent interaction between the enzyme-borne dockerin and the scaffoldin-borne cohesin modules. In this study, we characterized a new protein affinity tag, ΔDoc, a truncated version (48 residues) of the Clostridium thermocellum Cel48S dockerin. The truncated dockerin tag has a binding affinity (K(A)) of 7.7 × 10(8)M(-1), calculated by a competitive enzyme-linked assay system. In order to examine whether the tag can be used for general application in affinity chromatography, it was fused to a range of target proteins, including Aequorea victoria green fluorescent protein (GFP), C. thermocellum β-glucosidase, Escherichia coli thioesterase/protease I (TEP1), and the antibody-binding ZZ-domain from Staphylococcus aureus protein A. The results of this study significantly extend initial studies performed using the Geobacillus stearothermophilus xylanase T-6 as a model system. In addition, the enzymatic activity of a C. thermocellum β-glucosidase, purified using this approach, was tested and found to be similar to that of a β-glucosidase preparation (without the ΔDoc tag) purified using the standard His-tag. The truncated dockerin derivative functioned as an effective affinity tag through specific interaction with a cognate cohesin, and highly purified target proteins were obtained in a single step directly from crude cell extracts. The relatively inexpensive beaded cellulose-based affinity column was reusable and maintained high capacity after each cycle. This study demonstrates that deletion into the first Ca(2+)-binding loop of the dockerin module results in an efficient and robust affinity tag that can be generally applied for protein purification.
Collapse
Affiliation(s)
- Alik Demishtein
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
17
|
Fujinami S, Fujisawa M. Industrial applications of alkaliphiles and their enzymes--past, present and future. ENVIRONMENTAL TECHNOLOGY 2010; 31:845-856. [PMID: 20662376 DOI: 10.1080/09593331003762807] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Alkaliphiles are microorganisms that can grow in alkaline environments, i.e. pH >9.0. Their enzymes, especially extracellular enzymes, are able to function in their catalytic activities under high alkaline pH values because of their stability under these conditions. Proteases, protein degrading enzymes, are one of the most produced enzymes in industry. Among proteases, alkaline proteases, which are added to some detergents, are the most produced. Other alkaline enzymes, e.g. alkaline cellulases, alkaline amylases, and alkaline lipases, are also adjuncts to detergents for improving cleaning efficiency. Alkaline enzymes often show activities in a broad pH range, thermostability, and tolerance to oxidants compared to neutral enzymes. Alkaliphilic Bacillus species are the most characterized organisms among alkaliphiles. They produce so many extracellular alkaline-adapted enzymes that they are often good sources for industrial enzymes. As a patent strain, the whole genome sequence of alkaliphilic Bacillus halodurans C-125 has been sequenced for the first time. In addition, an increasing number of whole genomic sequences and structural analyses of proteins in alkaliphiles, development of genetic engineering techniques and physiological analyses will reveal the alkaline adaptation mechanisms of alkaliphilic Bacillus species and the structural basis of their enzymatic functions. This information opens up the possibility of new applications. In this paper we describe, first, the physiologies of environmental adaptations, and then the applications of enzymes and microorganisms themselves in alkaliphilic Bacillus species.
Collapse
Affiliation(s)
- Shun Fujinami
- NITE Bioresource Information Center, Department of Biotechnology, National Institute of Technology and Evaluation, 2-10-49 Nishihara, Shibuya-ku, Tokyo 151-0066, Japan
| | | |
Collapse
|
18
|
Noach I, Levy-Assaraf M, Lamed R, Shimon LJW, Frolow F, Bayer EA. Modular arrangement of a cellulosomal scaffoldin subunit revealed from the crystal structure of a cohesin dyad. J Mol Biol 2010; 399:294-305. [PMID: 20394754 DOI: 10.1016/j.jmb.2010.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 04/01/2010] [Accepted: 04/07/2010] [Indexed: 10/19/2022]
Abstract
The cellulosome complex is composed of a conglomerate of subunits, each of which comprises a set of interacting functional modules. Scaffoldin (Sca), a major cellulosomal subunit, is responsible for organizing the cellulolytic subunits into the complex. This is accomplished by the interaction of two complementary classes of modules-a cohesin (Coh) module on the Sca subunit and a dockerin module on each of the enzymatic subunits. Although individual Coh modules from different cellulosomal scaffoldins have been subjected to intensive structural investigation, the Sca subunit in its entirety has not, and there remains a paucity of information on the arrangement and interactions of Cohs within the Sca subunit. In the present work, we describe the crystal structure of a type II Coh dyad from the ScaB "adaptor" Sca of Acetivibrio cellulolyticus. The ScaB Cohs are oriented in an "antiparallel" manner relative to one another, with their dockerin-interacting surfaces (beta-strands 8-3-6-5) facing the same direction-aligned on the same plane. A set of extensive hydrophobic and hydrogen-bond contacts between the Cohs and the short interconnecting linker segment between them stabilizes the modular orientation. This Coh dyad structure provides novel information about Coh-Coh association and arrangement in the Sca and further insight into intermodular linker interactions. Putative structural arrangements of a hexamodular complex, composed of the Coh dyad bound to two X-dockerin modules, were suggested.
Collapse
Affiliation(s)
- Ilit Noach
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
19
|
Pinheiro BA, Gilbert HJ, Sakka K, Sakka K, Fernandes VO, Prates JAM, Alves VD, Bolam DN, Ferreira LMA, Fontes CMGA. Functional insights into the role of novel type I cohesin and dockerin domains from Clostridium thermocellum. Biochem J 2009; 424:375-84. [PMID: 19758121 DOI: 10.1042/bj20091152] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Cellulosomes, synthesized by anaerobic microorganisms such as Clostridium thermocellum, are remarkably complex nanomachines that efficiently degrade plant cell wall polysaccharides. Cellulosome assembly results from the interaction of type I dockerin domains, present on the catalytic subunits, and the cohesin domains of a large non-catalytic integrating protein that acts as a molecular scaffold. In general, type I dockerins contain two distinct cohesin-binding interfaces that appear to display identical ligand specificities. Inspection of the C. thermocellum genome reveals 72 dockerin-containing proteins. In four of these proteins, Cthe_0258, Cthe_0435, Cthe_0624 and Cthe_0918, there are significant differences in the residues that comprise the two cohesin-binding sites of the type I dockerin domains. In addition, a protein of unknown function (Cthe_0452), containing a C-terminal cohesin highly similar to the equivalent domains present in C. thermocellum-integrating protein (CipA), was also identified. In the present study, the ligand specificities of the newly identified cohesin and dockerin domains are described. The results revealed that Cthe_0452 is located at the C. thermocellum cell surface and thus the protein was renamed as OlpC. The dockerins of Cthe_0258 and Cthe_0435 recognize, preferentially, the OlpC cohesin and thus these enzymes are believed to be predominantly located at the surface of the bacterium. By contrast, the dockerin domains of Cthe_0624 and Cthe_0918 are primarily cellulosomal since they bind preferentially to the cohesins of CipA. OlpC, which is a relatively abundant protein, may also adopt a 'warehouse' function by transiently retaining cellulosomal enzymes at the cell surface before they are assembled on to the multienzyme complex.
Collapse
Affiliation(s)
- Benedita A Pinheiro
- CIISA-Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Xylanase attachment to the cell wall of the hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 2007; 190:1350-8. [PMID: 18083821 DOI: 10.1128/jb.01149-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cellular localization and processing of the endo-xylanases (1,4-beta-D-xylan-xylanohydrolase; EC 3.2.1.8) of the hyperthermophile Thermotoga maritima were investigated, in particular with respect to the unusual outer membrane ("toga") of this gram-negative bacterium. XynB (40 kDa) was detected in the periplasmic fraction of T. maritima cells and in the culture supernatant. XynA (120 kDa) was partially released to the surrounding medium, but most XynA remained cell associated. Immunogold labeling of thin sections revealed that cell-bound XynA was localized mainly in the outer membranes of T. maritima cells. Amino-terminal sequencing of purified membrane-bound XynA revealed processing of the signal peptide after the eighth residue, thereby leaving the hydrophobic core of the signal peptide attached to the enzyme. This mode of processing is reminiscent of type IV prepilin signal peptide cleavage. Removal of the entire XynA signal peptide was necessary for release from the cell because enzyme purified from the culture supernatant lacked 44 residues at the N terminus, including the hydrophobic part of the signal peptide. We conclude that toga association of XynA is mediated by residues 9 to 44 of the signal peptide. The biochemical and electron microscopic localization studies together with the amino-terminal processing data indicate that XynA is held at the cell surface of T. maritima via a hydrophobic peptide anchor, which is highly unusual for an outer membrane protein.
Collapse
|
22
|
Engelhardt H. Are S-layers exoskeletons? The basic function of protein surface layers revisited. J Struct Biol 2007; 160:115-24. [PMID: 17889557 DOI: 10.1016/j.jsb.2007.08.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/29/2007] [Accepted: 08/02/2007] [Indexed: 11/28/2022]
Abstract
Surface protein or glycoprotein layers (S-layers) are common structures of the prokaryotic cell envelope. They are either associated with the peptidoglycan or outer membrane of bacteria, and constitute the only cell wall component of many archaea. Despite their occurrence in most of the phylogenetic branches of microorganisms, the functional significance of S-layers is assumed to be specific for genera or groups of organisms in the same environment rather than common to all prokaryotes. Functional aspects have usually been investigated with isolated S-layer sheets or proteins, which disregards the interactions between S-layers and the underlying cell envelope components. This study discusses the synergistic effects in cell envelope assemblies, the hypothetical role of S-layers for cell shape formation, and the existence of a common function in view of new insights.
Collapse
Affiliation(s)
- Harald Engelhardt
- Abteilung Molekulare Strukturbiologie, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|