1
|
Liu Y, Guo C, Wang C. Biochemical characterization of an organic solvent- and salt-tolerant xylanase and its application of arabinoxylan-oligosaccharides production from corn fiber gum. Int J Biol Macromol 2024; 280:136146. [PMID: 39349079 DOI: 10.1016/j.ijbiomac.2024.136146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/14/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
A endo-xylanase, of the glycoside hydrolase family 10 from Schizophyllum commune DB01, was expressed in P. pastoris. Recombinant xylanase (Scxyn5) retained above 80 % maximum activity in 10 % dimethyl sulfoxide and retained 90 % maximum activity in 5 M NaCl on the substrate of birchwood xylan. The effect of NaCl on the catalytic activity of Scxyn5 was significantly different toward various substrates, which was caused by the difference of monosaccharide composition and sturcture of the substrates. Furthermore, when corn fiber gum (CFG) was used as a substrate, the catalytic activity of Scxyn5 increased by 1.3-2.03 times in 1-5 M NaCl. Based on response surface methodology, the highest catalytic activity of Scxyn5 in hydrolyzing CFG were achieved with enzymatic temperature of 50 °C, pH value of 6.0, and 4 M NaCl. These properties of Scxyn5 suit the arabinoxylan-oligosaccharides (AXOs) preparation from CFG and some other potential applications in food industry.
Collapse
Affiliation(s)
- Yuchun Liu
- Academy of National Food and Strategic Reserves Administration, No 11 Baiwanzhuang Avenue, Xicheng District, Beijing 100037, PR China.
| | - Chao Guo
- Academy of National Food and Strategic Reserves Administration, No 11 Baiwanzhuang Avenue, Xicheng District, Beijing 100037, PR China
| | - Chao Wang
- Academy of National Food and Strategic Reserves Administration, No 11 Baiwanzhuang Avenue, Xicheng District, Beijing 100037, PR China.
| |
Collapse
|
2
|
Zhang J, Qin Y, Wang Q, Liu S, Zhou J, He B, Liang X, Xian L, Wu J. Gene cloning, expression, and characterization of two endo-xylanases from Bacillus velezensis and Streptomyces rochei, and their application in xylooligosaccharide production. Front Microbiol 2023; 14:1292726. [PMID: 38173671 PMCID: PMC10762781 DOI: 10.3389/fmicb.2023.1292726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024] Open
Abstract
Endo-xylanase hydrolyzing xylan in cellulosic residues releasing xylobiose as the major product at neutral pH are desirable in the substitute sweeteners industry. In this study, two endo-xylanases were obtained from Streptomyces rochei and Bacillus velezensis. SrocXyn10 showed the highest identity of 77.22%, with a reported endo-xylanase. The optimum reaction temperature and pH of rSrocXyn10-Ec were pH 7.0 and 60°C, with remarkable stability at 45°C or pHs ranging from 4.5 to 11.0. rBvelXyn11-Ec was most active at pH 6.0 and 50°C, and was stable at 35°C or pH 3.5 to 10.5. Both rSrocXyn10-Ec and rBvelXyn11-Ec showed specific enzyme activities on wheat arabinoxylan (685.83 ± 13.82 and 2809.89 ± 21.26 U/mg, respectively), with no enzyme activity on non-xylan substrates. The Vmax of rSrocXyn10-Ec and rBvelXyn11-Ec were 467.86 U mg-1 and 3067.68 U mg-1, respectively. The determined Km values of rSrocXyn10-Ec and rBvelXyn11-Ec were 3.08 g L-1 and 1.45 g L-1, respectively. The predominant product of the hydrolysis of alkaline extracts from bagasse, corncob, and bamboo by rSrocXyn10-Ec and rBvelXyn11-Ec were xylooligosaccharides. Interestingly, the xylobiose content in hydrolysates by rSrocXyn10-Ec was approximately 80%, which is higher than most reported endo-xylanases. rSrocXyn10-Ec and rBvelXyn11-Ec could be excellent candidates to produce xylooligosaccharides at neutral/near-neutral pHs. rSrocXyn10-Ec also has potential value in the production of xylobiose as a substitute sweetener.
Collapse
Affiliation(s)
- Jing Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yan Qin
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, China
| | - Qingyan Wang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, China
| | - Sijia Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Jin Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Baoxiang He
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Xinquan Liang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Liang Xian
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, China
| | - Junhua Wu
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
3
|
Li Y, Zhang X, Lu C, Lu P, Yin C, Ye Z, Huang Z. Identification and Characterization of a Novel Endo-β-1,4-Xylanase from Streptomyces sp. T7 and Its Application in Xylo-Oligosaccharide Production. Molecules 2022; 27:molecules27082516. [PMID: 35458713 PMCID: PMC9032680 DOI: 10.3390/molecules27082516] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022] Open
Abstract
A xylanase-producing strain, identified as Streptomyces sp. T7, was isolated from soil by our lab. The endo-β-1,4-xylanase (xynST7) gene was found in the genome sequence of strain T7, which was cloned and expressed in Escherichia coli. XynST7 belonged to the glycoside hydrolase family 10, with a molecular mass of approximately 47 kDa. The optimum pH and temperature of XynST7 were pH 6.0 and 60 °C, respectively, and it showed wide pH and temperature adaptability and stability, retaining more than half of its enzyme activity between pH 5.0 and 11.0 below 80 °C. XynST7 showed only endo-β-1,4-xylanase activity without cellulase- or β-xylosidase activity, and it showed maximal hydrolysis for corncob xylan in all the test substrates. Then, XynST7 was used for the production of xylo-oligosaccharides (XOSs) by hydrolyzing xylan extracted from raw corncobs. The maximum yield of the XOS was 8.61 ± 0.13 mg/mL using 15 U/mL of XynST7 and 1.5% corncob xylan after 10 h of incubation at 60 °C. The resulting hydrolysate products mainly consisted of xylobiose and xylotriose. These data indicated that XynST7 might by a promising tool for various industrial applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhaosong Huang
- Correspondence: ; Tel.: +86-531-82766825; Fax: +86-531-82765807
| |
Collapse
|
4
|
Rahimian Gavaseraei H, Hasanzadeh R, Afsharnezhad M, Foroutan Kalurazi A, Shahangian SS, Aghamaali MR, Aminzadeh S. Identification, heterologous expression and biochemical characterization of a novel cellulase-free xylanase B from the thermophilic bacterium Cohnella sp.A01. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
|
6
|
Kim DY, Lee SH, Lee MJ, Cho HY, Lee JS, Rhee YH, Shin DH, Son KH, Park HY. Genetic and functional characterization of a novel GH10 endo-β- 1,4-xylanase with a ricin-type β-trefoil domain-like domain from Luteimicrobium xylanilyticum HY-24. Int J Biol Macromol 2017; 106:620-628. [PMID: 28813686 DOI: 10.1016/j.ijbiomac.2017.08.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 01/08/2023]
Abstract
The gene (1488-bp) encoding a novel GH10 endo-β-1,4-xylanase (XylM) consisting of an N-terminal catalytic GH10 domain and a C-terminal ricin-type β-trefoil lectin domain-like (RICIN) domain was identified from Luteimicrobium xylanilyticum HY-24. The GH10 domain of XylM was 72% identical to that of Micromonospora lupini endo-β-1,4-xylanase and the RICIN domain was 67% identical to that of Actinospica robiniae hypothetical protein. The recombinant enzyme (rXylM: 49kDa) exhibited maximum activity toward beechwood xylan at 65°C and pH 6.0, while the optimum temperature and pH of its C-terminal truncated mutant (rXylM△RICIN: 35kDa) were 45°C and 5.0, respectively. After pre-incubation of 1h at 60°C, rXylM retained over 80% of its initial activity, but the thermostability of rXylM△RICIN was sharply decreased at temperatures exceeding 40°C. The specific activity (254.1Umg-1) of rXylM toward oat spelts xylan was 3.4-fold higher than that (74.8Umg-1) of rXylM△RICIN when the same substrate was used. rXylM displayed superior binding capacities to lignin and insoluble polysaccharides compared to rXylM△RICIN. Enzymatic hydrolysis of β-1,4-d-xylooligosaccharides (X3-X6) and birchwood xylan yielded X3 as the major product. The results suggest that the RICIN domain in XylM might play an important role in substrate-binding and biocatalysis.
Collapse
Affiliation(s)
- Do Young Kim
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sun Hwa Lee
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Min Ji Lee
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Han-Young Cho
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jong Suk Lee
- Gyeonggi Bio-Center, Gyeonggi Institute of Science & Technology Promotion, Suwon 16229, Republic of Korea
| | - Young Ha Rhee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dong-Ha Shin
- Insect Biotech Co. Ltd., Daejeon 34054, Republic of Korea
| | - Kwang-Hee Son
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Ho-Yong Park
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| |
Collapse
|
7
|
A novel member of family 30 glycoside hydrolase subfamily 8 glucuronoxylan endo-β-1,4-xylanase (CtXynGH30) from Clostridium thermocellum orchestrates catalysis on arabinose decorated xylans. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Xu Y, Wu J, Zheng K, Wu D. A xylanase from Streptomyces sp. FA1: heterologous expression, characterization, and its application in Chinese steamed bread. ACTA ACUST UNITED AC 2016; 43:663-70. [DOI: 10.1007/s10295-016-1736-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/10/2016] [Indexed: 10/22/2022]
Abstract
Abstract
Xylanases (EC 3.2.1.8) are hydrolytic enzymes that have found widespread application in the food, feed, and paper-pulp industries. Streptomyces sp. FA1 xynA was expressed as a secreted protein in Pichia pastoris, and the xylanase was applied to the production of Chinese steamed bread for the first time. The optimal pH and the optimal temperature of XynA were 5.5 and 60 °C, respectively. Using beechwood as substrate, the K m and V max were 2.408 mg mL−1 and 299.3 µmol min−1 mg−1, respectively. Under optimal conditions, a 3.6-L bioreactor produced 1374 U mL−1 of XynA activity at a protein concentration of 6.3 g L−1 after 132 h of fermentation. Use of recombinant XynA led to a greater increase in the specific volume of the CSB than could be achieved using commercial xylanase under optimal conditions. This study provides the basis for the application of the enzyme in the baking industry.
Collapse
Affiliation(s)
- Yang Xu
- grid.258151.a 0000000107081323 State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
- grid.258151.a 0000000107081323 School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
| | - Jing Wu
- grid.258151.a 0000000107081323 State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
- grid.258151.a 0000000107081323 School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
| | - Kaixuan Zheng
- grid.258151.a 0000000107081323 School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
| | - Dan Wu
- grid.258151.a 0000000107081323 State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
- grid.258151.a 0000000107081323 School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
| |
Collapse
|
9
|
Characterization of a Novel Xylanase Gene from Rumen Content of Hu Sheep. Appl Biochem Biotechnol 2015; 177:1424-36. [DOI: 10.1007/s12010-015-1823-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/18/2015] [Indexed: 01/10/2023]
|
10
|
Zheng P, Sun X, Guo L, Shen J. Cloning, expression, and characterization of an acetolactate synthase (ALS) gene from Anabaena azotica. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Structural perspectives of an engineered β-1,4-xylanase with enhanced thermostability. J Biotechnol 2014; 189:175-82. [DOI: 10.1016/j.jbiotec.2014.08.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 11/20/2022]
|
12
|
Kim DY, Shin DH, Jung S, Lee JS, Cho HY, Bae KS, Sung CK, Rhee YH, Son KH, Park HY. Biocatalytic properties and substrate-binding ability of a modular GH10 β-1,4-xylanase from an insect-symbiotic bacterium, Streptomyces mexicanus HY-14. J Microbiol 2014; 52:863-70. [PMID: 25269606 DOI: 10.1007/s12275-014-4390-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 11/29/2022]
Abstract
The gene (1350-bp) encoding a modular β-1,4-xylanase (XylU), which consists of an N-terminal catalytic GH10 domain and a C-terminal carbohydrate-binding module 2 (CBM 2), from Streptomyces mexicanus HY-14 was cloned and functionally characterized. The purified His-tagged recombinant enzyme (rXylU, 44.0 kDa) was capable of efficiently hydrolyze diverse xylosidic compounds, p-nitrophenyl-cellobioside, and p-nitrophenyl-xylopyranoside when incubated at pH 5.5 and 65°C. Especially, the specific activities (649.8 U/mg and 587.0 U/mg, respectively) of rXylU toward oat spelts xylan and beechwood xylan were relatively higher than those (<500.0 U/mg) of many other GH10 homologs toward the same substrates. The results of enzymatic degradation of birchwood xylan and xylooligosaccharides (xylotriose to xylohexaose) revealed that rXylU preferentially hydrolyzed the substrates to xylobiose (>75%) as the primary degradation product. Moreover, a small amount (4%<) of xylose was detected as the degradation product of the evaluated xylosidic substrates, indicating that rXylU was a peculiar GH10 β-1,4-xylanase with substrate specificity, which was different from its retaining homologs. A significant reduction of the binding ability of rXylU caused by deletion of the C-terminal CBM 2 to various insoluble substrates strongly suggested that the additional domain might considerably contribute to the enzyme-substrate interaction.
Collapse
Affiliation(s)
- Do Young Kim
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
A thermo-halo-tolerant and proteinase-resistant endoxylanase from Bacillus sp. HJ14. Folia Microbiol (Praha) 2014; 59:423-31. [DOI: 10.1007/s12223-014-0316-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/27/2014] [Indexed: 12/13/2022]
|
14
|
He J, Su L, Sun X, Fu J, Chen J, Wu J. A novel xylanase from Streptomyces sp. FA1: Purification, characterization, identification, and heterologous expression. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0490-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Thermostability improvement of a streptomyces xylanase by introducing proline and glutamic acid residues. Appl Environ Microbiol 2014; 80:2158-65. [PMID: 24463976 DOI: 10.1128/aem.03458-13] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein engineering is commonly used to improve the robustness of enzymes for activity and stability at high temperatures. In this study, we identified four residues expected to affect the thermostability of Streptomyces sp. strain S9 xylanase XynAS9 through multiple-sequence analysis (MSA) and molecular dynamic simulations (MDS). Site-directed mutagenesis was employed to construct five mutants by replacing these residues with proline or glutamic acid (V81P, G82E, V81P/G82E, D185P/S186E, and V81P/G82E/D185P/S186E), and the mutant and wild-type enzymes were expressed in Pichia pastoris. Compared to the wild-type XynAS9, all five mutant enzymes showed improved thermal properties. The activity and stability assays, including circular dichroism and differential scanning calorimetry, showed that the mutations at positions 81 and 82 increased the thermal performance more than the mutations at positions 185 and 186. The mutants with combined substitutions (V81P/G82E and V81P/G82E/D185P/S186E) showed the most pronounced shifts in temperature optima, about 17°C upward, and their half-lives for thermal inactivation at 70°C and melting temperatures were increased by >9 times and approximately 7.0°C, respectively. The mutation combination of V81P and G82E in adjacent positions more than doubled the effect of single mutations. Both mutation regions were at the end of long secondary-structure elements and probably rigidified the local structure. MDS indicated that a long loop region after positions 81 and 82 located at the end of the inner β-barrel was prone to unfold. The rigidified main chain and filling of a groove by the mutations on the bottom of the active site canyon may stabilize the mutants and thus improve their thermostability.
Collapse
|
16
|
Lv P, Zhang L, Luo H, Chen CC, Huang CH, Peng W, Wang K, Ko TP, Zheng Y, Zhang J, Yao B, Guo RT. Preliminary X-ray diffraction analysis of thermostable β-1,4-xylanase from Streptomyces sp. S9. Acta Crystallogr F Struct Biol Commun 2014; 70:105-7. [PMID: 24419629 PMCID: PMC3943089 DOI: 10.1107/s2053230x13033335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/09/2013] [Indexed: 11/10/2022] Open
Abstract
Xylanase, which catalyzes the random hydrolysis of internal xylosidic linkages, is a critical enzyme participating in xylan decomposition and has been widely applied in industrial utilizations. Xylanase isolated from the extremophilic Streptomyces sp. S9 (XynAS9) possesses broad adaptability to temperature and pH and thus is an attractive candidate in industrial applications. In particular, the major products of XynAS9 are xylose and xylobiose, which enable the subsequent bioconversion to be carried out with higher efficiency. Therefore, the three-dimensional structure of XynAS9 and its catalytic machinery are of great interest. Here, recombinant XynAS9 protein was expressed in Pichia pastoris, purified and crystallized. Crystals belonging to the hexagonal space group P6(5)22, with unit-cell parameters a = b = 80.9, c = 289.3 Å, were obtained by the sitting-drop vapour-diffusion method and diffracted to 2.08 Å resolution. Initial phase determination using molecular replacement indicated that the crystal contains one molecule in an asymmetric unit. Further model building and structural refinement are in progress.
Collapse
Affiliation(s)
- Pin Lv
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People’s Republic of China
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People’s Republic of China
| | - Lilan Zhang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People’s Republic of China
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People’s Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People’s Republic of China
| | - Chun-Chi Chen
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People’s Republic of China
| | - Chun-Hsiang Huang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People’s Republic of China
| | - Wei Peng
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People’s Republic of China
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People’s Republic of China
| | - Kun Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People’s Republic of China
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yingying Zheng
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People’s Republic of China
| | - Juankun Zhang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People’s Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People’s Republic of China
| | - Rey-Ting Guo
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People’s Republic of China
| |
Collapse
|
17
|
Zhao L, Meng K, Shi P, Bai Y, Luo H, Huang H, Wang Y, Yang P, Yao B. A novel thermophilic xylanase from Achaetomium sp. Xz-8 with high catalytic efficiency and application potentials in the brewing and other industries. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Chi WJ, Lim JH, Park DY, Park JS, Hong SK. Production and characterization of a thermostable endo-type β-xylanase produced by a newly-isolated Streptomyces thermocarboxydus subspecies MW8 strain from Jeju Island. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Zhao L, Meng K, Bai Y, Shi P, Huang H, Luo H, Wang Y, Yang P, Song W, Yao B. Two family 11 xylanases from Achaetomium sp. Xz-8 with high catalytic efficiency and application potentials in the brewing industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6880-6889. [PMID: 23790084 DOI: 10.1021/jf4001296] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study identified two family-11 xylanase genes (xynC81 and xynC83) in Achaetomium sp. Xz-8, a thermophilic strain from a desert area with substantial xylanase activity, and successfully expressed them in Pichia pastoris . Their deduced amino acid sequences showed the highest identity of ≤90% to known fungal xylanases and of ≤62% with each other. The purified recombinant xylanases showed optimal activities at pH 5.5 and 60-65 °C and exhibited stability over pH 5.0-10.0 and temperatures at 55 °C and below. XynC81 had high catalytic efficiency (6082 mL/s/mg), and XynC83 was favorable for xylooligosaccharide production. Under simulated mashing conditions, combination of XynC83 and a commercial β-glucanase improved the filtration rate by 34.76%, which is much better than that of Novozymes Ultraflo (20.71%). XynC81 and XynC83 had a synergistic effect on viscosity reduction (7.08%), which is comparable with that of Ultraflo (8.47%). Thus, XynC81 and XynC83 represent good candidates for application in the brewing industry.
Collapse
Affiliation(s)
- Liang Zhao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Brito-Cunha CCDQ, de Campos ITN, de Faria FP, Bataus LAM. Screening and Xylanase Production by Streptomyces sp. Grown on Lignocellulosic Wastes. Appl Biochem Biotechnol 2013; 170:598-608. [DOI: 10.1007/s12010-013-0193-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
|
21
|
Cloning, expression and characteristics of a novel alkalistable and thermostable xylanase encoding gene (Mxyl) retrieved from compost-soil metagenome. PLoS One 2013; 8:e52459. [PMID: 23382818 PMCID: PMC3561394 DOI: 10.1371/journal.pone.0052459] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/19/2012] [Indexed: 11/19/2022] Open
Abstract
Background The alkalistable and thermostable xylanases are in high demand for pulp bleaching in paper industry and generating xylooligosaccharides by hydrolyzing xylan component of agro-residues. The compost-soil samples, one of the hot environments, are expected to be a rich source of microbes with thermostable enzymes. Methodology/Principal Findings Metagenomic DNA from hot environmental samples could be a rich source of novel biocatalysts. While screening metagenomic library constructed from DNA extracted from the compost-soil in the p18GFP vector, a clone (TSDV-MX1) was detected that exhibited clear zone of xylan hydrolysis on RBB xylan plate. The sequencing of 6.321 kb DNA insert and its BLAST analysis detected the presence of xylanase gene that comprised 1077 bp. The deduced protein sequence (358 amino acids) displayed homology with glycosyl hydrolase (GH) family 11 xylanases. The gene was subcloned into pET28a vector and expressed in E. coli BL21 (DE3). The recombinant xylanase (rMxyl) exhibited activity over a broad range of pH and temperature with optima at pH 9.0 and 80°C. The recombinant xylanase is highly thermostable having T1/2 of 2 h at 80°C and 15 min at 90°C. Conclusion/Significance This is the first report on the retrieval of xylanase gene through metagenomic approach that encodes an enzyme with alkalistability and thermostability. The recombinant xylanase has a potential application in paper and pulp industry in pulp bleaching and generating xylooligosaccharides from the abundantly available agro-residues.
Collapse
|
22
|
Cheng F, Sheng J, Dong R, Men Y, Gan L, Shen L. Novel xylanase from a holstein cattle rumen metagenomic library and its application in xylooligosaccharide and ferulic Acid production from wheat straw. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:12516-12524. [PMID: 23134352 DOI: 10.1021/jf302337w] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A novel gene fragment containing a xylanase was identified from a Holstein cattle rumen metagenomic library. The novel xylanase (Xyln-SH1) belonged to the glycoside hydrolase family 10 (GH10) and exhibited a maximum of 44% identity to the glycoside hydrolase from Clostridium thermocellum ATCC 27405. Xyln-SH1 was heterologously expressed, purified, and characterized. A high level of activity was obtained under the optimum conditions of pH 6.5 and 40 °C. A substrate utilization study indicated that Xyln-SH1 was cellulase-free and strictly specific to xylan from softwood. The synergistic effects of Xyln-SH1 and feruloyl esterase (FAE-SH1) were observed for the release of xylooligosaccharides (XOS) and ferulic acid (FA) from wheat straw. In addition, a high dose of Xyln-SH1 alone was observed to improve the release of FA from wheat straw. These features suggest that this enzyme has substantial potential to improve biomass degradation and industrial applications.
Collapse
Affiliation(s)
- Fansheng Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, China
| | | | | | | | | | | |
Collapse
|
23
|
Molecular and biochemical characterization of a new alkaline active multidomain xylanase from alkaline wastewater sludge. World J Microbiol Biotechnol 2012; 29:327-34. [PMID: 23117673 DOI: 10.1007/s11274-012-1186-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/03/2012] [Indexed: 01/17/2023]
Abstract
A xylanase gene, xyn-b39, coding for a multidomain glycoside hydrolase (GH) family 10 protein was cloned from the genomic DNA of the alkaline wastewater sludge of a paper mill. Its deduced amino acid sequence of 1,481 residues included two carbohydrate-binding modules (CBM) of family CBM_4_9, one catalytic domain of GH 10, one family 9 CBM and three S-layer homology (SLH) domains. xyn-b39 was expressed heterologously in Escherichia coli, and the recombinant enzyme was purified and characterized. Xyn-b39 exhibited maximum activity at pH 7.0 and 60 °C, and remained highly active under alkaline conditions (more than 80 % activity at pH 9.0 and 40 % activity at pH 10.0). The enzyme was thermostable at 55 °C, retaining more than 90 % of the initial activity after 2 h pre-incubation. Xyn-b39 had wide substrate specificity and hydrolyzed soluble substrates (birchwood xylan, beechwood xylan, oat spelt xylan, wheat arabinoxylan) and insoluble substrates (oat spelt xylan and wheat arabinoxylan). Hydrolysis product analysis indicated that Xyn-b39 was an endo-type xylanase. The K (m) and V (max) values of Xyn-b39 for birchwood xylan were 1.01 mg/mL and 73.53 U/min/mg, respectively. At the charge of 10 U/g reed pulp for 1 h, Xyn-b39 significantly reduced the Kappa number (P < 0.05) with low consumption of chlorine dioxide alone.
Collapse
|
24
|
Production of xylanase by an alkaline-tolerant marine-derived Streptomyces viridochromogenes strain and improvement by ribosome engineering. Appl Microbiol Biotechnol 2012; 97:4361-8. [PMID: 22821440 DOI: 10.1007/s00253-012-4290-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/04/2012] [Accepted: 07/07/2012] [Indexed: 10/28/2022]
Abstract
Xylanase is the enzyme complex that is responsible for the degradation of xylan; however, novel xylanase producers remain to be explored in marine environment. In this study, a Streptomyces strain M11 which exhibited xylanase activity was isolated from marine sediment. The 16S rDNA sequence of M11 showed the highest identity (99 %) to that of Streptomyces viridochromogenes. The xylanase produced from M11 exhibited optimum activity at pH 6.0, and the optimum temperature was 70 °C. M11 xylanase activity was stable in the pH range of 6.0-9.0 and at 60 °C for 60 min. Xylanase activity was observed to be stable in the presence of up to 5 M NaCl. Antibiotic-resistant mutants of M11 were isolated, and among the various antibiotics tested, streptomycin showed the best effect on obtaining xylanase overproducer. Mutant M11-1(10) isolated from 10 μg/ml streptomycin-containing plate showed 14 % higher xylanase activities than that of the wild-type strain. An analysis of gene rpsL (encoding ribosomal protein S12) showed that rpsL from M11-1(10) contains a K88R mutation. This is the first report to show that marine-derived S. viridochromogenes strain can be used as a xylanase producer, and utilization of ribosome engineering for the improvement of xylanase production in Streptomyces was also first successfully demonstrated.
Collapse
|
25
|
Deesukon W, Nishimura Y, Sakamoto T, Sukhumsirichart W. Purification, Characterization of GH11 Endo-β-1,4-xylanase from Thermotolerant Streptomyces sp. SWU10 and Overexpression in Pichia pastoris KM71H. Mol Biotechnol 2012; 54:37-46. [DOI: 10.1007/s12033-012-9541-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Kim DY, Ham SJ, Kim HJ, Kim J, Lee MH, Cho HY, Shin DH, Rhee YH, Son KH, Park HY. Novel modular endo-β-1,4-xylanase with transglycosylation activity from Cellulosimicrobium sp. strain HY-13 that is homologous to inverting GH family 6 enzymes. BIORESOURCE TECHNOLOGY 2012; 107:25-32. [PMID: 22230776 DOI: 10.1016/j.biortech.2011.12.106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/20/2011] [Accepted: 12/20/2011] [Indexed: 05/31/2023]
Abstract
The gene (2304-bp) encoding a novel xylanolytic enzyme (XylK2) with a catalytic domain, which is 70% identical to that of Cellulomonas flavigena DSM 20109 GH6 β-1,4-cellobiohydrolase, was identified from an earthworm (Eisenia fetida)-symbiotic bacterium, Cellulosimicrobium sp. strain HY-13. The enzyme consisted of an N-terminal catalytic GH6-like domain, a fibronectin type 3 (Fn3) domain, and a C-terminal carbohydrate-binding module 2 (CBM 2). XylK2ΔFn3-CBM 2 displayed high transferase activity (788.3 IU mg(-1)) toward p-nitrophenyl (PNP) cellobioside, but did not degrade xylobiose, glucose-based materials, or other PNP-sugar derivatives. Birchwood xylan was degraded by XylK2ΔFn3-CBM 2 to xylobiose (59.2%) and xylotriose (40.8%). The transglycosylation activity of the enzyme, which enabled the formation of xylobiose (33.6%) and xylotriose (66.4%) from the hydrolysis of xylotriose, indicates that it is not an inverting enzyme but a retaining enzyme. The endo-β-1,4-xylanase activity of XylK2ΔFn3-CBM 2 increased significantly by approximately 2.0-fold in the presence of 50mM xylobiose.
Collapse
Affiliation(s)
- Do Young Kim
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Expression and characterization of a novel metagenome-derived cellulase Exo2b and its application to improve cellulase activity in Trichoderma reesei. Appl Microbiol Biotechnol 2012; 96:951-62. [DOI: 10.1007/s00253-012-3873-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 12/25/2011] [Accepted: 12/27/2011] [Indexed: 11/26/2022]
|
28
|
Purification, characterization and gene cloning of two forms of a thermostable endo-xylanase from Streptomyces sp. SWU10. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Shi P, Qiu Z, Bai Y, Yuan T, Huang H, Pan X, Yang P, Zhang W, Yao B. A new xylanase from Streptomyces megasporus DSM 41476 with high yield of xylobiose. World J Microbiol Biotechnol 2011; 28:687-92. [PMID: 22806864 DOI: 10.1007/s11274-011-0863-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 08/05/2011] [Indexed: 10/17/2022]
Abstract
A new xylanase gene, xynBM4, was cloned from Streptomyces megasporus DSM 41476 and expressed in Pichia pastoris. The full-length gene consists of 1,443 bp and encodes 480 amino acids including a putative 49-residue signal peptide. The deduced amino acid sequence of xynBM4 shows the highest identity of 66.3% to the xylanase Xys1L from Streptomyces halstedii JM8. The purified recombinant XYNBM4 had a high specific activity of 350.7 U mg(-1) towards soluble wheat arabinoxylan, exhibited optimal activity at pH 6.0 and 57°C, showed broad pH adaptability (>75% of the maximum activity at pH 2.5-9.0), was resistant to neutral proteases and most chemicals, and produced simple products. The hydrolysis products of birchwood xylan and corncob xylan were predominantly xylobiose (76.9 and 90.8%, respectively) and no xylose. These characteristics suggest that XYNBM4 has potential in various applications, especially in the food industry.
Collapse
Affiliation(s)
- Pengjun Shi
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhao Y, Luo H, Meng K, Shi P, Wang G, Yang P, Yuan T, Yao B. A xylanase gene directly cloned from the genomic DNA of alkaline wastewater sludge showing application potential in the paper industry. Appl Biochem Biotechnol 2011; 165:35-46. [PMID: 21484273 DOI: 10.1007/s12010-011-9231-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 03/21/2011] [Indexed: 11/25/2022]
Abstract
A xylanase gene, aws-2x, was directly cloned from the genomic DNA of the alkaline wastewater sludge using degenerated PCR and modified TAIL-PCR. The deduced amino acid sequence of AWS-2x shared the highest identity (60%) with the xylanase from Chryseobacterium gleum belonging to the glycosyl hydrolase GH family 10. Recombinant AWS-2x was expressed in Escherichia coli BL21 (DE3) and purified to electrophoretic homogeneity. The enzyme showed maximal activity at pH 7.5 and 55 °C, maintained more than 50% of maximal activity when assayed at pH 9.0, and was stable over a wide pH range from 4.0 to 11.0. The specific activity of AWS-2x towards hardwood xylan (beechwood and birchwood xylan) was significantly higher than that to cereal xylan (oat spelt xylan and wheat arabinoxylan). These properties make AWS-2x a potential candidate for application in the pulp and paper industry.
Collapse
Affiliation(s)
- Yanyu Zhao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang F, Shi P, Bai Y, Luo H, Yuan T, Huang H, Yang P, Miao L, Yao B. An acid and highly thermostable xylanase from Phialophora sp. G5. Appl Microbiol Biotechnol 2010; 89:1851-8. [PMID: 21120468 DOI: 10.1007/s00253-010-3016-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/09/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
Abstract
An endo-β-1,4-xylanase gene, designated xyn10G5, was cloned from Phialophora sp. G5 and expressed in Pichia pastoris. The 1,197-bp full-length gene encodes a polypeptide of 399 amino acids consisting of a putative signal peptide at residues 1-20, a family 10 glycoside hydrolase domain, a short Gly/Thr-rich linker and a family 1 carbohydrate-binding module (CBM). The deduced amino acid sequence of XYN10G5 shares the highest identity (53.4%) with a putative xylanase precursor from Aspergillus terreus NIH2624. The purified recombinant XYN10G5 exhibited the optimal activity at pH 4.0 and 70 °C, remained stable at pH 3.0-9.0 (>70% of the maximal activity), and was highly thermostable at 70 °C (retaining ~90% of the initial activity for 1 h). Substrate specificity studies have shown that XYN10G5 had the highest activity on soluble wheat arabinoxylan (350.6 U mg(-1)), and moderate activity to various heteroxylans, and low activity on different types of cellulosic substrates. Under simulated gastric conditions, XYN10G5 was stable and released more reducing sugars from soluble wheat arabinoxylan; when combined with a glucanase (CelA4), the viscosity of barley-soybean feed was significantly reduced. These favorable enzymatic properties make XYN10G5 a good candidate for application in the animal feed industry.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kim DY, Han MK, Oh HW, Bae KS, Jeong TS, Kim SU, Shin DH, Kim IH, Rhee YH, Son KH, Park HY. Novel intracellular GH10 xylanase from Cohnella laeviribosi HY-21: biocatalytic properties and alterations of substrate specificities by site-directed mutagenesis of Trp residues. BIORESOURCE TECHNOLOGY 2010; 101:8814-8821. [PMID: 20615688 DOI: 10.1016/j.biortech.2010.06.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 05/15/2010] [Accepted: 06/03/2010] [Indexed: 05/29/2023]
Abstract
The novel intracellular GH10 xylanase (iXylC) gene (1023-bp) of Cohnella laeviribosi HY-21 encoded a protein consisting of 340 amino acids with a deduced molecular mass of 39,330Da and a calculated pI of 5.81. The primary structure of iXylC was 70% identical to that of Geobacillus sp. GH10 enzyme (GenBank accession number: EDV78425). Xylanolytic activity of the His-tagged iXylC overproduced in Escherichiacoli BL21 was stimulated by 2.2-fold in the presence of 0.5% non-ionic detergents. iXylC produced a mixture of xylooligosaccharides (xylobiose to xylooctaose) from xylotriose and xylotetraose used as the hydrolytic substrate. In addition, it exhibited considerable cleavage activities for p-nitrophenylxylopyranoside (PNP-xylopyranoside) and PNP-cellobioside, indicating that iXylC is a unique GH10 enzyme. The hydrolytic activity (57.8IUmL(-1)) of iXylC toward PNP-xylopyranoside increased to 8.3-fold by W217A and W315A mutations, while mutations of W133A, W295A, and W303A abolished the hydrolytic activity of the enzyme.
Collapse
Affiliation(s)
- Do Young Kim
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Genetic and biochemical characterization of a protease-resistant mesophilic β-mannanase from Streptomyces sp. S27. J Ind Microbiol Biotechnol 2010; 38:451-8. [PMID: 20686915 DOI: 10.1007/s10295-010-0789-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
A β-mannanase gene, designated as man5S27, was cloned from Streptomyces sp. S27 using the colony polymerase chain reaction (PCR) method and expressed in Escherichia coli BL21 (DE3). The open reading frame consisted of 1,161 bp and encoded a 386-amino-acid polypeptide (Man5S27) with calculated molecular mass of 37.2 kDa. The encoded protein comprised a putative 38-residue signal peptide, a family 5 glycoside hydrolase domain, and a family 10 carbohydrate-binding module. Purified recombinant Man5S27 had high specific activity of 2,107 U mg⁻¹ and showed optimal activity at pH 7.0 and 65 °C. The enzyme remained stable at pH 5.0-9.0 and had good thermostability at 50°C. The K (m) values for locust bean gum and konjac flour were 0.16 and 0.41 mg ml⁻¹, with V(max) values of 3,739 and 1,653 μmol min⁻¹ mg⁻¹, respectively. Divalent metal ions such as Mn²+, Zn²+, Ca²+, Pb²+, and Fe²+ enhanced the enzyme activity, but Ag+ and Hg²+ strongly inhibited the activity. Man5S27 also showed resistance to various neutral proteases (retaining >95% activity after proteolytic treatment for 2 h).
Collapse
|
34
|
A novel xylanase, XynA4-2, from thermoacidophilic Alicyclobacillus sp. A4 with potential applications in the brewing industry. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0445-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Qiu Z, Shi P, Luo H, Bai Y, Yuan T, Yang P, Liu S, Yao B. A xylanase with broad pH and temperature adaptability from Streptomyces megasporus DSM 41476, and its potential application in brewing industry. Enzyme Microb Technol 2010; 46:506-12. [DOI: 10.1016/j.enzmictec.2010.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/28/2010] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
|
36
|
Luo H, Yang J, Li J, Shi P, Huang H, Bai Y, Fan Y, Yao B. Molecular cloning and characterization of the novel acidic xylanase XYLD from Bispora sp. MEY-1 that is homologous to family 30 glycosyl hydrolases. Appl Microbiol Biotechnol 2010; 86:1829-39. [PMID: 20077114 DOI: 10.1007/s00253-009-2410-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/07/2009] [Accepted: 12/13/2009] [Indexed: 11/29/2022]
Abstract
We cloned and sequenced a xylanase gene named xylD from the acidophilic fungus Bispora sp. MEY-1 and expressed the gene in Pichia pastoris. The 1,422-bp full-length complementary DNA fragment encoded a 457-amino acid xylanase with a calculated molecular mass of 49.8 kDa. The mature protein of XYLD showed high sequence similarity to both glycosyl hydrolase (GH) families 5 and 30 but was more homologous to members of GH 30 based on phylogenetic analysis. XYLD shared the highest identity (49.9%) with a putative endo-1,6-beta-D-glucanase from Talaromyces stipitatus and exhibited 21.1% identity and 34.3% similarity to the well-characterized GH family 5 xylanase from Erwinia chrysanthemi. Purified recombinant XYLD showed maximal activity at pH 3.0 and 60 degrees C, maintained more than 60% of maximal activity when assayed at pH 1.5-4.0, and had good thermal stability at 60 degrees C and remained stable at pH 1.0-6.0. The enzyme activity was enhanced in the presence of Ni(2+) and beta-mercaptoethanol and inhibited by some metal irons (Hg(2+), Cu(2+), Pb(2+), Mn(2+), Li(+), and Fe(3+)) and sodium dodecyl sulfate. The specific activity of XYLD for beechwood xylan, birchwood xylan, 4-O-methyl-D-glucuronoxylan, and oat spelt xylan was 2,463, 2,144, 2,020, and 1,429 U mg(-1), respectively. The apparent K (m) and V (max) values for beechwood xylan were 5.6 mg ml(-1) and 3,622 micromol min(-1) mg(-1), respectively. The hydrolysis products of different xylans were mainly xylose and xylobiose.
Collapse
Affiliation(s)
- Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
A new xylanase from thermoalkaline Anoxybacillus sp. E2 with high activity and stability over a broad pH range. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0254-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
A new xylanase from thermoacidophilic Alicyclobacillus sp. A4 with broad-range pH activity and pH stability. J Ind Microbiol Biotechnol 2009; 37:187-94. [DOI: 10.1007/s10295-009-0662-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 10/24/2009] [Indexed: 11/29/2022]
|
39
|
Gene Cloning, Expression, and Characterization of a Family 51 α-l-Arabinofuranosidase from Streptomyces sp. S9. Appl Biochem Biotechnol 2009; 162:707-18. [DOI: 10.1007/s12010-009-8816-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 10/08/2009] [Indexed: 11/26/2022]
|
40
|
Kui H, Luo H, Shi P, Bai Y, Yuan T, Wang Y, Yang P, Dong S, Yao B. Gene cloning, expression, and characterization of a thermostable xylanase from Nesterenkonia xinjiangensis CCTCC AA001025. Appl Biochem Biotechnol 2009; 162:953-65. [PMID: 19838860 DOI: 10.1007/s12010-009-8815-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
Abstract
An endo-beta-1,4-xylanase-encoding gene, xyn11NX, was cloned from Nesterenkonia xinjiangensis CCTCC AA001025 and expressed in Escherichia coli. The gene encoded a 192-amino acid polypeptide and a putative 50-amino acid signal peptide. The deduced amino acid sequence exhibited a high degree of similarity with the xylanases from Streptomyces thermocyaneoviolaceus (68%) and Thermobifida fusca (66%) belonging to glycoside hydrolase family 11. After purification to homogeneity, the recombinant Xyn11NX exhibited optimal activity at pH 7.0 and 55 degrees C and remained stable at weakly acidic to alkaline pH (pH 5.0-11.0). The enzyme was thermostable, retaining more than 80% of the initial activity after incubation at 60 degrees C for 1 h and more than 40% of the activity at 90 degrees C for 15 min. The K (m) and V (max) values for oat spelt xylan and birchwood xylan were 16.08 mg ml(-1) and 45.66 micromol min(-1) mg(-1) and 9.22 mg ml(-1) and 16.05 micromol min(-1) mg(-1), respectively. The predominant hydrolysis products were xylobiose and xylotriose when using oat spelt xylan or birchwood xylan as substrate.
Collapse
Affiliation(s)
- Hong Kui
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Novel GH10 xylanase, with a fibronectin type 3 domain, from Cellulosimicrobium sp. strain HY-13, a bacterium in the gut of Eisenia fetida. Appl Environ Microbiol 2009; 75:7275-9. [PMID: 19767466 DOI: 10.1128/aem.01075-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding a novel modular xylanase from Cellulosimicrobium sp. strain HY-13 was identified and expressed in Escherichia coli, and its truncated gene product was characterized. The enzyme consisted of three distinct functional domains, an N-terminal catalytic GH10 domain, a fibronectin type 3 domain, and C-terminal carbohydrate-binding module 2.
Collapse
|
42
|
A thermophilic and acid stable family-10 xylanase from the acidophilic fungus Bispora sp. MEY-1. Extremophiles 2009; 13:849-57. [PMID: 19655217 DOI: 10.1007/s00792-009-0272-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
A complete gene, xyl10C, encoding a thermophilic endo-1,4-beta-xylanase (XYL10C), was cloned from the acidophilic fungus Bispora sp. MEY-1 and expressed in Pichia pastoris. XYL10C shares highest nucleotide and amino acid sequence identities of 57.3 and 49.7%, respectively, with a putative xylanase from Aspergillus fumigatus Af293 of glycoside hydrolase family 10. A high expression level in P. pastoris (73,400 U ml(-1)) was achieved in a 3.7-l fermenter. The purified recombinant XYL10C was thermophilic, exhibiting maximum activity at 85 degrees C, which is higher than that reported from any fungal xylanase. The enzyme was also highly thermostable, exhibiting approximately 100% of the initial activity after incubation at 80 degrees C for 60 min and >87% of activity at 90 degrees C for 10 min. The half lives of XYL10C at 80 and 85 degrees C were approximately 45 and 3 h, respectively. It had two activity peaks at pH 3.0 and 4.5-5.0 (maximum), respectively, and was very acid stable, retaining more than 80% activity after incubation at pH 1.5-6.0 for 1 h. The enzyme was resistant to Co(2+), Mn(2+), Cr(3+) and Ag(+). The specific activity of XYL10C for oat spelt xylan was 18,831 U mg(-1). It also had wide substrate specificity and produced simple products (65.1% xylose, 25.0% xylobiose and 9.9% xylan polymer) from oat spelt xylan.
Collapse
|
43
|
Cloning, expression and characterization of a novel acidic xylanase, XYL11B, from the acidophilic fungus Bispora sp. MEY-1. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Molecular and biochemical characterization of a novel xylanase from the symbiotic Sphingobacterium sp. TN19. Appl Microbiol Biotechnol 2009; 85:323-33. [PMID: 19554324 DOI: 10.1007/s00253-009-2081-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 10/20/2022]
Abstract
A xylanase-encoding gene, designated xynA19, was cloned from Sphingobacterium sp. TN19--a symbiotic bacterium isolated from the gut of Batocera horsfieldi larvae--and expressed in Escherichia coli BL21 (DE3). The full-length xynA19 (1,155 bp in length) encodes a 384-residue polypeptide (XynA19) containing a predicted signal peptide of 24 residues and a catalytic domain belonging to glycosyl hydrolase family 10 (GH 10). The deduced amino acid sequence of XynA19 is most similar (53.1% identity) to an endo-1,4-beta-xylanase from Prevotella bryantii B(1)4. Phylogenetic analysis of GH 10 Bacteroidia xylanases indicated that GH 10 xylanases from Sphingobacteria were separated into two clusters, and XynA19 is more closely related to the xylanases of Bacteroidia from gut or rumen than to those of Flavobacteria and Sphingobacteria from other sources. Recombinant XynA19 (r-XynA19) showed apparent optimal activity at pH 6.5 and 45 degrees C. Compared with thermophilic and mesophilic counterparts, r-XynA19 was more active at low temperatures, retaining >65% of its maximum activity at 20-28 degrees C and approximately 40% even at 10 degrees C, and modeling indicated that XynA19 has fewer hydrogen bonds and salt bridges. These properties suggest that XynA19 has various potential applications, especially in aquaculture and the food industry.
Collapse
|
45
|
Guo B, Chen XL, Sun CY, Zhou BC, Zhang YZ. Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-beta-1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl Microbiol Biotechnol 2009; 84:1107-15. [PMID: 19506861 DOI: 10.1007/s00253-009-2056-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 05/21/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
Abstract
Although a lot of xylanases are studied, only a few xylanases from marine microorganisms have been reported. A new xylanase gene, xynA, was cloned from marine bacterium Glaciecola mesophila KMM 241. Gene xynA contains 1,272 bp and encodes a 423-amino acid xylanase precursor. The recombinant xylanase, XynA, expressed in Escherichia coli BL21 is a monomer with a molecular mass of 43 kDa. Among the characterized xylanases, XynA shares the highest identity (46%) to the xylanase from Flavobacterium sp. strain MSY2. The optimum pH and temperature for XynA is 7.0 and 30 degrees C. XynA retains 23% activity and 27% catalytic efficiency at 4 degrees C. XynA has low thermostability, remaining 20% activity after 60-min incubation at 30 degrees C. Its apparent melting temperature (T (m)) is 44.5 degrees C. These results indicate that XynA is a cold-active xylanase. XynA shows a high level of salt-tolerance, with the highest activity at 0.5 M NaCl and retaining 90% activity in 2.5 M NaCl. It may be the first salt-tolerant xylanase reported. XynA is a strict endo-beta-1,4-xylanase with a demand of at least four sugar moieties for effective cleavage. It efficiently hydrolyzes xylo-oligosaccharides and xylan into xylobiose and xylotriose without producing xylose, suggesting its potential in xylo-oligosaccharides production.
Collapse
Affiliation(s)
- Bing Guo
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | | | | | | | | |
Collapse
|
46
|
Cloning of a New Xylanase Gene from Streptomyces sp. TN119 Using a Modified Thermal Asymmetric Interlaced-PCR Specific for GC-Rich Genes and Biochemical Characterization. Appl Biochem Biotechnol 2009; 160:1277-92. [DOI: 10.1007/s12010-009-8642-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 04/06/2009] [Indexed: 10/20/2022]
|
47
|
Li N, Shi P, Yang P, Wang Y, Luo H, Bai Y, Zhou Z, Yao B. A xylanase with high pH stability from Streptomyces sp. S27 and its carbohydrate-binding module with/without linker-region-truncated versions. Appl Microbiol Biotechnol 2009; 83:99-107. [PMID: 19107475 DOI: 10.1007/s00253-008-1810-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/27/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
|
48
|
Li N, Shi P, Yang P, Wang Y, Luo H, Bai Y, Zhou Z, Yao B. Cloning, expression, and characterization of a new Streptomyces sp. S27 xylanase for which xylobiose is the main hydrolysis product. Appl Biochem Biotechnol 2008; 159:521-31. [PMID: 19002659 DOI: 10.1007/s12010-008-8411-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 10/23/2008] [Indexed: 11/26/2022]
Abstract
A xylanase gene, xynBS27, was cloned from Streptomyces sp. S27 and consisted of 693 bp encoding a 230-residue protein, including a putative 41-residue signal peptide. Belonging to the glycoside hydrolase family 11, XynBS27 exhibits the maximum identity (75.9%) to the xylanase from Streptomyces sp. zxy19. Recombinant XynBS27 was overexpressed in Pichia pastoris, and the xylanase activity was 7624.0 U/ml after high-cell-density fermentation in 3.7-L fermenter. The purified recombinant XynBS27 had a high specific activity of 3272.0 U/mg. The optimum temperature and pH for XynBS27 activity was 65 degrees C and pH 6.5, respectively. XynBS27 showed good pH stability and retained more than 80% of the maximum activity after incubation in buffers with pH ranging between 4.0 and 12.0 at 37 degrees C for 1 h. The main hydrolysis product of xylan by XynBS27 was xylobiose (>75%), which was good for human health derived from its ability to modulate the intestinal function. The attractive biochemical characteristics of XynBS27 suggest that it may be a good candidate in a variety of industrial applications.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|