1
|
Liu N, Huang M, Liang X, Cao M, Lun Z, Zhang Y, Yang J, Bhadauria V, Zhao W, Yan J, Peng YL, Lu X. Magnaporthe oryzae endoplasmic reticulum membrane complex regulates the biogenesis of membrane proteins for pathogenicity. THE NEW PHYTOLOGIST 2023; 238:1163-1181. [PMID: 36772852 DOI: 10.1111/nph.18810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
In eukaryotes, the majority of newly synthesized integral membrane proteins are inserted into the endoplasmic reticulum (ER) membrane before transferred to their functional sites. The conserved ER membrane complex (EMC) takes part in the insertion process for tail-anchored membrane proteins. However, the function of EMC in phytopathogenic fungi has not been characterized. Here, we report the identification and functional characterization of two EMC subunits MoEmc5 and MoEmc2 in Magnaporthe oryzae. The knockout mutants ΔMoemc5 and ΔMoemc2 exhibit substantial defect in autophagy, pathogenicity, cell wall integrity, and magnesium ion sensitivity. We demonstrate that the autophagy process was severely impaired in the ΔMoemc5 and ΔMoemc2 mutants because of the low-protein steady-state level of Atg9, the sole membrane-associated autophagy protein. Furthermore, the protein level of membrane proteins Chs4, Fks1, and MoMnr2 is also significantly reduced in the ΔMoemc5 and ΔMoemc2 strains, leading to their supersensitivity to Calcofluor white, Congo red, and magnesium. In addition, MoEmc5, but not MoEmc2, acts as a magnesium transporter independent of its EMC function. Magnaporthe oryzae EMC regulates the biogenesis of membrane proteins for autophagy and virulence; therefore, EMC subunits could be potential targets for fungicide design in the future.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Manna Huang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Xinyuan Liang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Miao Cao
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Zhiqin Lun
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Yan Zhang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Vijai Bhadauria
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Wensheng Zhao
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Jiye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Xunli Lu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
2
|
Abstract
Aspergillus fumigatus is a saprotrophic fungus; its primary habitat is the soil. In its ecological niche, the fungus has learned how to adapt and proliferate in hostile environments. This capacity has helped the fungus to resist and survive against human host defenses and, further, to be responsible for one of the most devastating lung infections in terms of morbidity and mortality. In this review, we will provide (i) a description of the biological cycle of A. fumigatus; (ii) a historical perspective of the spectrum of aspergillus disease and the current epidemiological status of these infections; (iii) an analysis of the modes of immune response against Aspergillus in immunocompetent and immunocompromised patients; (iv) an understanding of the pathways responsible for fungal virulence and their host molecular targets, with a specific focus on the cell wall; (v) the current status of the diagnosis of different clinical syndromes; and (vi) an overview of the available antifungal armamentarium and the therapeutic strategies in the clinical context. In addition, the emergence of new concepts, such as nutritional immunity and the integration and rewiring of multiple fungal metabolic activities occurring during lung invasion, has helped us to redefine the opportunistic pathogenesis of A. fumigatus.
Collapse
Affiliation(s)
- Jean-Paul Latgé
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgios Chamilos
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
3
|
Hanner AS, Dunworth M, Casero RA, MacDiarmid CW, Park MH. Elevation of cellular Mg 2+ levels by the Mg 2+ transporter, Alr1, supports growth of polyamine-deficient Saccharomyces cerevisiae cells. J Biol Chem 2019; 294:17131-17142. [PMID: 31548311 DOI: 10.1074/jbc.ra119.009705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/17/2019] [Indexed: 11/06/2022] Open
Abstract
The polyamines putrescine, spermidine, and spermine are required for normal eukaryotic cellular functions. However, the minimum requirement for polyamines varies widely, ranging from very high concentrations (mm) in mammalian cells to extremely low in the yeast Saccharomyces cerevisiae Yeast strains deficient in polyamine biosynthesis (spe1Δ, lacking ornithine decarboxylase, and spe2Δ, lacking SAM decarboxylase) require externally supplied polyamines, but supplementation with as little as 10-8 m spermidine restores their growth. Here, we report that culturing a spe1Δ mutant or a spe2Δ mutant in a standard polyamine-free minimal medium (SDC) leads to marked increases in cellular Mg2+ content. To determine which yeast Mg2+ transporter mediated this increase, we generated mutant strains with a deletion of SPE1 or SPE2 combined with a deletion of one of the three Mg2+ transporter genes, ALR1, ALR2, and MNR2, known to maintain cytosolic Mg2+ concentration. Neither Alr2 nor Mnr2 was required for increased Mg2+ accumulation, as all four double mutants (spe1Δ alr2Δ, spe2Δ alr2Δ, spe1Δ mnr2Δ, and spe2Δ mnr2Δ) exhibited significant Mg2+ accumulation upon polyamine depletion. In contrast, a spe2Δ alr1Δ double mutant cultured in SDC exhibited little increase in Mg2+ content and displayed severe growth defects compared with single mutants alr1Δ and spe2Δ under polyamine-deficient conditions. These findings indicate that Alr1 is required for the up-regulation of the Mg2+ content in polyamine-depleted cells and suggest that elevated Mg2+ can support growth of polyamine-deficient S. cerevisiae mutants. Up-regulation of cellular polyamine content in a Mg2+-deficient alr1Δ mutant provided further evidence for a cross-talk between Mg2+ and polyamine metabolism.
Collapse
Affiliation(s)
- Ashleigh S Hanner
- Molecular and Cellular Biochemistry Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Matthew Dunworth
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at The Johns Hopkins University, Baltimore, Maryland 21287
| | - Robert A Casero
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at The Johns Hopkins University, Baltimore, Maryland 21287
| | - Colin W MacDiarmid
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Myung Hee Park
- Molecular and Cellular Biochemistry Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
4
|
Hameed S, Hans S, Singh S, Fatima Z. Harnessing Metal Homeostasis Offers Novel and Promising Targets Against Candida albicans. Curr Drug Discov Technol 2019; 17:415-429. [PMID: 30827249 DOI: 10.2174/1570163816666190227231437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/08/2019] [Accepted: 01/30/2019] [Indexed: 11/22/2022]
Abstract
Fungal infections, particularly of Candida species, which are the commensal organisms of human, are one of the major debilitating diseases in immunocompromised patients. The limited number of antifungal drugs available to treat Candida infections, with the concomitant increasing incidence of multidrug-resistant (MDR) strains, further worsens the therapeutic options. Thus, there is an urgent need for the better understanding of MDR mechanisms, and their reversal, by employing new strategies to increase the efficacy and safety profiles of currently used therapies against the most prevalent human fungal pathogen, Candida albicans. Micronutrient availability during C. albicans infection is regarded as a critical factor that influences the progression and magnitude of the disease. Intracellular pathogens colonize a variety of anatomical locations that are likely to be scarce in micronutrients, as a defense strategy adopted by the host, known as nutritional immunity. Indispensable critical micronutrients are required both by the host and by C. albicans, especially as a cofactor in important metabolic functions. Since these micronutrients are not freely available, C. albicans need to exploit host reservoirs to adapt within the host for survival. The ability of pathogenic organisms, including C. albicans, to sense and adapt to limited micronutrients in the hostile environment is essential for survival and confers the basis of its success as a pathogen. This review describes that micronutrients availability to C. albicans is a key attribute that may be exploited when one considers designing strategies aimed at disrupting MDR in this pathogenic fungi. Here, we discuss recent advances that have been made in our understanding of fungal micronutrient acquisition and explore the probable pathways that may be utilized as targets.
Collapse
Affiliation(s)
- Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Sandeep Hans
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Shweta Singh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| |
Collapse
|
5
|
Suo CH, Ma LJ, Li HL, Sun JF, Li C, Lin MH, Sun TS, Du W, Li YJ, Gao XD, Meng Y, Sai SX, Ding C. Investigation of Cryptococcus neoformans magnesium transporters reveals important role of vacuolar magnesium transporter in regulating fungal virulence factors. Microbiologyopen 2017; 7:e00564. [PMID: 29243387 PMCID: PMC6011977 DOI: 10.1002/mbo3.564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/30/2017] [Indexed: 01/21/2023] Open
Abstract
Cryptococcus neoformans is an important opportunistic fungal pathogen in humans. Recent studies have demonstrated that metals are critical factors for the regulation of fungal virulence in hosts. In this study, we systemically investigated the function of C. neoformans magnesium transporters in controlling the intracellular Mg balance and virulence-associated factors. We identified three Mg transporters in C. neoformans: Mgt1, Mgt2, and Mgt3. While we could not detect a Mg2+ -related growth phenotype in mgt1 and mgt3 knockout strains, a GAL7p-Mgt2 strain showed significant Mg-dependent growth defects in the presence of glucose. Further analysis demonstrated that MGT2 is a homolog of MNR2 in Saccharomyces cerevisiae, which is localized to the vacuolar membrane and participates in intracellular Mg transport. Interestingly, a transcriptome analysis showed that Mgt2 influenced the expression of 19 genes, which were independent of Mg2+ . We showed that melanin synthesis in C. neoformans required Mg2+ and Mgt2, and that capsule production was negatively regulated by Mg2+ and Mgt2. Repressing the expression of MGT2-induced capsule, which resulted in an increased fungal burden in the lungs. Cumulatively, this study sets the stage for further evaluation of the important role of Mg homeostasis in the regulation of melanin and capsule in C. neoformans.
Collapse
Affiliation(s)
- Chen-Hao Suo
- College of Life and Health Sciences, Northeastern University, Liaoning, Shenyang, China
| | - Lan-Jing Ma
- College of Life and Health Sciences, Northeastern University, Liaoning, Shenyang, China
| | - Hai-Long Li
- College of Life and Health Sciences, Northeastern University, Liaoning, Shenyang, China
| | - Jian-Fang Sun
- College of Life and Health Sciences, Northeastern University, Liaoning, Shenyang, China
| | - Chao Li
- College of Life and Health Sciences, Northeastern University, Liaoning, Shenyang, China
| | - Ming-Hui Lin
- College of Life and Health Sciences, Northeastern University, Liaoning, Shenyang, China
| | - Tian-Shu Sun
- College of Life and Health Sciences, Northeastern University, Liaoning, Shenyang, China
| | - Wei Du
- College of Life and Health Sciences, Northeastern University, Liaoning, Shenyang, China
| | - Yan-Jian Li
- College of Life and Health Sciences, Northeastern University, Liaoning, Shenyang, China
| | - Xin-Di Gao
- College of Life and Health Sciences, Northeastern University, Liaoning, Shenyang, China
| | - Yang Meng
- College of Life and Health Sciences, Northeastern University, Liaoning, Shenyang, China
| | - Si-Xiang Sai
- School of Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Liaoning, Shenyang, China
| |
Collapse
|
6
|
Pankiewicz U, Sujka M, Włodarczyk-Stasiak M, Mazurek A, Jamroz J. Effect of pulse electric fields (PEF) on accumulation of magnesium and zinc ions in Saccharomyces cerevisiae cells. Food Chem 2014; 157:125-31. [PMID: 24679761 DOI: 10.1016/j.foodchem.2014.02.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/17/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
Cultures of Saccharomyces cerevisiae were treated with PEF to improve simultaneous accumulation of magnesium and zinc ions in the biomass. The results showed that the ions concentration in the medium and their mutual interactions affect accumulation in cells. Increasing the concentration of one ion in the medium reduced the accumulation of the second one, in the control as well as in the cells treated with PEF. Under optimized conditions, that is, on 15 min exposure of the 20 h grown culture to PEF of 5.0 kV/cm and 20 μs pulse width, accumulation of magnesium and zinc in yeast biomass reached maximum levels of 2.85 and 11.41 mg/gd.m., respectively, To summarize, optimization of ion pair concentration and PEF parameters caused a 1.5 or 2-fold increase of magnesium and zinc accumulation, respectively, in S. cerevisiae.
Collapse
Affiliation(s)
- Urszula Pankiewicz
- Department of Analysis and Evaluation of Food Quality, Faculty of Food Science and Biotechnology, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland.
| | - Monika Sujka
- Department of Analysis and Evaluation of Food Quality, Faculty of Food Science and Biotechnology, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland
| | - Marzena Włodarczyk-Stasiak
- Department of Analysis and Evaluation of Food Quality, Faculty of Food Science and Biotechnology, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland
| | - Artur Mazurek
- Department of Analysis and Evaluation of Food Quality, Faculty of Food Science and Biotechnology, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland
| | - Jerzy Jamroz
- Department of Analysis and Evaluation of Food Quality, Faculty of Food Science and Biotechnology, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland
| |
Collapse
|
7
|
Grognet P, Lalucque H, Silar P. The PaAlr1 magnesium transporter is required for ascospore development in Podospora anserina. Fungal Biol 2012; 116:1111-8. [PMID: 23063190 DOI: 10.1016/j.funbio.2012.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 11/28/2022]
Abstract
The PaAlr1 gene encoding a putative plasma membrane magnesium (Mg) transporter in Podospora anserina was inactivated. The PaAlr1(Δ) mutants showed sensitivity to deprivation and excess Mg(2+) and Ca(2+). They also exhibited an autonomous ascospore maturation defect. Mutant ascospores were arrested at an early stage when they contained two nuclei. These data emphasize the role of Mg ions during sexual development in a filamentous fungus.
Collapse
Affiliation(s)
- Pierre Grognet
- Univ Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain (IED), Paris, France
| | | | | |
Collapse
|
8
|
Effect of pulsed electric fields upon accumulation of magnesium in Saccharomyces cerevisiae. Eur Food Res Technol 2010. [DOI: 10.1007/s00217-010-1317-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Abstract
Magnesium (Mg) is an essential enzyme cofactor and a key structural component of biological molecules, but relatively little is known about the molecular components required for Mg homeostasis in eukaryotic cells. The yeast genome encodes four characterized members of the CorA Mg transporter superfamily located in the plasma membrane (Alr1 and Alr2) or the mitochondrial inner membrane (Mrs2 and Lpe10). We describe a fifth yeast CorA homolog (Mnr2) required for Mg homeostasis. MNR2 gene inactivation was associated with an increase in both the Mg requirement and the Mg content of yeast cells. In Mg-replete conditions, wild-type cells accumulated an intracellular store of Mg that supported growth under deficient conditions. An mnr2 mutant was unable to access this store, suggesting that Mg was trapped in an intracellular compartment. Mnr2 was localized to the vacuole membrane, implicating this organelle in Mg storage. The mnr2 mutant growth and Mg-content phenotypes were dependent on vacuolar proton-ATPase activity, but were unaffected by the loss of mitochondrial Mg uptake, indicating a specific dependence on vacuole function. Overexpression of Mnr2 suppressed the growth defect of an alr1 alr2 mutant, indicating that Mnr2 could function independently of the ALR genes. Together, our results implicate a novel eukaryotic CorA homolog in the regulation of intracellular Mg storage.
Collapse
|
10
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|