1
|
Davletgildeeva AT, Kuznetsov NA. Bioremediation of Polycyclic Aromatic Hydrocarbons by Means of Bacteria and Bacterial Enzymes. Microorganisms 2024; 12:1814. [PMID: 39338488 PMCID: PMC11434427 DOI: 10.3390/microorganisms12091814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread, persistent, and toxic environmental pollutants. Many anthropogenic and some natural factors contribute to the spread and accumulation of PAHs in aquatic and soil systems. The effective and environmentally friendly remediation of these chemical compounds is an important and challenging problem that has kept scientists busy over the last few decades. This review briefly summarizes data on the main sources of PAHs, their toxicity to living organisms, and physical and chemical approaches to the remediation of PAHs. The basic idea behind existing approaches to the bioremediation of PAHs is outlined with an emphasis on a detailed description of the use of bacterial strains as individual isolates, consortia, or cell-free enzymatic agents.
Collapse
Affiliation(s)
- Anastasiia T. Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Towards improved understanding of the hydrodynamics of a semi-partition bioreactor (SPB): A numerical investigation. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Xu A, Zhang X, Wu S, Xu N, Huang Y, Yan X, Zhou J, Cui Z, Dong W. Pollutant Degrading Enzyme: Catalytic Mechanisms and Their Expanded Applications. Molecules 2021; 26:4751. [PMID: 34443339 PMCID: PMC8401168 DOI: 10.3390/molecules26164751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/03/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
The treatment of environmental pollution by microorganisms and their enzymes is an innovative and socially acceptable alternative to traditional remediation approaches. Microbial biodegradation is often characterized with high efficiency as this process is catalyzed via degrading enzymes. Various naturally isolated microorganisms were demonstrated to have considerable ability to mitigate many environmental pollutants without external intervention. However, only a small fraction of these strains are studied in detail to reveal the mechanisms at the enzyme level, which strictly limited the enhancement of the degradation efficiency. Accordingly, this review will comprehensively summarize the function of various degrading enzymes with an emphasis on catalytic mechanisms. We also inspect the expanded applications of these pollutant-degrading enzymes in industrial processes. An in-depth understanding of the catalytic mechanism of enzymes will be beneficial for exploring and exploiting more degrading enzyme resources and thus ameliorate concerns associated with the ineffective biodegradation of recalcitrant and xenobiotic contaminants with the help of gene-editing technology and synthetic biology.
Collapse
Affiliation(s)
- Anming Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Xiaoxiao Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Shilei Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Ning Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (X.Y.)
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (X.Y.)
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (X.Y.)
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| |
Collapse
|
4
|
BTEX biodegradation by Bacillus amyloliquefaciens subsp. plantarum W1 and its proposed BTEX biodegradation pathways. Sci Rep 2020; 10:17408. [PMID: 33060819 PMCID: PMC7562720 DOI: 10.1038/s41598-020-74570-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/10/2020] [Indexed: 12/04/2022] Open
Abstract
Benzene, toluene, ethylbenzene and (p-, m- and o-) xylene (BTEX) are classified as main pollutants by several environmental protection agencies. In this study, a non-pathogenic, Gram-positive rod-shape bacterium with an ability to degrade all six BTEX compounds, employed as an individual substrate or as a mixture, was isolated. The bacterial isolate was identified as Bacillus amyloliquefaciens subsp. plantarum strain W1. An overall BTEX biodegradation (as individual substrates) by strain W1 could be ranked as: toluene > benzene, ethylbenzene, p-xylene > m-xylene > o-xylene. When presented in a BTEX mixture, m-xylene and o-xylene biodegradation was slightly improved suggesting an induction effect by other BTEX components. BTEX biodegradation pathways of strain W1 were proposed based on analyses of its metabolic intermediates identified by LC–MS/MS. Detected activity of several putative monooxygenases and dioxygenases suggested the versatility of strain W1. Thus far, this is the first report of biodegradation pathways for all of the six BTEX compounds by a unique bacterium of the genus Bacillus. Moreover, B. amyloliquefaciens subsp. plantarum W1 could be a good candidate for an in situ bioremediation considering its Generally Recognized as Safe (GRAS) status and a possibility to serve as a plant growth-promoting rhizobacterium (PGPR).
Collapse
|
5
|
Qiu C, Zhang A, Tao S, Li K, Chen K, Ouyang P. Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-019-1876-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Berillo DA, Caplin JL, Cundy AB, Savina IN. A cryogel-based bioreactor for water treatment applications. WATER RESEARCH 2019; 153:324-334. [PMID: 30739074 DOI: 10.1016/j.watres.2019.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/12/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to develop and test a non-diffusion limited, high cell density bioreactor for biodegradation of various phenol derivatives. The bioreactor was obtained using a straightforward one-step preparation method using cryostructuration and direct cross-linking of bacteria into a 3D structured (sponge-like) macroporous cryogel composite material consisting of 11.6% (by mass) cells and 1.2-1.7% polymer, with approximately 87% water (in the material pores). The macroporous cryogel composite material, composed of live bacteria, has pore sizes in the range of 20-150 μm (confirmed by SEM and Laser Scanning Confocal Microscopy). The enzymatic activity of bacteria within the cryogel structure and the effect of freezing on the viability of the cross-linked cells was estimated by MTT assay. Cryogels based on Pseudomonas mendocina, Rhodococcus koreensis and Acinetobacter radioresistens were exploited for the effective bioremediation of phenol and m-cresol, and to a lesser extent 2-chlorophenol and 4-chlorophenol, utilising these phenolic contaminants in water as their only source of carbon. For evaluation of treatment scalability the bioreactors were prepared in plastic "Kaldnes" carriers to improve their mechanical properties and allow application in batch or fluidised bed water treatment modes.
Collapse
Affiliation(s)
- Dmitriy A Berillo
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK.
| | - Jonathan L Caplin
- School of Environment and Technology, University of Brighton, Brighton, UK
| | - Andrew B Cundy
- School of Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Irina N Savina
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| |
Collapse
|
7
|
Karasawa M, Stanfield JK, Yanagisawa S, Shoji O, Watanabe Y. Ganzzellbiotransformation von Benzol zu Phenol durch intrazelluläres Zytochrom P450BM3 aktiviert mithilfe externer Zusätze. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804924] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Masayuki Karasawa
- Department of Chemistry Graduate School of Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Joshua Kyle Stanfield
- Department of Chemistry Graduate School of Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Sota Yanagisawa
- Department of Chemistry Graduate School of Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Osami Shoji
- Department of Chemistry Graduate School of Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- Core Research for Evolutional Science and Technology Japan Science and Technology Agency 5 Sanbancho Chiyoda-ku Tokyo 102-0075 Japan
| | - Yoshihito Watanabe
- Research Center for Materials Science Nagoya University Furo-cho Chikusa-ku Nagoya 464-8602 Japan
| |
Collapse
|
8
|
Karasawa M, Stanfield JK, Yanagisawa S, Shoji O, Watanabe Y. Whole‐Cell Biotransformation of Benzene to Phenol Catalysed by Intracellular Cytochrome P450BM3 Activated by External Additives. Angew Chem Int Ed Engl 2018; 57:12264-12269. [DOI: 10.1002/anie.201804924] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Masayuki Karasawa
- Department of Chemistry Graduate School of Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Joshua Kyle Stanfield
- Department of Chemistry Graduate School of Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Sota Yanagisawa
- Department of Chemistry Graduate School of Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Osami Shoji
- Department of Chemistry Graduate School of Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- Core Research for Evolutional Science and Technology (Japan) Science and Technology Agency 5 Sanbancho, Chiyoda-ku Tokyo 102-0075 Japan
| | - Yoshihito Watanabe
- Research Center for Materials Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| |
Collapse
|
9
|
Wongsaroj L, Sallabhan R, Dubbs JM, Mongkolsuk S, Loprasert S. Cloning of Toluene 4-Monooxygenase Genes and Application of Two-Phase System to the Production of the Anticancer Agent, Indirubin. Mol Biotechnol 2016; 57:720-6. [PMID: 25779640 DOI: 10.1007/s12033-015-9863-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Indirubin is a strong inhibitor of several eukaryotic cell signaling pathways and shows promise as a treatment for myelocytic leukemia and Alzheimer's disease. The tmoABCDEF operon, encoding the components of a novel toluene 4-monooxygenase from the paint factory soil isolate, Pseudomonas sp. M4, was cloned and expressed in Escherichia coli. E. coli::pKSR12 expressing the tmo genes was used to develop a two-phase [dioctyl phthalate (DOP)/aqueous medium] culture system that was optimized to obtain maximal yields of indirubin from the starting substrate, indole. DOP was used as the organic phase to solubilize and sequester the toxic indole substrate, making possible the use of high indole concentrations that would otherwise interfere with growth in aqueous media. A 50 % (v/v) DOP two-phase system using tryptophan medium containing 3 mM cysteine, 5 mM indole, and 1 mM isatin yielded 102.4 mg/L of indirubin with no conversion of indole to the less valuable alternate product, indigo.
Collapse
Affiliation(s)
- Lampet Wongsaroj
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | | | | | | | | |
Collapse
|
10
|
Shi S, Qu Y, Tan L, Ma F. Biosynthesis of 1,2-dihydroxydibenzofuran by magnetically immobilized cells of Escherichia coli expressing phenol hydroxylase in liquid-liquid biphasic systems. BIORESOURCE TECHNOLOGY 2015; 197:72-78. [PMID: 26318924 DOI: 10.1016/j.biortech.2015.08.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/08/2015] [Accepted: 08/11/2015] [Indexed: 06/04/2023]
Abstract
Escherichia coli cells expressing phenol hydroxylase (designated as PHIND) were used to biosynthesize 1,2-dihydroxydibenzofuran (1,2-dihydroxyDBF) from dibenzofuran (DBF). The pathway of DBF biotransformation by strain PHIND was proposed, in which DBF was initially monohydroxylated at C-1 and C-4 positions to produce 1- and 4-hydroxyDBF, then underwent successive hydroxylation to yield 1,2- and 3,4-dihydroxyDBF, of which 1,2-dihydroxyDBF was identified for the first time. Magnetically immobilized cells of strain PHIND in biphasic systems with dodecane as the solvent presented highest biosynthesis activity for 1,2-dihydroxyDBF, which was a 6.5-fold improvement compared to biosynthesis in aqueous system. The recycling experiments demonstrated that magnetically immobilized cells exhibited higher biosynthesis activity for 1,2-dihydroxyDBF than that by nonmagnetically immobilized cells during five cycles in biphasic systems. These works support the development of an efficient biosynthesis process using magnetically immobilized cells in biphasic systems and provide a promising technique for improving the productivity in 1,2-dihydroxyDBF biosynthesis.
Collapse
Affiliation(s)
- Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liang Tan
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
11
|
Janardhan Garikipati SVB, Peeples TL. Solvent resistance pumps of Pseudomonas putida S12: Applications in 1-naphthol production and biocatalyst engineering. J Biotechnol 2015; 210:91-9. [PMID: 26143210 DOI: 10.1016/j.jbiotec.2015.06.419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 11/17/2022]
Abstract
The solvent resistance capacity of Pseudomonas putida S12 was applied by using the organism as a host for biocatalysis and through cloning and expressing solvent resistant pump genes into Escherichia coli. P. putida S12 expressing toluene ortho mononooxygenase (TOM-Green) was used for 1-naphthol production in a water-organic solvent biphasic system. Application of P. putida S12 improved 1-naphthol production per gram cell dry weight by approximately 42% compared to E. coli. Moreover, P. putida S12 enabled the use of a less expensive solvent, decanol, for 1-naphthol production. The solvent resistant pump (srpABC) genes of P. putida S12 were cloned into a solvent sensitive E. coli strain to transfer solvent tolerance. Recombinant strains bearing srpABC genes in either a low-copy number or a high-copy number plasmid grew in the presence of saturated concentration of toluene. Both of the recombinant strains were more tolerant to 1% v/v of toxic solvents, decanol and hexane, reaching similar cell density as the no-solvent control. Reverse-transcriptase analysis revealed that the srpABC genes were transcribed in engineered strains. The results demonstrate successful transfer of the proton-dependent solvent resistance mechanism and suggest that the engineered strain could serve as more robust biocatalysts in media with organic solvents.
Collapse
Affiliation(s)
- S V B Janardhan Garikipati
- The Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Tonya L Peeples
- The Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States.
| |
Collapse
|
12
|
Van Hecke W, Kaur G, De Wever H. Advances in in-situ product recovery (ISPR) in whole cell biotechnology during the last decade. Biotechnol Adv 2014; 32:1245-1255. [DOI: 10.1016/j.biotechadv.2014.07.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/07/2014] [Accepted: 07/18/2014] [Indexed: 12/27/2022]
|
13
|
Saturation mutagenesis of Bradyrhizobium sp. BTAi1 toluene 4-monooxygenase at alpha-subunit residues proline 101, proline 103, and histidine 214 for regiospecific oxidation of aromatics. Appl Microbiol Biotechnol 2014; 98:8975-86. [DOI: 10.1007/s00253-014-5913-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
|
14
|
Hibino A, Ohtake H. Use of hydrophobic bacterium Rhodococcus rhodochrous NBRC15564 expressed thermophilic alcohol dehydrogenases as whole-cell catalyst in solvent-free organic media. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Qu Y, Shi S, Ma Q, Kong C, Zhou H, Zhang X, Zhou J. Multistep Conversion of para-Substituted Phenols by Phenol Hydroxylase and 2,3-Dihydroxybiphenyl 1,2-Dioxygenase. Appl Biochem Biotechnol 2013; 169:2064-75. [DOI: 10.1007/s12010-013-0112-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
|
16
|
Shi S, Ma F, Sun T, Li A, Zhou J, Qu Y. Biotransformation of indole to indigo by the whole cells of phenol hydroxylase engineered strain in biphasic systems. Appl Biochem Biotechnol 2013; 169:1088-97. [PMID: 23306892 DOI: 10.1007/s12010-012-0069-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
Abstract
Biotransformation of indole to indigo in liquid-liquid biphasic systems was performed in Escherichia coli cells expressing phenol hydroxylase. It was suggested that indole could inhibit the cell growth even at low concentration of 0.1 g/L. The critical Log P for strain PH_(IND) was about 5.0. Three different solvents, i.e., decane, dodecane, and dioctyl phthalate, were selected as organic phase in biphasic media. The results showed that dodecane gave the highest yield of indigo (176.4 mg/L), which was more than that of single phase (90.5 mg/L). The optimal conditions for biotransformation evaluated by response surface methodology were as follows: 540.26 mg/L of indole concentration, 42.27 % of organic phase ratio, and 200 r/min of stirrer speed; under these conditions, the maximal production of indigo was 243.51 mg/L. This study proved that the potential application of strain PH_(IND) in the biotransformation of indole to indigo using liquid-liquid biphasic systems.
Collapse
Affiliation(s)
- Shengnan Shi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | | | | | | | | | | |
Collapse
|
17
|
van den Berg C, Boon F, Roelands M, Bussmann P, Goetheer E, Verdoes D, van der Wielen L. Techno-economic evaluation of solvent impregnated particles in a bioreactor. Sep Purif Technol 2010. [DOI: 10.1016/j.seppur.2010.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Whole-cell biocatalysis for 1-naphthol production in liquid-liquid biphasic systems. Appl Environ Microbiol 2009; 75:6545-52. [PMID: 19700554 DOI: 10.1128/aem.00434-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whole-cell biocatalysis to oxidize naphthalene to 1-naphthol in liquid-liquid biphasic systems was performed. Escherichia coli expressing TOM-Green, a variant of toluene ortho-monooxygenase (TOM), was used for this oxidation. Three different solvents, dodecane, dioctyl phthalate, and lauryl acetate, were screened for biotransformations in biphasic media. Of the solvents tested, lauryl acetate gave the best results, producing 0.72 +/- 0.03 g/liter 1-naphthol with a productivity of 0.46 +/- 0.02 g/g (dry weight) cells after 48 h. The effects of the organic phase ratio and the naphthalene concentration in the organic phase were investigated. The highest 1-naphthol concentration (1.43 g/liter) and the highest 1-naphthol productivity (0.55 g/g [dry weight] cells) were achieved by optimization of the organic phase. The ability to recycle both free cells and cells immobilized in calcium alginate was tested. Both free and immobilized cells lost more than approximately 60% of their activity after the first run, which could be attributed to product toxicity. On a constant-volume basis, an eightfold improvement in 1-naphthol production was achieved using biphasic media compared to biotransformation in aqueous media.
Collapse
|
19
|
Hori K, Hiramatsu N, Nannbu M, Kanie K, Okochi M, Honda H, Watanabe H. Drastic change in cell surface hydrophobicity of a new bacterial strain, Pseudomonas sp. TIS1-127, induced by growth temperature and its effects on the toluene-conversion rate. J Biosci Bioeng 2009; 107:250-5. [DOI: 10.1016/j.jbiosc.2008.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 11/06/2008] [Accepted: 11/09/2008] [Indexed: 10/20/2022]
|
20
|
Watanabe H, Tanji Y, Unno H, Hori K. Rapid conversion of toluene by an acinetobacter sp. Tol 5 mutant showing monolayer adsorption to water-oil interface. J Biosci Bioeng 2008; 106:226-30. [PMID: 18929996 DOI: 10.1263/jbb.106.226] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 05/28/2008] [Indexed: 11/17/2022]
Affiliation(s)
- Hisami Watanabe
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
21
|
Nolan LC, O'Connor KE. Dioxygenase- and monooxygenase-catalysed synthesis of cis-dihydrodiols, catechols, epoxides and other oxygenated products. Biotechnol Lett 2008; 30:1879-91. [PMID: 18612597 DOI: 10.1007/s10529-008-9791-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 06/20/2008] [Accepted: 06/24/2008] [Indexed: 11/29/2022]
Affiliation(s)
- Louise C Nolan
- School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
22
|
Sun H, Shen OX, Xu XL, Song L, Wang XR. Carbaryl, 1-naphthol and 2-naphthol inhibit the beta-1 thyroid hormone receptor-mediated transcription in vitro. Toxicology 2008; 249:238-42. [PMID: 18584933 DOI: 10.1016/j.tox.2008.05.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/13/2008] [Accepted: 05/14/2008] [Indexed: 11/30/2022]
Abstract
Effects of pesticides on the function of thyroid have attracted lots of attention because thyroid hormones (THs) play a major role in mammalian brain development. In order to screen for compounds that acted on the thyroid hormone receptor (TR) signaling pathway, we transiently transfected the vector pGal4-L-TRbeta1 (Gal4 DBD fused to hTRbeta1 LBD) and Gal4-responsive luciferase reporter pUAS-tk-Luc into HepG2 cell, developing a reporter gene assay which showed good response to triiodothyronine (T3) and thyroxine (T4) with the median effective concentration (EC(50)) of 0.46 and 25.53 nM, respectively. Bisphenol A exhibited weak anti-thyroid hormone activity with median inhibitory concentration (IC(50)) value of 6.45 x 10(-5)M. The assay showed acceptable repeatability to T3 with intra coefficient of variability (CV) of 5.9% and inter CV of 11.7%. Carbaryl, 1-naphthol (1-NAP) and 2-naphthol (2-NAP) were tested for their agonist and antagonist activities. As a result, we found that all the three related chemicals possessed TR antagonist activity and none of them showed the agonist activity. These results further indicated that TR might be the targets of industrial chemicals. And this assay provided a useful tool for investigating the effects of environment chemicals on thyoid function.
Collapse
Affiliation(s)
- Hong Sun
- Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | | | | | | | | |
Collapse
|
23
|
Prpich GP, Daugulis AJ. A novel solid-liquid two-phase partitioning bioreactor for the enhanced bioproduction of 3-methylcatechol. Biotechnol Bioeng 2008; 98:1008-16. [PMID: 17461425 DOI: 10.1002/bit.21483] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The bioproduction of 3-methylcatechol from toluene via Pseudomonas putida MC2 was performed in a solid-liquid two-phase partitioning bioreactor with the intent of increasing yield and productivity over a single-phase system. The solid phase consisted of HYTREL, a thermoplastic polymer that was shown to possess superior affinity for the inhibitory 3-methylcatechol compared to other candidate polymers as well as a number of immiscible organic solvents. Operation of a solid-liquid biotransformation utilizing a 10% (w/w) solid (polymer beads) to liquid phase ratio resulted in the bioproduction of 3-methylcatechol at a rate of 350 mg/L-h, which compares favorably to the single phase productivity of 128 mg/L-h. . HYTREL polymer beads were also reconstituted into polymer sheets, which were placed around the interior circumference of the bioreactor and successfully removed 3-methylcatechol from solution resulting in a rate of 3-methylcatechol production of 343 mg/L-h. Finally, a continuous biotransformation was performed in which culture medium was circulated upwards through an external extraction column containing HYTREL beads. The design maintained sub lethal concentrations of 3-methylcatechol within the bioreactor by absorbing produced 3-methylcatechol into the polymer beads. As 3-methylcatechol concentrations in the aqueous phase approached 500 mg/L the extraction column was replaced (twice) with a fresh column and the process was continued representing a simple and effective approach for the continuous bioproduction of 3-methylcatechol. Recovery of 3-methylcatechol from HYTREL was also achieved by bead desorption into methanol.
Collapse
Affiliation(s)
- George P Prpich
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
24
|
Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol 2007; 7:42. [PMID: 17511876 PMCID: PMC1899176 DOI: 10.1186/1471-2180-7-42] [Citation(s) in RCA: 331] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 05/18/2007] [Indexed: 01/07/2023] Open
Abstract
Background As a stationary phase signal, indole is secreted in large quantities into rich medium by Escherichia coli and has been shown to control several genes (e.g., astD, tnaB, gabT), multi-drug exporters, and the pathogenicity island of E. coli; however, its impact on biofilm formation has not been well-studied. Results Through a series of global transcriptome analyses, confocal microscopy, isogenic mutants, and dual-species biofilms, we show here that indole is a non-toxic signal that controls E. coli biofilms by repressing motility, inducing the sensor of the quorum sensing signal autoinducer-1 (SdiA), and influencing acid resistance (e.g., hdeABD, gadABCEX). Isogenic mutants showed these associated proteins are directly related to biofilm formation (e.g., the sdiA mutation increased biofilm formation 50-fold), and SdiA-mediated transcription was shown to be influenced by indole. The reduction in motility due to indole addition results in the biofilm architecture changing from scattered towers to flat colonies. Additionally, there are 12-fold more E. coli cells in dual-species biofilms grown in the presence of Pseudomonas cells engineered to express toluene o-monooxygenase (TOM, which converts indole to an insoluble indigoid) than in biofilms with pseudomonads that do not express TOM due to a 22-fold reduction in extracellular indole. Also, indole stimulates biofilm formation in pseudomonads. Further evidence that the indole effects are mediated by SdiA and homoserine lactone quorum sensing is that the addition of N-butyryl-, N-hexanoyl-, and N-octanoyl-L-homoserine lactones repress E. coli biofilm formation in the wild-type strain but not with the sdiA mutant. Conclusion Indole is an interspecies signal that decreases E. coli biofilms through SdiA and increases those of pseudomonads. Indole may be manipulated to control biofilm formation by oxygenases of bacteria that do not synthesize it in a dual-species biofilm. Furthermore, E. coli changes its biofilm in response to signals it cannot synthesize (homoserine lactones), and pseudomonads respond to signals they do not synthesize (indole).
Collapse
|
25
|
Prpich GP, Daugulis AJ. Solvent selection for enhanced bioproduction of 3-methylcatechol in a two-phase partitioning bioreactor. Biotechnol Bioeng 2007; 97:536-43. [PMID: 17099912 DOI: 10.1002/bit.21257] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The biotransformation of toluene to 3-methycatechol (3MC) via Pseudomonas putida MC2 was used as a model system for the development of a biphasic process offering enhanced overall volumetric productivity. Three factors were investigated for the identification of an appropriate organic solvent and they included solvent toxicity, bioavailability of the solvent as well as solvent affinity for 3MC. The critical log P (log P(crit)) of the biocatalyst was found to be 3.1 and log P values were used to predict a solvent's toxicity. The presence of various functional groups of candidate solvents were used to predict the absorption of 3MC and it was found that solvents possessing polarity showed an affinity towards 3MC. Bis (2-ethylhexyl) sebecate was selected for use in the biphasic system as it fulfilled all selection criteria. A two-phase biotransformation with BES and a 50% phase volume ratio, achieved an overall volumetric productivity of 440 mg 3MC/L-h, which was an improvement by a factor of approximately 4 over previously operated systems. Additional work focused on reducing the toluene feed in order to minimize possible toxicity and decrease loss of substrate (toluene), a result of volatilization. Toluene losses were reduced by a factor of 4, compared to previously operated systems, without suffering an appreciable loss in overall volumetric productivity.
Collapse
Affiliation(s)
- George P Prpich
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|