1
|
Kertsch AL, Einicke J, Miedl J, Hellwig M, Henle T. Utilization of Free and Dipeptide-Bound Formyline and Pyrraline by Saccharomyces Yeasts. Chembiochem 2024:e202300854. [PMID: 38613434 DOI: 10.1002/cbic.202300854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
The utilization of the glycated amino acids formyline and pyrraline as well as their peptide-bound derivatives by 14 Saccharomyces yeasts, including 6 beer yeasts (bottom and top fermenting), one wine yeast, 6 strains isolated from natural habitats and one laboratory reference yeast strain (wild type) was investigated. All yeasts were able to metabolize glycated amino acids via the Ehrlich pathway to the corresponding Ehrlich metabolites. While formyline and small amounts of pyrraline entered the yeast cells via passive diffusion, the amounts of dipeptide-bound MRPs, especially the dipeptides glycated at the C-terminus, decreased much faster, indicating an uptake into the yeast cells. Furthermore, the glycation-mediated hydrophobization in general leads to an faster degradation rate compared to the native lysine dipeptides. While the utilization of free formyline is yeast-specific, the amounts of (glycated) dipeptides decreased faster in the presence of brewer's yeasts, which also showed a higher formation rate of Ehrlich metabolites compared to naturally isolated strains. Due to rapid uptake of alanyl dipeptides, it can be assumed that the Ehrlich enzyme system of naturally isolated yeasts is overloaded and the intracellularly released MRP is primarily excreted from the cell. This indicates adaptation of technologically used yeasts to (glycated) dipeptides as a nitrogen source.
Collapse
Affiliation(s)
- Anna-Lena Kertsch
- Chair of Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Jana Einicke
- Chair of Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Julia Miedl
- Chair of Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Thomas Henle
- Chair of Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| |
Collapse
|
2
|
Zhu YX, He M, Li KJ, Wang YK, Qian N, Wang ZF, Sheng H, Sui Y, Zhang DD, Zhang K, Qi L, Zheng DQ. Novel insights into the effects of 5-hydroxymethfurural on genomic instability and phenotypic evolution using a yeast model. Appl Environ Microbiol 2024; 90:e0164923. [PMID: 38108644 PMCID: PMC10807415 DOI: 10.1128/aem.01649-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
5-Hydroxymethfurural (5-HMF) is naturally found in a variety of foods and beverages and represents a main inhibitor in the lignocellulosic hydrolysates used for fermentation. This study investigated the impact of 5-HMF on the genomic stability and phenotypic plasticity of the yeast Saccharomyces cerevisiae. Using next-generation sequencing technology, we examined the genomic alterations of diploid S. cerevisiae isolates that were subcultured on a medium containing 1.2 g/L 5-HMF. We found that in 5-HMF-treated cells, the rates of chromosome aneuploidy, large deletions/duplications, and loss of heterozygosity were elevated compared with that in untreated cells. 5-HMF exposure had a mild impact on the rate of point mutations but altered the mutation spectrum. Contrary to what was observed in untreated cells, more monosomy than trisomy occurred in 5-HMF-treated cells. The aneuploidy mutant with monosomic chromosome IX was more resistant to 5-HMF than the diploid parent strain because of the enhanced activity of alcohol dehydrogenase. Finally, we found that overexpression of ADH6 and ZWF1 effectively stabilized the yeast genome under 5-HMF stress. Our findings not only elucidated the global effect of 5-HMF on the genomic integrity of yeast but also provided novel insights into how chromosomal instability drives the environmental adaptability of eukaryotic cells.IMPORTANCESingle-cell microorganisms are exposed to a range of stressors in both natural and industrial settings. This study investigated the effects of 5-hydroxymethfurural (5-HMF), a major inhibitor found in baked foods and lignocellulosic hydrolysates, on the chromosomal instability of yeast. We examined the mechanisms leading to the distinct patterns of 5-HMF-induced genomic alterations and discovered that chromosomal loss, typically viewed as detrimental to cell growth under most conditions, can contribute to yeast tolerance to 5-HMF. Our results increased the understanding of how specific stressors stimulate genomic plasticity and environmental adaptation in yeast.
Collapse
Affiliation(s)
- Ying-Xuan Zhu
- Hainan Institute of Zhejiang University, Zhejiang University, Sanya, China
- Ocean College, Zhejiang University, Zhoushan, China
| | - Min He
- Hainan Institute of Zhejiang University, Zhejiang University, Sanya, China
| | - Ke-Jing Li
- Ocean College, Zhejiang University, Zhoushan, China
| | - Ye-Ke Wang
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Ning Qian
- Ocean College, Zhejiang University, Zhoushan, China
| | - Ze-Fei Wang
- Hainan Institute of Zhejiang University, Zhejiang University, Sanya, China
| | - Huan Sheng
- Ocean College, Zhejiang University, Zhoushan, China
| | - Yang Sui
- Ocean College, Zhejiang University, Zhoushan, China
| | | | - Ke Zhang
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Lei Qi
- Ocean College, Zhejiang University, Zhoushan, China
| | - Dao-Qiong Zheng
- Hainan Institute of Zhejiang University, Zhejiang University, Sanya, China
- Ocean College, Zhejiang University, Zhoushan, China
| |
Collapse
|
3
|
Arteaga JE, Rivera-Becerril E, Le Borgne S, Sigala JC. Influence of furfural on the physiology of Acinetobacter baylyi ADP1. FEMS Microbiol Lett 2024; 371:fnae059. [PMID: 39076007 PMCID: PMC11384913 DOI: 10.1093/femsle/fnae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/04/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024] Open
Abstract
Pretreatment of lignocellulosic biomass produces growth inhibitory substances such as furfural which is toxic to microorganisms. Acinetobacter baylyi ADP1 cannot use furfural as a carbon source, instead it biotransforms this compound into difurfuryl ether using the reduced nicotinamide adenine dinucleotide (NADH)-dependent dehydrogenases AreB and FrmA during aerobic acetate catabolism. However, NADH consumption for furfural biotransformation compromises aerobic growth of A. baylyi ADP1. Depending on the growth phase, several genes related to acetate catabolism and oxidative phosphorylation changed their expression indicating that central metabolic pathways were affected by the presence of furfural. During the exponential growth phase, reactions involved in the formation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) (icd gene) and NADH (sfcA gene) were preferred when furfural was present. Therefore a higher NADH and NADPH production might support furfural biotransformation and biomass production, respectively. In contrast, in the stationary growth phase genes of the glyoxylate shunt were overexpressed probably to save carbon compounds for biomass formation, and only NADH regeneration was appreciated. Finally, disruption of the frmA or areB gene in A. baylyi ADP1 led to a decrease in growth adaptation and in the capacity to biotransform furfural. The characterization of this physiological behavior clarifies the impact of furfural in Acinetobacter metabolism.
Collapse
Affiliation(s)
- José Eduardo Arteaga
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana, Unidad Cuajimalpa. Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Delegación Cuajimalpa de Morelos, Ciudad de México, C.P. 05348, México
| | - Ernesto Rivera-Becerril
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa. Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Delegación Cuajimalpa de Morelos, Ciudad de México, C.P. 05348, México
| | - Sylvie Le Borgne
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa. Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Delegación Cuajimalpa de Morelos, Ciudad de México, C.P. 05348, México
| | - Juan-Carlos Sigala
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa. Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Delegación Cuajimalpa de Morelos, Ciudad de México, C.P. 05348, México
| |
Collapse
|
4
|
Hector RE, Mertens JA, Nichols NN. Metabolic engineering of a stable haploid strain derived from lignocellulosic inhibitor tolerant Saccharomyces cerevisiae natural isolate YB-2625. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:190. [PMID: 38057826 DOI: 10.1186/s13068-023-02442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Significant genetic diversity exists across Saccharomyces strains. Natural isolates and domesticated brewery and industrial strains are typically more robust than laboratory strains when challenged with inhibitory lignocellulosic hydrolysates. These strains also contain genes that are not present in lab strains and likely contribute to their superior inhibitor tolerance. However, many of these strains have poor sporulation efficiencies and low spore viability making subsequent gene analysis, further metabolic engineering, and genomic analyses of the strains challenging. This work aimed to develop an inhibitor tolerant haploid with stable mating type from S. cerevisiae YB-2625, which was originally isolated from bagasse. RESULTS Haploid spores isolated from four tetrads from strain YB-2625 were tested for tolerance to furfural and HMF. Due to natural mutations present in the HO-endonuclease, all haploid strains maintained a stable mating type. One of the haploids, YRH1946, did not flocculate and showed enhanced tolerance to furfural and HMF. The tolerant haploid strain was further engineered for xylose fermentation by integration of the genes for xylose metabolism at two separate genomic locations (ho∆ and pho13∆). In fermentations supplemented with inhibitors from acid hydrolyzed corn stover, the engineered haploid strain derived from YB-2625 was able to ferment all of the glucose and 19% of the xylose, whereas the engineered lab strains performed poorly in fermentations. CONCLUSIONS Understanding the molecular mechanisms of inhibitor tolerance will aid in developing strains with improved growth and fermentation performance using biomass-derived sugars. The inhibitor tolerant, xylose fermenting, haploid strain described in this work has potential to serve as a platform strain for identifying pathways required for inhibitor tolerance, and for metabolic engineering to produce fuels and chemicals from undiluted lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Ronald E Hector
- Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL, 61604, USA.
| | - Jeffrey A Mertens
- Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL, 61604, USA
| | - Nancy N Nichols
- Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL, 61604, USA
| |
Collapse
|
5
|
Topaloğlu A, Esen Ö, Turanlı-Yıldız B, Arslan M, Çakar ZP. From Saccharomyces cerevisiae to Ethanol: Unlocking the Power of Evolutionary Engineering in Metabolic Engineering Applications. J Fungi (Basel) 2023; 9:984. [PMID: 37888240 PMCID: PMC10607480 DOI: 10.3390/jof9100984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Increased human population and the rapid decline of fossil fuels resulted in a global tendency to look for alternative fuel sources. Environmental concerns about fossil fuel combustion led to a sharp move towards renewable and environmentally friendly biofuels. Ethanol has been the primary fossil fuel alternative due to its low carbon emission rates, high octane content and comparatively facile microbial production processes. In parallel to the increased use of bioethanol in various fields such as transportation, heating and power generation, improvements in ethanol production processes turned out to be a global hot topic. Ethanol is by far the leading yeast output amongst a broad spectrum of bio-based industries. Thus, as a well-known platform microorganism and native ethanol producer, baker's yeast Saccharomyces cerevisiae has been the primary subject of interest for both academic and industrial perspectives in terms of enhanced ethanol production processes. Metabolic engineering strategies have been primarily adopted for direct manipulation of genes of interest responsible in mainstreams of ethanol metabolism. To overcome limitations of rational metabolic engineering, an alternative bottom-up strategy called inverse metabolic engineering has been widely used. In this context, evolutionary engineering, also known as adaptive laboratory evolution (ALE), which is based on random mutagenesis and systematic selection, is a powerful strategy to improve bioethanol production of S. cerevisiae. In this review, we focus on key examples of metabolic and evolutionary engineering for improved first- and second-generation S. cerevisiae bioethanol production processes. We delve into the current state of the field and show that metabolic and evolutionary engineering strategies are intertwined and many metabolically engineered strains for bioethanol production can be further improved by powerful evolutionary engineering strategies. We also discuss potential future directions that involve recent advancements in directed genome evolution, including CRISPR-Cas9 technology.
Collapse
Affiliation(s)
- Alican Topaloğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul 34469, Türkiye; (A.T.); (Ö.E.)
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul 34469, Türkiye;
| | - Ömer Esen
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul 34469, Türkiye; (A.T.); (Ö.E.)
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul 34469, Türkiye;
| | - Burcu Turanlı-Yıldız
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul 34469, Türkiye;
| | - Mevlüt Arslan
- Department of Genetics, Faculty of Veterinary Medicine, Van Yüzüncü Yıl University, Van 65000, Türkiye;
| | - Zeynep Petek Çakar
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul 34469, Türkiye; (A.T.); (Ö.E.)
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul 34469, Türkiye;
| |
Collapse
|
6
|
Kumar S, Agyeman-Duah E, Ujor VC. Whole-Genome Sequence and Fermentation Characteristics of Enterobacter hormaechei UW0SKVC1: A Promising Candidate for Detoxification of Lignocellulosic Biomass Hydrolysates and Production of Value-Added Chemicals. Bioengineering (Basel) 2023; 10:1090. [PMID: 37760192 PMCID: PMC10525534 DOI: 10.3390/bioengineering10091090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Enterobacter hormaechei is part of the Enterobacter cloacae complex (ECC), which is widespread in nature. It is a facultative Gram-negative bacterium of medical and industrial importance. We assessed the metabolic and genetic repertoires of a new Enterobacter isolate. Here, we report the whole-genome sequence of a furfural- and 5-hydroxymethyl furfural (HMF)-tolerant strain of E. hormaechei (UW0SKVC1), which uses glucose, glycerol, xylose, lactose and arabinose as sole carbon sources. This strain exhibits high tolerance to furfural (IC50 = 34.2 mM; ~3.3 g/L) relative to Escherichia coli DH5α (IC50 = 26.0 mM; ~2.5 g/L). Furfural and HMF are predominantly converted to their less-toxic alcohols. E. hormaechei UW0SKVC1 produces 2,3-butanediol, acetoin, and acetol, among other compounds of industrial importance. E. hormaechei UW0SKVC1 produces as high as ~42 g/L 2,3-butanediol on 60 g/L glucose or lactose. The assembled genome consists of a 4,833,490-bp chromosome, with a GC content of 55.35%. Annotation of the assembled genome revealed 4586 coding sequences and 4516 protein-coding genes (average length 937-bp) involved in central metabolism, energy generation, biodegradation of xenobiotic compounds, production of assorted organic compounds, and drug resistance. E. hormaechei UW0SKVC1 shows considerable promise as a biocatalyst and a genetic repository of genes whose protein products may be harnessed for the efficient bioconversion of lignocellulosic biomass, abundant glycerol and lactose-replete whey permeate to value-added chemicals.
Collapse
Affiliation(s)
| | | | - Victor C. Ujor
- Metabolic Engineering and Fermentation Science Group, Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI 53706, USA; (S.K.); (E.A.-D.)
| |
Collapse
|
7
|
Kertsch AL, Wagner J, Henle T. Selected Maillard Reaction Products and Their Yeast Metabolites in Commercial Wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12300-12310. [PMID: 37530036 DOI: 10.1021/acs.jafc.3c04512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
During beer and wine production, Maillard reaction products (MRPs) are formed, which have a particular influence on the taste and aroma of the fermented beverages. Compared to beer, less is known about individual Maillard compounds and especially corresponding yeast metabolites in wine. In this study, 36 selected wines (Amarone, Ripasso, red, and white wines) were analyzed by HPLC-UV and GC-MS concerning the amounts of 3-deoxyglucosone (3-DG), 3-deoxygalactosone (3-DGal), methylglyoxal (MGO), glyoxal (GO), 5-hydroxymethylfurfural (HMF), and furfural (FF). 3-DG was found to be the dominant compound with values from 3.3 to 35.1 mg/L. The contents of 3-DGal, MGO, GO, HMF, and FF were in a single digit range. In addition to MRPs, the yeast metabolites originating from 3-DG, namely, 3-deoxyfructose and 3-deoxy-2-ketogluconic acid, 2,5-bis(hydroxymethyl)furan and 5-formyl-2-furancarboxylic acid, both formed from HMF, and the FF metabolites furfuryl alcohol and furan-2-carboxylic acid were detected and quantitated in wines for the first time. The amounts were between 0.1 and 53.5 mg/L with especially high contents of the oxidation products. Differences between red and white wines indicate that enological parameters like grape variety, production method, and aging may have an influence on the MRP contents in wines.
Collapse
Affiliation(s)
- Anna-Lena Kertsch
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Juliet Wagner
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Thomas Henle
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
8
|
Abrha GT, Li Q, Kuang X, Xiao D, Ayepa E, Wu J, Chen H, Zhang Z, Liu Y, Yu X, Xiang Q, Ma M. Contribution of YPRO15C Overexpression to the Resistance of Saccharomyces cerevisiae BY4742 Strain to Furfural Inhibitor. Pol J Microbiol 2023; 72:177-186. [PMID: 37314359 DOI: 10.33073/pjm-2023-019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/13/2023] [Indexed: 06/15/2023] Open
Abstract
Lignocellulosic biomass is still considered a feasible source of bioethanol production. Saccharomyces cerevisiae can adapt to detoxify lignocellulose-derived inhibitors, including furfural. Tolerance of strain performance has been measured by the extent of the lag phase for cell proliferation following the furfural inhibitor challenge. The purpose of this work was to obtain a tolerant yeast strain against furfural through overexpression of YPR015C using the in vivo homologous recombination method. The physiological observation of the overexpressing yeast strain showed that it was more resistant to furfural than its parental strain. Fluorescence microscopy revealed improved enzyme reductase activity and accumulation of oxygen reactive species due to the harmful effects of furfural inhibitor in contrast to its parental strain. Comparative transcriptomic analysis revealed 79 genes potentially involved in amino acid biosynthesis, oxidative stress, cell wall response, heat shock protein, and mitochondrial-associated protein for the YPR015C overexpressing strain associated with stress responses to furfural at the late stage of lag phase growth. Both up- and down-regulated genes involved in diversified functional categories were accountable for tolerance in yeast to survive and adapt to the furfural stress in a time course study during the lag phase growth. This study enlarges our perceptions comprehensively about the physiological and molecular mechanisms implicated in the YPR015C overexpressing strain's tolerance under furfural stress. Construction illustration of the recombinant plasmid. a) pUG6-TEF1p-YPR015C, b) integration diagram of the recombinant plasmid pUG6-TEF1p-YPR into the chromosomal DNA of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Getachew Tafere Abrha
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
- 3Department of Biotechnology, College of Dry Land Agriculture and Natural Resources, Mekelle University, Mekelle, Ethiopia
| | - Qian Li
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Xiaolin Kuang
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Difan Xiao
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Ellen Ayepa
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Jinjian Wu
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Huan Chen
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Zhengyue Zhang
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Yina Liu
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Xiumei Yu
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Quanju Xiang
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Menggen Ma
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
- 2Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Sichuan, China
| |
Collapse
|
9
|
Perruca Foncillas R, Sanchis Sebastiá M, Wallberg O, Carlquist M, Gorwa-Grauslund MF. Assessment of the TRX2p-yEGFP Biosensor to Monitor the Redox Response of an Industrial Xylose-Fermenting Saccharomyces cerevisiae Strain during Propagation and Fermentation. J Fungi (Basel) 2023; 9:630. [PMID: 37367566 DOI: 10.3390/jof9060630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
The commercial production of bioethanol from lignocellulosic biomass such as wheat straw requires utilizing a microorganism that can withstand all the stressors encountered in the process while fermenting all the sugars in the biomass. Therefore, it is essential to develop tools for monitoring and controlling the cellular fitness during both cell propagation and sugar fermentation to ethanol. In the present study, on-line flow cytometry was adopted to assess the response of the biosensor TRX2p-yEGFP for redox imbalance in an industrial xylose-fermenting strain of Saccharomyces cerevisiae during cell propagation and the following fermentation of wheat-straw hydrolysate. Rapid and transient induction of the sensor was recorded upon exposure to furfural and wheat straw hydrolysate containing up to 3.8 g/L furfural. During the fermentation step, the induction rate of the sensor was also found to correlate to the initial ethanol production rate, highlighting the relevance of redox monitoring and the potential of the presented tool to assess the ethanol production rate in hydrolysates. Three different propagation strategies were also compared, and it was confirmed that pre-exposure to hydrolysate during propagation remains the most efficient method for high ethanol productivity in the following wheat-straw hydrolysate fermentations.
Collapse
Affiliation(s)
- Raquel Perruca Foncillas
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | | | - Ola Wallberg
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Magnus Carlquist
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Marie F Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
10
|
Ujor VC, Okonkwo CC. Microbial detoxification of lignocellulosic biomass hydrolysates: Biochemical and molecular aspects, challenges, exploits and future perspectives. Front Bioeng Biotechnol 2022; 10:1061667. [PMID: 36483774 PMCID: PMC9723337 DOI: 10.3389/fbioe.2022.1061667] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 08/26/2023] Open
Abstract
Valorization of lignocellulosic biomass (LB) has the potential to secure sustainable energy production without impacting food insecurity, whist relieving over reliance on finite fossil fuels. Agro-derived lignocellulosic residues such as wheat straw, switchgrass, rice bran, and miscanthus have gained relevance as feedstocks for the production of biofuels and chemicals. However, the microorganisms employed in fermentative conversion of carbohydrates to fuels and chemicals are unable to efficiently utilize the sugars derived from LB due to co-production of lignocellulose-derived microbial inhibitory compounds (LDMICs) during LB pretreatment. LDMICs impact microbial growth by inhibition of specific enzymes, cause DNA and cell membrane damage, and elicit cellular redox imbalance. Over the past decade, success has been achieved with the removal of LDMICs prior to fermentation. However, LDMICs removal by chemical processes is often accompanied by sugar losses, which negatively impacts the overall production cost. Hence, in situ removal of LDMICs by fermentative organisms during the fermentation process has garnered considerable attention as the "go-to" approach for economical LDMICs detoxification and bio-chemicals production. In situ removal of LDMICs has been pursued by either engineering more robust biocatalysts or isolating novel microbial strains with the inherent capacity to mineralize or detoxify LDMICs to less toxic compounds. While some success has been made along this line, efficient detoxification and robust production of target bio-chemicals in lignocellulosic hydrolysates (LHs) under largely anaerobic fermentative conditions remains a lingering challenge. Consequently, LB remains an underutilized substrate for bio-chemicals production. In this review, the impact of microbial LH detoxification on overall target molecule production is discussed. Further, the biochemical pathways and mechanisms employed for in situ microbial detoxification of furanic LDMICs [e.g., furfural and 5-hydroxymethylfurfural (HMF)] and phenolic LDMICs (e.g., syringaldehyde, p-coumaric acid, 4-hydroxybenzaldehyde, vanillin, and ferulic acid) are discussed. More importantly, metabolic engineering strategies for the development of LDMIC-tolerant and bio-chemicals overproducing strains and processes are highlighted.
Collapse
Affiliation(s)
- Victor C. Ujor
- Metabolic Engineering and Fermentation Science Group, Department of Food Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Christopher C. Okonkwo
- Biotechnology Program, College of Science, The Roux Institute, Northeastern University, Portland, ME, United States
| |
Collapse
|
11
|
Metabolization of the glycation compounds 3-deoxyglucosone and 5-hydroxymethylfurfural by Saccharomyces yeasts. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThe Maillard reaction products (MRPs) 3-deoxyglucosone (3-DG) and 5-hydroxymethylfurfural (HMF), which are formed during the thermal processing and storage of food, come into contact with technologically used yeasts during the fermentation of beer and wine. In order for the yeast cells to work efficiently, handling of the stress-inducing carbonyl compounds is essential. In the present study, the utilization of 3-DG and HMF by 13 Saccharomyces yeast strains (7 brewer’s yeast strains, 1 wine yeast strain, 6 yeast strains isolated from natural habitats) was investigated. All yeast strains studied were able to metabolize 3-DG and HMF. 3-DG is mainly reduced to 3-deoxyfructose (3-DF) and HMF is completely converted to 2,5-bishydroxymethylfuran (BHMF) and 5-formyl-2-furancarboxylic acid (FFCA). The ratio of conversion of HMF to BHMF and FFCA was found to be yeast strain-specific and no differences in the HMF stress tolerance of the yeast strains and species were observed. After incubation with 3-DG, varying amounts of intra- and extracellular 3-DF were found, pointing to a faster transport of 3-DG into the cells in the case of brewer’s yeast strains. Furthermore, the brewer’s yeast strains showed a significantly higher 3-DG stress resistance than the investigated yeast strains isolated from natural habitats. Thus, it can be shown for the first time that Saccharomyces yeast strains differ in their interaction of 3-DG induced carbonyl stress.
Graphical abstract
Collapse
|
12
|
Gencturk E, Ulgen KO. Understanding HMF inhibition on yeast growth coupled with ethanol production for the improvement of bio-based industrial processes. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Olorunsogbon T, Adesanya Y, Atiyeh HK, Okonkwo CC, Ujor VC, Ezeji TC. Effects of Clostridium beijerinckii and Medium Modifications on Acetone–Butanol–Ethanol Production From Switchgrass. Front Bioeng Biotechnol 2022; 10:942701. [PMID: 35992339 PMCID: PMC9382077 DOI: 10.3389/fbioe.2022.942701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
The presence of lignocellulose-derived microbial inhibitory compounds (LDMICs) in lignocellulosic biomass (LB) hydrolysates is a barrier to efficient conversion of LB hydrolysates to fuels and chemicals by fermenting microorganisms. Results from this study provide convincing evidence regarding the effectiveness of metabolically engineered C. beijerinckii NCIMB 8052 for the fermentation of LB-derived hydrolysates to acetone–butanol–ethanol (ABE). The engineered microbial strain (C. beijerinckii_SDR) was produced by the integration of an additional copy of a short-chain dehydrogenase/reductase (SDR) gene (Cbei_3904) into the chromosome of C. beijerinckii NCIMB 8052 wildtype, where it is controlled by the constitutive thiolase promoter. The C. beijerinckii_SDR and C. beijerinckii NCIMB 8052 wildtype were used for comparative fermentation of non-detoxified and detoxified hydrothermolysis-pretreated switchgrass hydrolysates (SHs) with and without (NH4)2CO3 supplementation. In the absence of (NH4)2CO3, fermentation of non-detoxified SH with C. beijerinckii_SDR resulted in the production of 3.13- and 2.25-fold greater quantities of butanol (11.21 g/L) and total ABE (20.24 g/L), respectively, than the 3.58 g/L butanol and 8.98 g/L ABE produced by C. beijerinckii_wildtype. When the non-detoxified SH was supplemented with (NH4)2CO3, concentrations were similar for butanol (9.5 compared with 9.2 g/L) and ABE (14.2 compared with 13.5 g/L) produced by C. beijerinckii_SDR and C. beijerinckii_wildtype, respectively. Furthermore, when C. beijerinckii_SDR and C. beijerinckii_wildtype were cultured in detoxified SH medium, C. beijerinckii_SDR produced 1.11- and 1.18-fold greater quantities of butanol and ABE, respectively, than when there was culturing with C. beijerinckii_wildtype. When the combined results of the present study are considered, conclusions are that the microbial strain and medium modifications of the fermentation milieu resulted in greater production of fuels and chemicals from non-detoxified LB hydrolysates.
Collapse
Affiliation(s)
- Tinuola Olorunsogbon
- Department of Animal Science, The Ohio State University, Wooster, OH, United States
| | - Yinka Adesanya
- Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, United States
| | - Hasan K. Atiyeh
- Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, United States
| | - Christopher Chukwudi Okonkwo
- Biotechnology Program, College of Science, The Roux Institute, Northeastern University, Portland, ME, United States
| | - Victor Chinomso Ujor
- Department of Food Science, University of Wisconsin-Madison, Maddison, WI, United States
| | - Thaddeus Chukwuemeka Ezeji
- Department of Animal Science, The Ohio State University, Wooster, OH, United States
- *Correspondence: Thaddeus Chukwuemeka Ezeji,
| |
Collapse
|
14
|
Kubisch C, Kövilein A, Aliyu H, Ochsenreither K. RNA-Seq Based Transcriptome Analysis of Aspergillus oryzae DSM 1863 Grown on Glucose, Acetate and an Aqueous Condensate from the Fast Pyrolysis of Wheat Straw. J Fungi (Basel) 2022; 8:765. [PMID: 35893132 PMCID: PMC9394295 DOI: 10.3390/jof8080765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Due to its acetate content, the pyrolytic aqueous condensate (PAC) formed during the fast pyrolysis of wheat straw could provide an inexpensive substrate for microbial fermentation. However, PAC also contains several inhibitors that make its detoxification inevitable. In our study, we examined the transcriptional response of Aspergillus oryzae to cultivation on 20% detoxified PAC, pure acetate and glucose using RNA-seq analysis. Functional enrichment analysis of 3463 significantly differentially expressed (log2FC >2 & FDR < 0.05) genes revealed similar metabolic tendencies for both acetate and PAC, as upregulated genes in these cultures were mainly associated with ribosomes and RNA processing, whereas transmembrane transport was downregulated. Unsurprisingly, metabolic pathway analysis revealed that glycolysis/gluconeogenesis and starch and sucrose metabolism were upregulated for glucose, whereas glyoxylate and the tricarboxylic acid (TCA) cycle were important carbon utilization pathways for acetate and PAC, respectively. Moreover, genes involved in the biosynthesis of various amino acids such as arginine, serine, cysteine and tryptophan showed higher expression in the acetate-containing cultures. Direct comparison of the transcriptome profiles of acetate and PAC revealed that pyruvate metabolism was the only significantly different metabolic pathway and was overexpressed in the PAC cultures. Upregulated genes included those for methylglyoxal degradation and alcohol dehydrogenases, which thus represent potential targets for the further improvement of fungal PAC tolerance.
Collapse
Affiliation(s)
- Christin Kubisch
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (A.K.); (H.A.); (K.O.)
| | | | | | | |
Collapse
|
15
|
How adaptive laboratory evolution can boost yeast tolerance to lignocellulosic hydrolyses. Curr Genet 2022; 68:319-342. [PMID: 35362784 DOI: 10.1007/s00294-022-01237-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 12/25/2022]
Abstract
The yeast Saccharomyces cerevisiae is an excellent candidate for establishing cell factories to convert lignocellulosic biomass into chemicals and fuels. To enable this technology, yeast robustness must be improved to withstand the fermentation inhibitors (e.g., weak organic acids, phenols, and furan aldehydes) resulting from biomass pretreatment and hydrolysis. Here, we discuss how evolution experiments performed in the lab, a method commonly known as adaptive laboratory evolution (ALE), may contribute to lifting yeast tolerance against the inhibitors of lignocellulosic hydrolysates (LCHs). The key is that, through the combination of whole-genome sequencing and reverse engineering, ALE provides a robust platform for discovering and testing adaptive alleles, allowing to explore the genetic underpinnings of yeast responses to LCHs. We review the insights gained from past evolution experiments with S. cerevisiae in LCH inhibitors and propose experimental designs to optimise the discovery of genetic variants adaptive to biomass toxicity. The knowledge gathered through ALE projects is envisaged as a roadmap to engineer superior yeast strains for biomass-based bioprocesses.
Collapse
|
16
|
Li B, Liu N, Zhao X. Response mechanisms of Saccharomyces cerevisiae to the stress factors present in lignocellulose hydrolysate and strategies for constructing robust strains. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:28. [PMID: 35292082 PMCID: PMC8922928 DOI: 10.1186/s13068-022-02127-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022]
Abstract
Bioconversion of lignocellulosic biomass to biofuels such as bioethanol and high value-added products has attracted great interest in recent decades due to the carbon neutral nature of biomass feedstock. However, there are still many key technical difficulties for the industrial application of biomass bioconversion processes. One of the challenges associated with the microorganism Saccharomyces cerevisiae that is usually used for bioethanol production refers to the inhibition of the yeast by various stress factors. These inhibitive effects seriously restrict the growth and fermentation performance of the strains, resulting in reduced bioethanol production efficiency. Therefore, improving the stress response ability of the strains is of great significance for industrial production of bioethanol. In this article, the response mechanisms of S. cerevisiae to various hydrolysate-derived stress factors including organic acids, furan aldehydes, and phenolic compounds have been reviewed. Organic acids mainly stimulate cells to induce intracellular acidification, furan aldehydes mainly break the intracellular redox balance, and phenolic compounds have a greater effect on membrane homeostasis. These damages lead to inadequate intracellular energy supply and dysregulation of transcription and translation processes, and then activate a series of stress responses. The regulation mechanisms of S. cerevisiae in response to these stress factors are discussed with regard to the cell wall/membrane, energy, amino acids, transcriptional and translational, and redox regulation. The reported key target genes and transcription factors that contribute to the improvement of the strain performance are summarized. Furthermore, the genetic engineering strategies of constructing multilevel defense and eliminating stress effects are discussed in order to provide technical strategies for robust strain construction. It is recommended that robust S. cerevisiae can be constructed with the intervention of metabolic regulation based on the specific stress responses. Rational design with multilevel gene control and intensification of key enzymes can provide good strategies for construction of robust strains.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China.,Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Nan Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China.,Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xuebing Zhao
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China. .,Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
van Dijk M, Rugbjerg P, Nygård Y, Olsson L. RNA sequencing reveals metabolic and regulatory changes leading to more robust fermentation performance during short-term adaptation of Saccharomyces cerevisiae to lignocellulosic inhibitors. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:201. [PMID: 34654441 PMCID: PMC8518171 DOI: 10.1186/s13068-021-02049-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The limited tolerance of Saccharomyces cerevisiae to inhibitors is a major challenge in second-generation bioethanol production, and our understanding of the molecular mechanisms providing tolerance to inhibitor-rich lignocellulosic hydrolysates is incomplete. Short-term adaptation of the yeast in the presence of dilute hydrolysate can improve its robustness and productivity during subsequent fermentation. RESULTS We utilized RNA sequencing to investigate differential gene expression in the industrial yeast strain CR01 during short-term adaptation, mimicking industrial conditions for cell propagation. In this first transcriptomic study of short-term adaption of S. cerevisiae to lignocellulosic hydrolysate, we found that cultures respond by fine-tuned up- and down-regulation of a subset of general stress response genes. Furthermore, time-resolved RNA sequencing allowed for identification of genes that were differentially expressed at 2 or more sampling points, revealing the importance of oxidative stress response, thiamin and biotin biosynthesis. furan-aldehyde reductases and specific drug:H+ antiporters, as well as the down-regulation of certain transporter genes. CONCLUSIONS These findings provide a better understanding of the molecular mechanisms governing short-term adaptation of S. cerevisiae to lignocellulosic hydrolysate, and suggest new genetic targets for improving fermentation robustness.
Collapse
Affiliation(s)
- Marlous van Dijk
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Peter Rugbjerg
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Yvonne Nygård
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Lisbeth Olsson
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| |
Collapse
|
18
|
Vanmarcke G, Deparis Q, Vanthienen W, Peetermans A, Foulquié-Moreno MR, Thevelein JM. A novel AST2 mutation generated upon whole-genome transformation of Saccharomyces cerevisiae confers high tolerance to 5-Hydroxymethylfurfural (HMF) and other inhibitors. PLoS Genet 2021; 17:e1009826. [PMID: 34624020 PMCID: PMC8500407 DOI: 10.1371/journal.pgen.1009826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 11/19/2022] Open
Abstract
Development of cell factories for conversion of lignocellulosic biomass hydrolysates into biofuels or bio-based chemicals faces major challenges, including the presence of inhibitory chemicals derived from biomass hydrolysis or pretreatment. Extensive screening of 2526 Saccharomyces cerevisiae strains and 17 non-conventional yeast species identified a Candida glabrata strain as the most 5-hydroxymethylfurfural (HMF) tolerant. Whole-genome (WG) transformation of the second-generation industrial S. cerevisiae strain MD4 with genomic DNA from C. glabrata, but not from non-tolerant strains, allowed selection of stable transformants in the presence of HMF. Transformant GVM0 showed the highest HMF tolerance for growth on plates and in small-scale fermentations. Comparison of the WG sequence of MD4 and GVM1, a diploid segregant of GVM0 with similarly high HMF tolerance, surprisingly revealed only nine non-synonymous SNPs, of which none were present in the C. glabrata genome. Reciprocal hemizygosity analysis in diploid strain GVM1 revealed AST2N406I as the only causative mutation. This novel SNP improved tolerance to HMF, furfural and other inhibitors, when introduced in different yeast genetic backgrounds and both in synthetic media and lignocellulose hydrolysates. It stimulated disappearance of HMF and furfural from the medium and enhanced in vitro furfural NADH-dependent reducing activity. The corresponding mutation present in AST1 (i.e. AST1D405I) the paralog gene of AST2, also improved inhibitor tolerance but only in combination with AST2N406I and in presence of high inhibitor concentrations. Our work provides a powerful genetic tool to improve yeast inhibitor tolerance in lignocellulosic biomass hydrolysates and other inhibitor-rich industrial media, and it has revealed for the first time a clear function for Ast2 and Ast1 in inhibitor tolerance.
Collapse
Affiliation(s)
- Gert Vanmarcke
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
| | - Quinten Deparis
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
| | - Ward Vanthienen
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
| | - Arne Peetermans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
| | - Maria R. Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
- NovelYeast bv, Open Bio-Incubator, Erasmus High School, Brussels (Jette), Belgium
| |
Collapse
|
19
|
Lam FH, Turanlı-Yıldız B, Liu D, Resch MG, Fink GR, Stephanopoulos G. Engineered yeast tolerance enables efficient production from toxified lignocellulosic feedstocks. SCIENCE ADVANCES 2021; 7:7/26/eabf7613. [PMID: 34172441 PMCID: PMC8232913 DOI: 10.1126/sciadv.abf7613] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/13/2021] [Indexed: 05/03/2023]
Abstract
Lignocellulosic biomass remains unharnessed for the production of renewable fuels and chemicals due to challenges in deconstruction and the toxicity its hydrolysates pose to fermentation microorganisms. Here, we show in Saccharomyces cerevisiae that engineered aldehyde reduction and elevated extracellular potassium and pH are sufficient to enable near-parity production between inhibitor-laden and inhibitor-free feedstocks. By specifically targeting the universal hydrolysate inhibitors, a single strain is enhanced to tolerate a broad diversity of highly toxified genuine feedstocks and consistently achieve industrial-scale titers (cellulosic ethanol of >100 grams per liter when toxified). Furthermore, a functionally orthogonal, lightweight design enables seamless transferability to existing metabolically engineered chassis strains: We endow full, multifeedstock tolerance on a xylose-consuming strain and one producing the biodegradable plastics precursor lactic acid. The demonstration of "drop-in" hydrolysate competence enables the potential of cost-effective, at-scale biomass utilization for cellulosic fuel and nonfuel products alike.
Collapse
Affiliation(s)
- Felix H Lam
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Burcu Turanlı-Yıldız
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Dany Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Michael G Resch
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Gerald R Fink
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
20
|
Jia HY, Yang ZY, Chen Q, Zong MH, Li N. Engineering Promiscuous Alcohol Dehydrogenase Activity of a Reductive Aminase AspRedAm for Selective Reduction of Biobased Furans. Front Chem 2021; 9:610091. [PMID: 34055734 PMCID: PMC8155666 DOI: 10.3389/fchem.2021.610091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/15/2021] [Indexed: 11/25/2022] Open
Abstract
Catalytic promiscuity is a promising starting point for improving the existing enzymes and even creating novel enzymes. In this work, site-directed mutagenesis was performed to improve promiscuous alcohol dehydrogenase activity of reductive aminase from Aspergillus oryzae (AspRedAm). AspRedAm showed the cofactor preference toward NADPH in reductive aminations, while it favored NADH in the reduction reactions. Some key amino acid residues such as N93, I118, M119, and D169 were identified for mutagenesis by molecular docking. Variant N93A showed the optimal pH and temperature of 8 and 30°C, respectively, in the reduction of 5-hydroxymethylfurfural (HMF). The thermostability was enhanced upon mutation of N93 to alanine. The catalytic efficiency of variant N93A (kcat/Km, 23.6 mM−1 s−1) was approximately 2-fold higher compared to that of the wild-type (WT) enzyme (13.1 mM−1 s−1). The improved catalytic efficiency of this variant may be attributed to the reduced steric hindrance that stems from the smaller side chain of alanine in the substrate-binding pocket. Both the WT enzyme and variant N93A had broad substrate specificity. Escherichia coli (E. coli) cells harboring plain vector enabled selective reduction of biobased furans to target alcohols, with the conversions of 35–95% and the selectivities of >93%. The introduction of variant N93A to E. coli resulted in improved substrate conversions (>98%) and selectivities (>99%).
Collapse
Affiliation(s)
- Hao-Yu Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zi-Yue Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ning Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
21
|
Liu ZL. Reasons for 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde resistance in Saccharomyces cerevisiae: current state of knowledge and perspectives for further improvements. Appl Microbiol Biotechnol 2021; 105:2991-3007. [PMID: 33830300 DOI: 10.1007/s00253-021-11256-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
Common toxic compounds 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF) are formed from dehydration of pentose and hexose, respectively, during decomposition of lignocellulosic biomass polymers. Furfural and HMF represent a major class of aldehyde toxic chemicals that inhibit microbial growth and interfere with subsequent fermentation for production of renewable fuels and chemicals. Understanding mechanisms of yeast tolerance aids development of tolerant strains as the most economic means to overcome the toxicity. This review updates current knowledge on yeast resistance to these toxic chemicals obtained from rapid advances in the past few years. Findings are largely exemplified by an adapted strain NRRL Y-50049 compared with its progenitor, the industrial yeast Saccharomyces cerevisiae type strain NRRL Y-12632. Newly characterized molecular phenotypes distinguished acquired resistant components of Y-50049 from innate stress response of its progenitor Y-12632. These findings also raised important questions on how to address more deeply ingrained changes in addition to local renovations for yeast adaptation. An early review on understandings of yeast tolerance to these inhibitory compounds is available and its contents omitted here to avoid redundancy. Controversial and confusing issues on identification of yeast resistance to furfural and HMF are further clarified aiming improved future research. Propositions and perspectives on research understanding molecular mechanisms of yeast resistance and future improvements are also presented. KEY POINTS: • Distinguished adapted resistance from innate stress response in yeast. • Defined pathway-based molecular phenotypes of yeast resistance. • Proposed genomic insight and perspectives on yeast resistance and adaptation.
Collapse
Affiliation(s)
- Z Lewis Liu
- National Center for Agricultural Utilization Research, Bioenergy Research Unit, USDA Agricultural Research Service, 1815 N. University Street, Peoria, IL, 61604, USA.
| |
Collapse
|
22
|
Baptista SL, Costa CE, Cunha JT, Soares PO, Domingues L. Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnol Adv 2021; 47:107697. [PMID: 33508428 DOI: 10.1016/j.biotechadv.2021.107697] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
The implementation of biorefineries for a cost-effective and sustainable production of energy and chemicals from renewable carbon sources plays a fundamental role in the transition to a circular economy. The US Department of Energy identified a group of key target compounds that can be produced from biorefinery carbohydrates. In 2010, this list was revised and included organic acids (lactic, succinic, levulinic and 3-hydroxypropionic acids), sugar alcohols (xylitol and sorbitol), furans and derivatives (hydroxymethylfurfural, furfural and furandicarboxylic acid), biohydrocarbons (isoprene), and glycerol and its derivatives. The use of substrates like lignocellulosic biomass that impose harsh culture conditions drives the quest for the selection of suitable robust microorganisms. The yeast Saccharomyces cerevisiae, widely utilized in industrial processes, has been extensively engineered to produce high-value chemicals. For its robustness, ease of handling, genetic toolbox and fitness in an industrial context, S. cerevisiae is an ideal platform for the founding of sustainable bioprocesses. Taking these into account, this review focuses on metabolic engineering strategies that have been applied to S. cerevisiae for converting renewable resources into the previously identified chemical targets. The heterogeneity of each chemical and its manufacturing process leads to inevitable differences between the development stages of each process. Currently, 8 of 11 of these top value chemicals have been already reported to be produced by recombinant S. cerevisiae. While some of them are still in an early proof-of-concept stage, others, like xylitol or lactic acid, are already being produced from lignocellulosic biomass. Furthermore, the constant advances in genome-editing tools, e.g. CRISPR/Cas9, coupled with the application of innovative process concepts such as consolidated bioprocessing, will contribute for the establishment of S. cerevisiae-based biorefineries.
Collapse
Affiliation(s)
- Sara L Baptista
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Carlos E Costa
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Joana T Cunha
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Pedro O Soares
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal.
| |
Collapse
|
23
|
Sehnem NT, Machado ÂS, Matte CR, Morais MADE, Ayub MAZ. Second-generation ethanol production by Wickerhamomyces anomalus strain adapted to furfural, 5-hydroxymethylfurfural (HMF), and high osmotic pressure. AN ACAD BRAS CIENC 2020; 92:e20181030. [PMID: 33084752 DOI: 10.1590/0001-3765202020181030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 04/08/2019] [Indexed: 11/22/2022] Open
Abstract
The aims of this work were to improve cell tolerance towards high concentrations of furfural and 5-hydroxymethylfurfural (HMF) of an osmotolerant strain of Wickerhamomyces anomalus by means of evolutionary engineering, and to determine its ethanol production under stress conditions. Cells were grown in the presence of furfural, HMF, either isolated or in combination, and under high osmotic pressure conditions. The most toxic condition for the parental strain was the combination of both furans, under which it was unable to grow and to produce ethanol. However, the tolerant adapted strain achieved a yield of ethanol of 0.43 g g-1glucose in the presence of furfural and HMF, showing an alcohol dehydrogenase activity of 0.68 mU mg protein-1. For this strain, osmotic pressure, did not affect its growth rate. These results suggest that W. anomalus WA-HF5.5strain shows potential to be used in second-generation ethanol production systems.
Collapse
Affiliation(s)
- Nicole T Sehnem
- Universidade Federal do Rio Grande do Sul, Departamento de Tecnologia de Alimentos, Av. Bento Gonçalves, 9500, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Ângela S Machado
- Universidade Federal do Rio Grande do Sul, Departamento de Tecnologia de Alimentos, Av. Bento Gonçalves, 9500, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Carla R Matte
- Universidade Federal do Rio Grande do Sul, Departamento de Tecnologia de Alimentos, Av. Bento Gonçalves, 9500, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Marcos Antonio DE Morais
- Universidade Federal de Pernambuco, Departamento de Genética, Av. Moraes Rego, 1235, Cidade Universitária, 50670901 Recife, PE, Brazil
| | - Marco AntÔnio Z Ayub
- Universidade Federal do Rio Grande do Sul, Departamento de Tecnologia de Alimentos, Av. Bento Gonçalves, 9500, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
24
|
YMR152W from Saccharomyces cerevisiae encoding a novel aldehyde reductase for detoxification of aldehydes derived from lignocellulosic biomass. J Biosci Bioeng 2020; 131:39-46. [PMID: 32967812 DOI: 10.1016/j.jbiosc.2020.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/12/2020] [Accepted: 09/04/2020] [Indexed: 11/20/2022]
Abstract
Aldehydes are the main inhibitors generated during the pretreatment of lignocellulosic biomass, which can inhibit cell growth and disturb subsequent fermentation. Saccharomyces cerevisiae has the intrinsic ability to in situ detoxify aldehydes to their less toxic or nontoxic alcohols by numerous aldehyde dehydrogenases/reductases during the lag phase. Herein, we report that an uncharacterized open reading frame YMR152W from S. cerevisiae encodes a novel aldehyde reductase with catalytic functions for reduction of at least six aldehydes, including two furan aldehydes (furfural and 5-hydroxymethylfurfural), three aliphatic aldehydes (acetaldehyde, glycolaldehyde, and 3-methylbutanal), and an aromatic aldehyde (benzaldehyde) with NADH or NADPH as the co-factor. Particularly, Ymr152wp displayed the highest specific activity (190.86 U/mg), and the best catalytic rate constant (Kcat), catalytic efficiency (Kcat/Km), and affinity (Km) when acetaldehyde was used as the substrate with NADH as the co-factor. The optimum pH of Ymr152wp is acidic (pH 5.0-6.0), but this enzyme is more stable in alkaline conditions (pH 8.0). Metal ions, chemical protective additives, salts, and substrates could stimulate or inhibit enzyme activities of Ymr152wp in varying degrees. Ymr152wp was classified into the quinone oxidoreductase (QOR) subfamily of the medium-chain dehydrogenase/reductase (MDR) family based on the results of amino acid sequence analysis and phylogenetic analysis. Although Ymr152wp was grouped into the QOR family, no quinone reductase activity was observed using typical quinones (9,10-phenanthrenequinone, 1,2-naphthoquinone, and p-benzoquinone) as the substrates. This study provides guidelines for exploring more uncharacterized aldehyde reductases in S. cerevisiae for in situ detoxification of aldehyde inhibitors derived from lignocellulosic hydrolysis.
Collapse
|
25
|
Hsu C, Kuo Y, Liu Y, Tsai S. Green conversion of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid by heterogeneous expression of 5-hydroxymethylfurfural oxidase in Pseudomonas putida S12. Microb Biotechnol 2020; 13:1094-1102. [PMID: 32233071 PMCID: PMC7264871 DOI: 10.1111/1751-7915.13564] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 02/01/2020] [Accepted: 03/03/2020] [Indexed: 11/30/2022] Open
Abstract
Transforming petrochemical processes into bioprocesses has become an important goal of sustainable development. The chemical synthesis of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF) is expensive and environmentally unfavourable. The study aims to investigate a whole-cell biocatalyst for efficient biotransformation of HMF to FDCA. For the first time, a genetically engineered Pseudomonas putida S12 strain expressing 5-hydroxymethylfurfural oxidase (HMFO) was developed for the biocatalytic conversion of HMF to FDCA. This whole-cell biocatalyst produced 35.7 mM FDCA from 50 mM HMF in 24 h without notable inhibition. However, when the initial HMF concentration was elevated to 100 mM, remarkable inhibition on FDCA production was observed, resulting in a reduction of FDCA yield to 42%. We solve this substrate inhibition difficulty by increasing the inoculum density. Subsequently, we used a fed-batch strategy by maintaining low HMF concentration in the culture to maximize the final FDCA titre. Using this approach, 545 mM of FDCA was accumulatively produced after 72 hs, which is the highest production rate per unit mass of cells to the best of our knowledge.
Collapse
Affiliation(s)
- Chih‐Ting Hsu
- Department of Chemical EngineeringNational Taiwan University of Science and TechnologyNo.43, Keelung Rd., Sec.4, Da'an Dist.Taipei City10607Taiwan
| | - Yang‐Cheng Kuo
- Chemical DivisionInstitute of Nuclear Energy Research1000 Wenhua Rd. Jiaan Village, Longtan DistrictTaoyuan City32546Taiwan
| | - Yu‐Cheng Liu
- Department of Chemical EngineeringNational Taiwan University of Science and TechnologyNo.43, Keelung Rd., Sec.4, Da'an Dist.Taipei City10607Taiwan
| | - Shen‐Long Tsai
- Department of Chemical EngineeringNational Taiwan University of Science and TechnologyNo.43, Keelung Rd., Sec.4, Da'an Dist.Taipei City10607Taiwan
| |
Collapse
|
26
|
Ruchala J, Kurylenko OO, Dmytruk KV, Sibirny AA. Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha). J Ind Microbiol Biotechnol 2019; 47:109-132. [PMID: 31637550 PMCID: PMC6970964 DOI: 10.1007/s10295-019-02242-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
This review summarizes progress in the construction of efficient yeast ethanol producers from glucose/sucrose and lignocellulose. Saccharomyces cerevisiae is the major industrial producer of first-generation ethanol. The different approaches to increase ethanol yield and productivity from glucose in S. cerevisiae are described. Construction of the producers of second-generation ethanol is described for S. cerevisiae, one of the best natural xylose fermenters, Scheffersomyces stipitis and the most thermotolerant yeast known Ogataea polymorpha. Each of these organisms has some advantages and drawbacks. S. cerevisiae is the primary industrial ethanol producer and is the most ethanol tolerant natural yeast known and, however, cannot metabolize xylose. S. stipitis can effectively ferment both glucose and xylose and, however, has low ethanol tolerance and requires oxygen for growth. O. polymorpha grows and ferments at high temperatures and, however, produces very low amounts of ethanol from xylose. Review describes how the mentioned drawbacks could be overcome.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Olena O Kurylenko
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Kostyantyn V Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| |
Collapse
|
27
|
Recent Advancements in Mycodegradation of Lignocellulosic Biomass for Bioethanol Production. Fungal Biol 2019. [DOI: 10.1007/978-3-030-23834-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Agu CV, Ujor V, Ezeji TC. Metabolic engineering of Clostridium beijerinckii to improve glycerol metabolism and furfural tolerance. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:50. [PMID: 30899330 PMCID: PMC6408787 DOI: 10.1186/s13068-019-1388-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/25/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Inefficient utilization of glycerol by Clostridium beijerinckii (Cb) is a major impediment to adopting glycerol metabolism as a strategy for increasing NAD(P)H regeneration, which would in turn, alleviate the toxicity of lignocellulose-derived microbial inhibitory compounds (LDMICs, e.g., furfural), and improve the fermentation of lignocellulosic biomass hydrolysates (LBH) to butanol. To address this problem, we employed a metabolic engineering strategy to enhance glycerol utilization by Cb. RESULTS By overexpressing two glycerol dehydrogenase (Gldh) genes (dhaD1 and gldA1) from the glycerol hyper-utilizing Clostridium pasteurianum (Cp) as a fused protein in Cb, we achieved approximately 43% increase in glycerol consumption, when compared to the plasmid control. Further, Cb_dhaD1 + gldA1 achieved a 59% increase in growth, while butanol and acetone-butanol-ethanol (ABE) concentrations and productivities increased 14.0%, 17.3%, and 55.6%, respectively, relative to the control. Co-expression of dhaD1 + gldA1 and gldA1 + dihydroxyacetone kinase (dhaK) resulted in significant payoffs in cell growth and ABE production compared to expression of one Gldh. In the presence of 4-6 g/L furfural, increased glycerol consumption by the dhaD1 + gldA1 strain increased cell growth (> 50%), the rate of furfural detoxification (up to 68%), and ABE production (up to 40%), relative to the plasmid control. Likewise, over-expression of [(dhaD1 + gldA1) dhaK] improved butanol and ABE production by 70% and 50%, respectively, in the presence of 5 and 6 g/L furfural relative to the plasmid control. CONCLUSIONS Overexpression of Cp gldhs and dhaK in Cb significantly enhanced glycerol utilization, ABE production, and furfural tolerance by Cb. Future research will address the inability of recombinant Cb to metabolize glycerol as a sole substrate.
Collapse
Affiliation(s)
- Chidozie Victor Agu
- Department of Animal Sciences and Ohio State Agricultural Research and Development Center (OARDC), The Ohio State University, 305 Gerlaugh Hall, 1680 Madison Avenue, Wooster, OH 44691 USA
- INanoBio Inc., 320 Logue Ave., Suite 212, Mountain View, CA 94043 USA
| | - Victor Ujor
- Bioenergy and Biological Waste Management Program, Agricultural Technical Institute, The Ohio State University, 1328 Dover Road, Wooster, OH 44691 USA
| | - Thaddeus Chukwuemeka Ezeji
- Department of Animal Sciences and Ohio State Agricultural Research and Development Center (OARDC), The Ohio State University, 305 Gerlaugh Hall, 1680 Madison Avenue, Wooster, OH 44691 USA
| |
Collapse
|
29
|
Suo Y, Liao Z, Qu C, Fu H, Wang J. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from undetoxified corncob acid hydrolysate. BIORESOURCE TECHNOLOGY 2019; 271:266-273. [PMID: 30278351 DOI: 10.1016/j.biortech.2018.09.095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Resistance to furan derivatives and phenolic compounds plays an important role in the use of lignocellulosic biomass for biological production of chemicals and fuels. This study confirmed that expression of short-chain dehydrogenase/reductase (SDR) from Clostridium beijerinckii NCIMB 8052 significantly improved the tolerance of C. tyrobutyricum to furfural due to the enhanced activity for furfural reduction. And on this basis, co-expression of SDR and heat shock chaperones GroESL could simultaneously enhance the tolerance of C. tyrobutyricum to furan derivatives and phenolic compounds, which were the main inhibitors presented in dilute-acid lignocellulosic hydrolysates. Consequently, the recombinant strain ATCC 25755/sdr+groESL exhibited good performance in butyric acid production with corncob acid hydrolysate as the substrate. Batch fermentation in bioreactor showed that the butyrate produced by ATCC 25755/sdr+groESL was 32.8 g/L, increased by 28.1% as compared with the wild-type strain. Meanwhile, the butyrate productivity increased from 0.19 g/L·h to 0.29 g/L·h.
Collapse
Affiliation(s)
- Yukai Suo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zhengping Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Chunyun Qu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Jufang Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
30
|
Wang W, Wu B, Qin H, Liu P, Qin Y, Duan G, Hu G, He M. Genome shuffling enhances stress tolerance of Zymomonas mobilis to two inhibitors. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:288. [PMID: 31890016 PMCID: PMC6913010 DOI: 10.1186/s13068-019-1631-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 12/05/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Furfural and acetic acid are the two major inhibitors generated during lignocellulose pretreatment and hydrolysis, would severely inhibit the cell growth, metabolism, and ethanol fermentation efficiency of Zymomonas mobilis. Effective genome shuffling mediated by protoplast electrofusion was developed and then applied to Z. mobilis. RESULTS After two rounds of genome shuffling, 10 different mutants with improved cell growth and ethanol yield in the presence of 5.0 g/L acetic acid and 3.0 g/L furfural were obtained. The two most prominent genome-shuffled strains, 532 and 533, were further investigated along with parental strains in the presence of 7.0 g/L acetic acid and 3.0 g/L furfural. The results showed that mutants 532 and 533 were superior to the parental strain AQ8-1 in the presence of 7.0 g/L acetic acid, with a shorter fermentation time (30 h) and higher productivity than AQ8-1. Mutant 533 exhibited subtle differences from parental strain F34 in the presence of 3.0 g/L furfural. Mutations present in 10 genome-shuffled strains were identified via whole-genome resequencing, and the source of each mutation was identified as either de novo mutation or recombination of the parent genes. CONCLUSIONS These results indicate that genome shuffling is an efficient method for enhancing stress tolerance in Z. mobilis. The engineered strains generated in this study could be potential cellulosic ethanol producers in the future.
Collapse
Affiliation(s)
- Weiting Wang
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041 People’s Republic of China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081 People’s Republic of China
| | - Bo Wu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041 People’s Republic of China
| | - Han Qin
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041 People’s Republic of China
| | - Panting Liu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041 People’s Republic of China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081 People’s Republic of China
| | - Yao Qin
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041 People’s Republic of China
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610041 People’s Republic of China
| | - Guowei Duan
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041 People’s Republic of China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081 People’s Republic of China
| | - Guoquan Hu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041 People’s Republic of China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081 People’s Republic of China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041 People’s Republic of China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081 People’s Republic of China
| |
Collapse
|
31
|
Xue XX, Ma CL, Di JH, Huo XY, He YC. One-pot chemo-enzymatic conversion of D-xylose to furfuralcohol by sequential dehydration with oxalic acid plus tin-based solid acid and bioreduction with whole-cells. BIORESOURCE TECHNOLOGY 2018; 268:292-299. [PMID: 30086456 DOI: 10.1016/j.biortech.2018.07.152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
In this study, organic acid could be used as co-catalyst for assisting solid acid SO42-/SnO2-argil to convert hemicellulose-derived D-xylose into furfural. The relationship between pKa of organic acid and turnover frequency (TOF) of co-catalysis with organic acid plus SO42-/SnO2-argil was explored on the conversion of D-xylose to furfural. Oxalic acid (pKa = 1.25) (0.35 wt%) was found to be the optimum co-catalyst for assisting SO42-/SnO2-argil (3.6 wt%) to synthesize furfural from D-xylose (20 g/L) at 180 °C for 20 min, and the furfural yield and TOF could be obtained at 57.07% and 6.26 h-1, respectively. Finally, the obtained furfural (107.6 mM) could be completely biotransformed to furfuralcohol by recombinant Escherichia coli CCZU-K14 whole-cells at 30 °C and pH 6.5 in the presence of 1.5 mol glucose/mol furfural and 400 mM D-xylose. Clearly, this strategy shows high potential application for the effective synthesis of furfuralcohol from biomass-derived D-xylose.
Collapse
Affiliation(s)
- Xin-Xia Xue
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Cui-Luan Ma
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, PR China
| | - Jun-Hua Di
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Xiao-Yu Huo
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Yu-Cai He
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, PR China.
| |
Collapse
|
32
|
Wang H, Li Q, Kuang X, Xiao D, Han X, Hu X, Li X, Ma M. Functions of aldehyde reductases from Saccharomyces cerevisiae in detoxification of aldehyde inhibitors and their biotechnological applications. Appl Microbiol Biotechnol 2018; 102:10439-10456. [PMID: 30306200 DOI: 10.1007/s00253-018-9425-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 11/25/2022]
Abstract
Bioconversion of lignocellulosic biomass to high-value bioproducts by fermentative microorganisms has drawn extensive attentions worldwide. Lignocellulosic biomass cannot be efficiently utilized by microorganisms, such as Saccharomyces cerevisiae, but has to be pretreated prior to fermentation. Aldehyde compounds, as the by-products generated in the pretreatment process of lignocellulosic biomass, are considered as the most important toxic inhibitors to S. cerevisiae cells for their growth and fermentation. Aldehyde group in the aldehyde inhibitors, including furan aldehydes, aliphatic aldehydes, and phenolic aldehydes, is identified as the toxic factor. It has been demonstrated that S. cerevisiae has the ability to in situ detoxify aldehydes to their corresponding less or non-toxic alcohols. This reductive reaction is catalyzed by the NAD(P)H-dependent aldehyde reductases. In recent years, detoxification of aldehyde inhibitors by S. cerevisiae has been extensively studied and a huge progress has been made. This mini-review summarizes the classifications and structural features of the characterized aldehyde reductases from S. cerevisiae, their catalytic abilities to exogenous and endogenous aldehydes and effects of metal ions, chemical protective additives, and salts on enzyme activities, subcellular localization of the aldehyde reductases and their possible roles in protection of the subcellular organelles, and transcriptional regulation of the aldehyde reductase genes by the key stress-response transcription factors. Cofactor preference of the aldehyde reductases and their molecular mechanisms and efficient supply pathways of cofactors, as well as biotechnological applications of the aldehyde reductases in the detoxification of aldehyde inhibitors derived from pretreatment of lignocellulosic biomass, are also included or supplemented in this mini-review.
Collapse
Affiliation(s)
- Hanyu Wang
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Qian Li
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xiaolin Kuang
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Difan Xiao
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xuebing Han
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xiangdong Hu
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Menggen Ma
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China.
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China.
| |
Collapse
|
33
|
Quarterman JC, Slininger PJ, Hector RE, Dien BS. Engineering Candida phangngensis—an oleaginous yeast from the Yarrowia clade—for enhanced detoxification of lignocellulose-derived inhibitors and lipid overproduction. FEMS Yeast Res 2018; 18:5105752. [DOI: 10.1093/femsyr/foy102] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/19/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Josh C Quarterman
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604, USA
| | - Patricia J Slininger
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604, USA
| | - Ronald E Hector
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604, USA
| | - Bruce S Dien
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604, USA
| |
Collapse
|
34
|
Liu ZL. Understanding the tolerance of the industrial yeast Saccharomyces cerevisiae against a major class of toxic aldehyde compounds. Appl Microbiol Biotechnol 2018; 102:5369-5390. [PMID: 29725719 DOI: 10.1007/s00253-018-8993-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/27/2022]
Abstract
Development of the next-generation biocatalyst is vital for fermentation-based industrial applications and a sustainable bio-based economy. Overcoming the major class of toxic compounds associated with lignocellulose-to-biofuels conversion is one of the significant challenges for new strain development. A significant number of investigations have been made to understand mechanisms of the tolerance for industrial yeast. It is humbling to learn how complicated the cell's response to the toxic chemicals is and how little we have known about yeast tolerance in the universe of the living cell. This study updates our current knowledge on the tolerance of industrial yeast against aldehyde inhibitory compounds at cellular, molecular and the genomic levels. It is comprehensive yet specific based on reproducible evidence and cross confirmed findings from different investigations using varied experimental approaches. This research approaches a rational foundation toward a more comprehensive understanding on the yeast tolerance. Discussions and perspectives are also proposed for continued exploring the puzzle of the yeast tolerance to aid the next-generation biocatalyst development.
Collapse
Affiliation(s)
- ZongLin Lewis Liu
- The US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Bioenergy Research Unit, 1815 N University Street, Peoria, IL, 61604, USA.
| |
Collapse
|
35
|
Liu J, Liu Z, Chai X, Luo Y, Guo T, Ying H. Regulation of ρ-coumaric acid tolerance in Clostridium beijerinckii by disturbing the intracellular electron transport chain. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Wang Y, Brown CA, Chen R. Industrial production, application, microbial biosynthesis and degradation of furanic compound, hydroxymethylfurfural (HMF). AIMS Microbiol 2018; 4:261-273. [PMID: 31294214 PMCID: PMC6604932 DOI: 10.3934/microbiol.2018.2.261] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022] Open
Abstract
Biorefinery is increasingly embraced as an environmentally friendly approach that has the potential to shift current petroleum-based chemical and material manufacture to renewable sources. Furanic compounds, particularly hydroxymethylfurfurals (HMFs) are platform chemicals, from which a variety of value-added chemicals can be derived. Their biomanufacture and biodegradation therefore will have a large impact. Here, we first review the potential industrial production of 4-HMF and 5-HMF, then we summarize the known microbial biosynthesis and biodegradation pathways of furanic compounds with emphasis on the enzymes in each pathway. We especially focus on the structure, function and catalytic mechanism of MfnB (4-(hydroxymethyl)-2-furancarboxyaldehyde-phosphate synthase) and hmfH (HMF oxidase), which catalyze the formation of phosphorylated 4-HMF and the oxidation of 5-HMF to furandicarboxylic acid (2,5-FDCA), respectively. Understanding the structure-function relationship of these enzymes will provide important insights in enzyme engineering, which eventually will find industry applications in mass-production of biobased polymers and other bulk chemicals in future.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry and Biochemistry, University of North Georgia-Dahlonega, Dahlonega, GA, 30597, USA
| | - Caroline A Brown
- Department of Chemistry and Biochemistry, University of North Georgia-Dahlonega, Dahlonega, GA, 30597, USA
| | - Rachel Chen
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
37
|
Liu J, Lin Q, Chai X, Luo Y, Guo T. Enhanced phenolic compounds tolerance response of Clostridium beijerinckii NCIMB 8052 by inactivation of Cbei_3304. Microb Cell Fact 2018; 17:35. [PMID: 29501062 PMCID: PMC5834869 DOI: 10.1186/s12934-018-0884-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/26/2018] [Indexed: 01/27/2023] Open
Abstract
Background Phenolic compounds generated in hydrolysis of lignocellulosic materials are major limiting factors for biological production of solvents by Clostridia, but it lacks the attention on the study of adaptation or resistance mechanisms in response to phenolic compounds. Results Gene Cbei_3304, encoding a hypothetical membrane transport protein, was analyzed by bioinformatic method. After insertional inactivation of the functionally uncertain gene Cbei_3304 in Clostridium beijerinckii NCIMB 8052, resulted in enhanced phenolic compounds tolerance. Compared to the parent strain C. beijerinckii NCIMB 8052, evaluation of toxicity showed the recombination stain C. beijerinckii 3304::int had a higher level of tolerance to four model phenolic compounds of lignocellulose-derived microbial inhibitory compounds. A comparative transcriptome analysis showed that the genes were involved in membrane transport proteins (ABC and MFS family) and were up-regulated expression after disrupting gene Cbei_3304. Additionally, the adaptation of C. beijerinckii NCIMB 8052 in response to non-detoxified hemicellulosic hydrolysate was improved by disrupting gene Cbei_3304. Conclusion Toxicity evaluation of lignocellulose-derived phenolic compounds shows that Cbei_3304 plays a significant role in regulating toxicities tolerance for ABE fermentation by C. beijerinckii, and the adaptation of non-detoxified hemicellulosic hydrolysate is significantly improved after inactivation of Cbei_3304 in wild-type strain C. beijerinckii NCIMB 8052. It provided a potential strategy for generating high inhibitor tolerance strains for using lignocellulosic materials to produce solvents by clostridia in this study. Electronic supplementary material The online version of this article (10.1186/s12934-018-0884-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Liu
- National Engineering Laboratory of Rice and By-Product Deep Processing, Central South University of Forestry and Technology, Shaoshan Nan Road No. 498, Changsha, 410004, People's Republic of China.,College of Food Science and Technology, Central South University of Forestry and Technology, Shaoshan Nan Road No. 498, Changsha, 410004, People's Republic of China
| | - Qinlu Lin
- National Engineering Laboratory of Rice and By-Product Deep Processing, Central South University of Forestry and Technology, Shaoshan Nan Road No. 498, Changsha, 410004, People's Republic of China.,College of Food Science and Technology, Central South University of Forestry and Technology, Shaoshan Nan Road No. 498, Changsha, 410004, People's Republic of China
| | - Xueying Chai
- National Engineering Laboratory of Rice and By-Product Deep Processing, Central South University of Forestry and Technology, Shaoshan Nan Road No. 498, Changsha, 410004, People's Republic of China.,College of Food Science and Technology, Central South University of Forestry and Technology, Shaoshan Nan Road No. 498, Changsha, 410004, People's Republic of China
| | - Yunchuan Luo
- National Engineering Laboratory of Rice and By-Product Deep Processing, Central South University of Forestry and Technology, Shaoshan Nan Road No. 498, Changsha, 410004, People's Republic of China.,College of Food Science and Technology, Central South University of Forestry and Technology, Shaoshan Nan Road No. 498, Changsha, 410004, People's Republic of China
| | - Ting Guo
- National Engineering Laboratory of Rice and By-Product Deep Processing, Central South University of Forestry and Technology, Shaoshan Nan Road No. 498, Changsha, 410004, People's Republic of China. .,College of Food Science and Technology, Central South University of Forestry and Technology, Shaoshan Nan Road No. 498, Changsha, 410004, People's Republic of China.
| |
Collapse
|
38
|
Sardi M, Paithane V, Place M, Robinson DE, Hose J, Wohlbach DJ, Gasch AP. Genome-wide association across Saccharomyces cerevisiae strains reveals substantial variation in underlying gene requirements for toxin tolerance. PLoS Genet 2018; 14:e1007217. [PMID: 29474395 PMCID: PMC5849340 DOI: 10.1371/journal.pgen.1007217] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/13/2018] [Accepted: 01/23/2018] [Indexed: 12/31/2022] Open
Abstract
Cellulosic plant biomass is a promising sustainable resource for generating alternative biofuels and biochemicals with microbial factories. But a remaining bottleneck is engineering microbes that are tolerant of toxins generated during biomass processing, because mechanisms of toxin defense are only beginning to emerge. Here, we exploited natural diversity in 165 Saccharomyces cerevisiae strains isolated from diverse geographical and ecological niches, to identify mechanisms of hydrolysate-toxin tolerance. We performed genome-wide association (GWA) analysis to identify genetic variants underlying toxin tolerance, and gene knockouts and allele-swap experiments to validate the involvement of implicated genes. In the process of this work, we uncovered a surprising difference in genetic architecture depending on strain background: in all but one case, knockout of implicated genes had a significant effect on toxin tolerance in one strain, but no significant effect in another strain. In fact, whether or not the gene was involved in tolerance in each strain background had a bigger contribution to strain-specific variation than allelic differences. Our results suggest a major difference in the underlying network of causal genes in different strains, suggesting that mechanisms of hydrolysate tolerance are very dependent on the genetic background. These results could have significant implications for interpreting GWA results and raise important considerations for engineering strategies for industrial strain improvement. Understanding the genetic architecture of complex traits is important for elucidating the genotype-phenotype relationship. Many studies have sought genetic variants that underlie phenotypic variation across individuals, both to implicate causal variants and to inform on architecture. Here we used genome-wide association analysis to identify genes and processes involved in tolerance of toxins found in plant-biomass hydrolysate, an important substrate for sustainable biofuel production. We found substantial variation in whether or not individual genes were important for tolerance across genetic backgrounds. Whether or not a gene was important in a given strain background explained more variation than the alleleic differences in the gene. These results suggest substantial variation in gene contributions, and perhaps underlying mechanisms, of toxin tolerance.
Collapse
Affiliation(s)
- Maria Sardi
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.,Microbiology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vaishnavi Paithane
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - De Elegant Robinson
- Microbiology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - James Hose
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dana J Wohlbach
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Audrey P Gasch
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
39
|
Wang D, Wu D, Yang X, Hong J. Transcriptomic analysis of thermotolerant yeastKluyveromyces marxianusin multiple inhibitors tolerance. RSC Adv 2018; 8:14177-14192. [PMID: 35540752 PMCID: PMC9079866 DOI: 10.1039/c8ra00335a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/09/2018] [Indexed: 11/21/2022] Open
Abstract
Global transcriptional response ofK. marxianusto multiple inhibitors including acetic acid, phenols, furfural and HMF at 42 °C.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Dan Wu
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Xiaoxue Yang
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Jiong Hong
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
40
|
Xue XX, Di JH, He YC, Wang BQ, Ma CL. Effective Utilization of Carbohydrate in Corncob to Synthesize Furfuralcohol by Chemical-Enzymatic Catalysis in Toluene-Water Media. Appl Biochem Biotechnol 2017; 185:42-54. [PMID: 29082476 DOI: 10.1007/s12010-017-2638-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/17/2017] [Indexed: 11/27/2022]
Abstract
In this study, carbohydrates (cellulose plus hemicellulose) in corncob were effectively converted furfuralcohol (FOL) via chemical-enzymatic catalysis in a one-pot manner. After corncob (2.5 g, dry weight) was pretreated with 0.5 wt% oxalic acid, the obtained corncob-derived xylose (19.8 g/L xylose) could be converted to furfural at 60.1% yield with solid acid catalyst SO42-/SnO2-attapulgite (3.6 wt% catalyst loading) in the water-toluene (3:1, v/v) at 170 °C for 20 min. Moreover, the oxalic acid-pretreated corncob residue (1.152 g, dry weight) was enzymatically hydrolyzed to 0.902 g glucose and 0.202 g arabinose. Using the corncob-derived glucose (1.0 mM glucose/mM furfural) as cosubstrate, the furfural liquor (48.3 mM furfural) was successfully biotransformed to FOL by recombinant Escherichia coli CCZU-A13 cells harboring an NADH-dependent reductase (SsCR) in the water-toluene (4:1, v/v) under the optimum conditions (50 mM PEG-6000, 0.2 mM Zn2+, 0.1 g wet cells/mL, 30 °C, pH 6.5). After the bioreduction for 2 h, FAL was completely converted to FOL. The FOL yield was obtained at 0.11 g FOL/g corncob. Clearly, this one-pot synthesis strategy shows high potential application for the effective synthesis of FOL.
Collapse
Affiliation(s)
- Xin-Xia Xue
- Platform of Biofuels and Biobased Products, Changzhou University, Changzhou, China
| | - Jun-Hua Di
- Platform of Biofuels and Biobased Products, Changzhou University, Changzhou, China
| | - Yu-Cai He
- Platform of Biofuels and Biobased Products, Changzhou University, Changzhou, China. .,Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China. .,Key Laboratory of Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China.
| | - Bing-Qian Wang
- Platform of Biofuels and Biobased Products, Changzhou University, Changzhou, China
| | - Cui-Luan Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
41
|
Gao J, Yuan W, Li Y, Bai F, Jiang Y. Synergistic effect of thioredoxin and its reductase from Kluyveromyces marxianus on enhanced tolerance to multiple lignocellulose-derived inhibitors. Microb Cell Fact 2017; 16:181. [PMID: 29084541 PMCID: PMC5663110 DOI: 10.1186/s12934-017-0795-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/24/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Multiple lignocellulose-derived inhibitors represent great challenges for bioethanol production from lignocellulosic materials. These inhibitors that are related to the levels of intracellular reactive oxidative species (ROS) make oxidoreductases a potential target for an enhanced tolerance in yeasts. RESULTS In this study, the thioredoxin and its reductase from Kluyveromyces marxianus Y179 was identified, which was subsequently achieved over-expression in Saccharomyces cerevisiae 280. In spite of the negative effects by expression of thioredoxin gene (KmTRX), the thioredoxin reductase (KmTrxR) helped to enhance tolerance to multiple lignocellulose-derived inhibitors, such as formic acid and acetic acid. In particular, compared with each gene expression, the double over-expression of KmTRX2 and KmTrxR achieved a better ethanol fermentative profiles under a mixture of formic acid, acetic acid, and furfural (FAF) with a shorter lag period. At last, the mechanism that improves the tolerance depended on a normal level of intracellular ROS for cell survival under stress. CONCLUSIONS The synergistic effect of KmTrxR and KmTRX2 provided the potential possibility for ethanol production from lignocellulosic materials, and give a general insight into the possible toxicity mechanisms for further theoretical research.
Collapse
Affiliation(s)
- Jiaoqi Gao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Wenjie Yuan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.
| | - Yimin Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
42
|
Kim SK, Groom J, Chung D, Elkins J, Westpheling J. Expression of a heat-stable NADPH-dependent alcohol dehydrogenase from Thermoanaerobacter pseudethanolicus 39E in Clostridium thermocellum 1313 results in increased hydroxymethylfurfural resistance. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:66. [PMID: 28331542 PMCID: PMC5353787 DOI: 10.1186/s13068-017-0750-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/09/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Resistance to deconstruction is a major limitation to the use of lignocellulosic biomass as a substrate for the production of fuels and chemicals. Consolidated bioprocessing (CBP), the use of microbes for the simultaneous hydrolysis of lignocellulose into soluble sugars and fermentation of the resulting sugars to products of interest, is a potential solution to this obstacle. The pretreatment of plant biomass, however, releases compounds that are inhibitory to the growth of microbes used for CBP. RESULTS Heterologous expression of the Thermoanaerobacter pseudethanolicus 39E bdhA gene, that encodes an alcohol dehydrogenase, in Clostridium thermocellum significantly increased resistance to furan derivatives at concentrations found in acid-pretreated biomass. The mechanism of detoxification of hydroxymethylfurfural was shown to be primarily reduction using NADPH as the cofactor. In addition, we report the construction of new expression vectors for homologous and heterologous expression in C. thermocellum. These vectors use regulatory signals from both C. bescii (the S-layer promoter) and C. thermocellum (the enolase promoter) shown to efficiently drive expression of the BdhA enzyme. CONCLUSIONS Toxic compounds present in lignocellulose hydrolysates that inhibit cell growth and product formation are obstacles to the commercialization of fuels and chemicals from biomass. Expression of genes that reduce the effect of these inhibitors, such as furan derivatives, will serve to enable commercial processes using plant biomass for the production of fuels and chemicals.
Collapse
Affiliation(s)
- Sun-Ki Kim
- Department of Genetics, University of Georgia, Athens, GA USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Joseph Groom
- Department of Genetics, University of Georgia, Athens, GA USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Daehwan Chung
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - James Elkins
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Janet Westpheling
- Department of Genetics, University of Georgia, Athens, GA USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| |
Collapse
|
43
|
Enhanced ethanol fermentation by engineered Saccharomyces cerevisiae strains with high spermidine contents. Bioprocess Biosyst Eng 2017; 40:683-691. [DOI: 10.1007/s00449-016-1733-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/26/2016] [Indexed: 01/03/2023]
|
44
|
Mukherjee V, Radecka D, Aerts G, Verstrepen KJ, Lievens B, Thevelein JM. Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:216. [PMID: 28924451 PMCID: PMC5597992 DOI: 10.1186/s13068-017-0899-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/04/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND Non-conventional yeasts present a huge, yet barely exploited, resource of yeast biodiversity for industrial applications. This presents a great opportunity to explore alternative ethanol-fermenting yeasts that are more adapted to some of the stress factors present in the harsh environmental conditions in second-generation (2G) bioethanol fermentation. Extremely tolerant yeast species are interesting candidates to investigate the underlying tolerance mechanisms and to identify genes that when transferred to existing industrial strains could help to design more stress-tolerant cell factories. For this purpose, we performed a high-throughput phenotypic evaluation of a large collection of non-conventional yeast species to identify the tolerance limits of the different yeast species for desirable stress tolerance traits in 2G bioethanol production. Next, 12 multi-tolerant strains were selected and used in fermentations under different stressful conditions. Five strains out of which, showing desirable fermentation characteristics, were then evaluated in small-scale, semi-anaerobic fermentations with lignocellulose hydrolysates. RESULTS Our results revealed the phenotypic landscape of many non-conventional yeast species which have not been previously characterized for tolerance to stress conditions relevant for bioethanol production. This has identified for each stress condition evaluated several extremely tolerant non-Saccharomyces yeasts. It also revealed multi-tolerance in several yeast species, which makes those species good candidates to investigate the molecular basis of a robust general stress tolerance. The results showed that some non-conventional yeast species have similar or even better fermentation efficiency compared to S. cerevisiae in the presence of certain stressful conditions. CONCLUSION Prior to this study, our knowledge on extreme stress-tolerant phenotypes in non-conventional yeasts was limited to only few species. Our work has now revealed in a systematic way the potential of non-Saccharomyces species to emerge either as alternative host species or as a source of valuable genetic information for construction of more robust industrial S. serevisiae bioethanol production yeasts. Striking examples include yeast species like Pichia kudriavzevii and Wickerhamomyces anomalus that show very high tolerance to diverse stress factors. This large-scale phenotypic analysis has yielded a detailed database useful as a resource for future studies to understand and benefit from the molecular mechanisms underlying the extreme phenotypes of non-conventional yeast species.
Collapse
Affiliation(s)
- Vaskar Mukherjee
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, VIB Center of Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Louvain, Belgium
- Laboratory for Enzyme, Fermentation and Brewing Technology (EFBT), Department of Microbial and Molecular Systems, KU Leuven, Technology Campus Ghent, Gebroeders De Smetstraat 1, B-9000 Ghent, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Campus De Nayer, Fortsesteenweg 30A, B-2860, Sint-Katelijne Waver, Belgium
- Present Address: Lundberg Laboratory, Department of Marine Sciences, University of Gothenburg, Medicinaregatan 9C, 41390 Göteborg, Sweden
| | - Dorota Radecka
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, VIB Center of Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Louvain, Belgium
| | - Guido Aerts
- Laboratory for Enzyme, Fermentation and Brewing Technology (EFBT), Department of Microbial and Molecular Systems, KU Leuven, Technology Campus Ghent, Gebroeders De Smetstraat 1, B-9000 Ghent, Belgium
| | - Kevin J. Verstrepen
- Laboratory for Systems Biology, VIB Center for Microbiology, KU Leuven, Gaston Geenslaan 1, B-3001 Louvain, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Campus De Nayer, Fortsesteenweg 30A, B-2860, Sint-Katelijne Waver, Belgium
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, VIB Center of Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Louvain, Belgium
| |
Collapse
|
45
|
Wang X, Gao Q, Bao J. Enhancement of furan aldehydes conversion in Zymomonas mobilis by elevating dehydrogenase activity and cofactor regeneration. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:24. [PMID: 28163781 PMCID: PMC5282692 DOI: 10.1186/s13068-017-0714-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/18/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND Furfural and 5-hydroxymethylfurfural (HMF) are the two major furan aldehyde inhibitors generated from lignocellulose dilute acid pretreatment which significantly inhibit subsequent microbial cell growth and ethanol fermentation. Zymomonas mobilis is an important strain for cellulosic ethanol fermentation but can be severely inhibited by furfural and (or) HMF. Previous study showed that Z. mobilis contains its native oxidoreductases to catalyze the conversion of furfural and HMF, but the corresponding genes have not been identified. RESULTS This study identified a NADPH-dependent alcohol dehydrogenase gene ZMO1771 from Z. mobilis ZM4, which is responsible for the efficient reduction of furfural and HMF. Over-expression of ZMO1771 in Z. mobilis significantly increased the conversion rate to both furfural and HMF and resulted in an accelerated cell growth and improved ethanol productivity in corn stover hydrolysate. Further, the ethanol fermentation performance was enhanced again by co-expression of the transhydrogenase gene udhA with ZMO1771 by elevating the NADPH availability. CONCLUSIONS A genetically modified Z. mobilis by co-expressing alcohol dehydrogenase gene ZMO1771 with transhydrogenase gene udhA showed enhanced conversion rate of furfural and HMF and accelerated ethanol fermentability from lignocellulosic hydrolysate. The results presented in this study provide an important method on constructing robust strains for efficient ethanol fermentation from lignocellulose feedstock.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Qiuqiang Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| |
Collapse
|
46
|
Gao J, Feng H, Yuan W, Li Y, Hou S, Zhong S, Bai F. Enhanced fermentative performance under stresses of multiple lignocellulose-derived inhibitors by overexpression of a typical 2-Cys peroxiredoxin from Kluyveromyces marxianus. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:79. [PMID: 28360937 PMCID: PMC5370469 DOI: 10.1186/s13068-017-0766-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 03/21/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bioethanol from lignocellulosic materials is of great significance to the production of renewable fuels due to its wide sources. However, multiple inhibitors generated from pretreatments represent great challenges for its industrial-scale fermentation. Despite the complex toxicity mechanisms, lignocellulose-derived inhibitors have been reported to be related to the levels of intracellular reactive oxygen species (ROS), which makes oxidoreductase a potential target for the enhancement of the tolerance of yeasts to these inhibitors. RESULTS A typical 2-Cys peroxiredoxin from Kluyveromyces marxianus Y179 (KmTPX1) was identified, and its overexpression was achieved in Saccharomyces cerevisiae 280. Strain TPX1 with overexpressed KmTPX1 gene showed an enhanced tolerance to oxidative stresses. Serial dilution assay indicated that KmTPX1 gene contributed to a better cellular growth behavior, when the cells were exposed to multiple lignocellulose-derived inhibitors, such as formic acid, acetic acid, furfural, ethanol, and salt. In particular, KmTPX1 expression also possessed enhanced tolerance to a mixture of formic acid, acetic acid, and furfural (FAF) with a shorter lag period. The maximum glucose consumption rate and ethanol generation rate in KmTPX1-expressing strain were significantly improved, compared with the control. The mechanism of improved tolerance to FAF depends on the lower level of intracellular ROS for cell survival under stress. CONCLUSION A new functional gene KmTPX1 from K. marxianus is firstly associated with the enhanced tolerance to multiple lignocellulose-derived inhibitors in S. cerevisiae. We provided a possible detoxification mechanism of the KmTPX1 for further theoretical research; meanwhile, we provided a powerful potential for application of the KmTPX1 overexpressing strain in ethanol production from lignocellulosic materials.
Collapse
Affiliation(s)
- Jiaoqi Gao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Hualiang Feng
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Wenjie Yuan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Yimin Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Shengbo Hou
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Shijun Zhong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Fengwu Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiaotong University, Shanghai, 200240 China
| |
Collapse
|
47
|
Sardi M, Rovinskiy N, Zhang Y, Gasch AP. Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance. Appl Environ Microbiol 2016; 82:5838-49. [PMID: 27451446 PMCID: PMC5038035 DOI: 10.1128/aem.01603-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/14/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A major obstacle to sustainable lignocellulosic biofuel production is microbe inhibition by the combinatorial stresses in pretreated plant hydrolysate. Chemical biomass pretreatment releases a suite of toxins that interact with other stressors, including high osmolarity and temperature, which together can have poorly understood synergistic effects on cells. Improving tolerance in industrial strains has been hindered, in part because the mechanisms of tolerance reported in the literature often fail to recapitulate in other strain backgrounds. Here, we explored and then exploited variations in stress tolerance, toxin-induced transcriptomic responses, and fitness effects of gene overexpression in different Saccharomyces cerevisiae (yeast) strains to identify genes and processes linked to tolerance of hydrolysate stressors. Using six different S. cerevisiae strains that together maximized phenotypic and genetic diversity, first we explored transcriptomic differences between resistant and sensitive strains to identify common and strain-specific responses. This comparative analysis implicated primary cellular targets of hydrolysate toxins, secondary effects of defective defense strategies, and mechanisms of tolerance. Dissecting the responses to individual hydrolysate components across strains pointed to synergistic interactions between osmolarity, pH, hydrolysate toxins, and nutrient composition. By characterizing the effects of high-copy gene overexpression in three different strains, we revealed the breadth of the background-specific effects of gene fitness contributions in synthetic hydrolysate. Our approach identified new genes for engineering improved stress tolerance in diverse strains while illuminating the effects of genetic background on molecular mechanisms. IMPORTANCE Recent studies on natural variation within Saccharomyces cerevisiae have uncovered substantial phenotypic diversity. Here, we took advantage of this diversity, using it as a tool to infer the effects of combinatorial stress found in lignocellulosic hydrolysate. By comparing sensitive and tolerant strains, we implicated primary cellular targets of hydrolysate toxins and elucidated the physiological states of cells when exposed to this stress. We also explored the strain-specific effects of gene overexpression to further identify strain-specific responses to hydrolysate stresses and to identify genes that improve hydrolysate tolerance independent of strain background. This study underscores the importance of studying multiple strains to understand the effects of hydrolysate stress and provides a method to find genes that improve tolerance across strain backgrounds.
Collapse
Affiliation(s)
- Maria Sardi
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA Microbiology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nikolay Rovinskiy
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yaoping Zhang
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Audrey P Gasch
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
48
|
Wang H, Li L, Zhang L, An J, Cheng H, Deng Z. Xylitol production from waste xylose mother liquor containing miscellaneous sugars and inhibitors: one-pot biotransformation by Candida tropicalis and recombinant Bacillus subtilis. Microb Cell Fact 2016; 15:82. [PMID: 27184671 PMCID: PMC4869185 DOI: 10.1186/s12934-016-0480-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/03/2016] [Indexed: 11/10/2022] Open
Abstract
Background The process of industrial xylitol production is a massive source of organic pollutants, such as waste xylose mother liquor (WXML), a viscous reddish-brown liquid. Currently, WXML is difficult to reuse due to its miscellaneous low-cost sugars, high content of inhibitors and complex composition. WXML, as an organic pollutant of hemicellulosic hydrolysates, accumulates and has become an issue of industrial concern in China. Previous studies have focused only on the catalysis of xylose in the hydrolysates into xylitol using one strain, without considering the removal of other miscellaneous sugars, thus creating an obstacle to subsequent large-scale purification. In the present study, we aimed to develop a simple one-pot biotransformation to produce high-purity xylitol from WXML to improve its economic value. Results In the present study, we developed a procedure to produce xylitol from WXML, which combines detoxification, biotransformation and removal of by-product sugars (purification) in one bioreactor using two complementary strains, Candida tropicalis X828 and Bacillus subtilis Bs12. At the first stage of micro-aerobic biotransformation, the yeast cells were allowed to grow and metabolized glucose and the inhibitors furfural and hydroxymethyl furfural (HMF), and converted xylose into xylitol. At the second stage of aerobic biotransformation, B. subtilis Bs12 was activated and depleted the by-product sugars. The one-pot process was successfully scaled up from shake flasks to 5, 150 L and 30 m3 bioreactors. Approximately 95 g/L of pure xylitol could be obtained from the medium containing 400 g/L of WXML at a yield of 0.75 g/g xylose consumed, and the by-product sugars glucose, l-arabinose and galactose were depleted simultaneously. Conclusions Our results demonstrate that the one-pot procedure is a viable option for the industrial application of WXML to produce value-added chemicals. The integration of complementary strains in the biotransformation of hemicellulosic hydrolysates is efficient under optimized conditions. Moreover, our study of one-pot biotransformation also provides useful information on the combination of biotechnological processes for the biotransformation of other compounds.
Collapse
Affiliation(s)
- Hengwei Wang
- Innovation and Application Institute (IAI), Zhejiang Ocean University, Zhoushan, 316022, China
| | - Lijuan Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lebin Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jin An
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
49
|
Ujor V, Okonkwo C, Ezeji TC. Unorthodox methods for enhancing solvent production in solventogenic Clostridium species. Appl Microbiol Biotechnol 2015; 100:1089-1099. [DOI: 10.1007/s00253-015-7166-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/08/2015] [Accepted: 11/11/2015] [Indexed: 12/11/2022]
|
50
|
Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis. Appl Environ Microbiol 2015; 81:5761-72. [PMID: 26070680 PMCID: PMC4551265 DOI: 10.1128/aem.01324-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/09/2015] [Indexed: 12/17/2022] Open
Abstract
An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using 13C-labeled sugars and [15N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals.
Collapse
|