1
|
Sheridan PO, Odat MA, Scott KP. Establishing genetic manipulation for novel strains of human gut bacteria. MICROBIOME RESEARCH REPORTS 2023; 2:1. [PMID: 38059211 PMCID: PMC10696588 DOI: 10.20517/mrr.2022.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 12/12/2022] [Indexed: 12/08/2023]
Abstract
Recent years have seen the development of high-accuracy and high-throughput genetic manipulation techniques, which have greatly improved our understanding of genetically tractable microbes. However, challenges remain in establishing genetic manipulation techniques in novel organisms, owing largely to exogenous DNA defence mechanisms, lack of selectable markers, lack of efficient methods to introduce exogenous DNA and an inability of genetic vectors to replicate in their new host. In this review, we describe some of the techniques that are available for genetic manipulation of novel microorganisms. While many reviews exist that focus on the final step in genetic manipulation, the editing of recipient DNA, we particularly focus on the first step in this process, the transfer of exogenous DNA into a strain of interest. Examples illustrating the use of these techniques are provided for a selection of human gut bacteria in which genetic tractability has been established, such as Bifidobacterium, Bacteroides and Roseburia. Ultimately, this review aims to provide an information source for researchers interested in developing genetic manipulation techniques for novel bacterial strains, particularly those of the human gut microbiota.
Collapse
Affiliation(s)
- Paul O. Sheridan
- School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Ma’en Al Odat
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK
| | - Karen P. Scott
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK
| |
Collapse
|
2
|
Zhang L, Gadd GM, Li Z. Microbial biomodification of clay minerals. ADVANCES IN APPLIED MICROBIOLOGY 2020; 114:111-139. [PMID: 33934851 DOI: 10.1016/bs.aambs.2020.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clay minerals are important reactive centers in the soil system. Their interactions with microorganisms are ubiquitous and wide-ranging, affecting growth and function, interactions with other organisms, including plants, biogeochemical processes and the fate of organic and inorganic pollutants. Clay minerals have a large specific surface area and cation exchange capacity (CEC) per unit mass, and are abundant in many soil systems, especially those of agricultural significance. They can adsorb microbial cells, exudates, and enzymes, organic and inorganic chemical species, nutrients, and contaminants, and stabilize soil organic matter. Bacterial modification of clays appears to be primarily due to biochemical mechanisms, while fungi can exhibit both biochemical and biomechanical mechanisms, the latter aided by their exploratory filamentous growth habit. Such interactions between microorganisms and clays regulate many critical environmental processes, such as soil development and transformation, the formation of soil aggregates, and the global cycling of multiple elements. Applications of biomodified clay minerals are of relevance to the fields of both agricultural management and environmental remediation. This review provides an overview of the interactions between bacteria, fungi and clay minerals, considers some important gaps in current knowledge, and indicates perspectives for future research.
Collapse
Affiliation(s)
- Lin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China; Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom; State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, College of Science and Environment, China University of Petroleum, Beijing, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
3
|
González-Tortuero E, Rodríguez-Beltrán J, Radek R, Blázquez J, Rodríguez-Rojas A. Clay-induced DNA breaks as a path for genetic diversity, antibiotic resistance, and asbestos carcinogenesis. Sci Rep 2018; 8:8504. [PMID: 29855603 PMCID: PMC5981458 DOI: 10.1038/s41598-018-26958-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/23/2018] [Indexed: 11/09/2022] Open
Abstract
Natural clays and synthetic nanofibres can have a severe impact on human health. After several decades of research, the molecular mechanism of how asbestos induces cancer is not well understood. Different fibres, including asbestos, can penetrate cell membranes and introduce foreign DNA in bacterial and eukaryotic cells. Incubating Escherichia coli under friction forces with sepiolite, a clayey material, or with asbestos, causes double-strand DNA breaks. Antibiotics and clays are used together in animal husbandry, the mutagenic effect of these fibres could be a pathway to antibiotic resistance due to the friction provided by peristalsis of the gut from farm animals in addition to horizontal gene transfer. Moreover, we raise the possibility that the same mechanism could generate bacteria diversity in natural scenarios, playing a role in the evolution of species. Finally, we provide a new model on how asbestos may promote mutagenesis and cancer based on the observed mechanical genotoxicity.
Collapse
Affiliation(s)
- Enrique González-Tortuero
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany.,Berlin Centre for Genomics in Biodiversity Research (BeGenDiv), Königin-Luise-Straße 6-8, 14195, Berlin, Germany.,Institute for Genome Sciences, University of Maryland Baltimore School of Medicine, 670 West Baltimore Street, 21201, Baltimore, MD, USA
| | - Jerónimo Rodríguez-Beltrán
- Department of Microbial Biotechnology, Spanish National Center for Biotechnology, Calle Darwin 3, 28049, Madrid, Spain
| | - Renate Radek
- Evolutionary Biology, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Jesús Blázquez
- Department of Microbial Biotechnology, Spanish National Center for Biotechnology, Calle Darwin 3, 28049, Madrid, Spain
| | | |
Collapse
|
4
|
|
5
|
Ruiz-Hitzky E, Darder M, Alcântara ACS, Wicklein B, Aranda P. Functional Nanocomposites Based on Fibrous Clays. FUNCTIONAL POLYMER COMPOSITES WITH NANOCLAYS 2016. [DOI: 10.1039/9781782626725-00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This chapter is focused on functional nanocomposites based on the use of the microfibrous clays sepiolite and palygorskite as efficient fillers for diverse types of polymer matrices, from typical thermoplastics to biopolymers. The main features that govern the interaction between the silicates and the polymer matrix are discussed. The introduction addresses the structural and textural features of the fibrous silicates, as well as the possible synthetic approaches to increase the compatibility of these nanofillers with the polymeric matrix. Additionally, these clays can be easily functionalized through their surface silanol groups based on chemical reactions or by anchoring of nanoparticles. This allows for the preparation of a wide variety of functional polymer–clay nanocomposites. Thereafter, some relevant examples of nanocomposites derived from conventional polymers are reported, as well as of those based on polymers that exhibit electrical conductivity. Lastly, selected works employing sepiolite or palygorskite as fillers in polymeric matrixes of natural origin are discussed, showing the wide application of these resulting nanocomposites as bioplastics, as well as in biomedicine, environmental remediation and the development of sensor devices.
Collapse
Affiliation(s)
- Eduardo Ruiz-Hitzky
- Instituto de Ciencia de Materiales de Madrid CSIC, c/ Sor Juana Inés de la Cruz 3 28049 Madrid Spain
| | - Margarita Darder
- Instituto de Ciencia de Materiales de Madrid CSIC, c/ Sor Juana Inés de la Cruz 3 28049 Madrid Spain
| | - Ana C. S. Alcântara
- Universidade Federal do Maranhão (UFMA), Departamento de Química (DEQUI) São Luís-MA Brazil
| | - Bernd Wicklein
- Instituto de Ciencia de Materiales de Madrid CSIC, c/ Sor Juana Inés de la Cruz 3 28049 Madrid Spain
| | - Pilar Aranda
- Instituto de Ciencia de Materiales de Madrid CSIC, c/ Sor Juana Inés de la Cruz 3 28049 Madrid Spain
| |
Collapse
|
6
|
Mendes G, Vieira P, Lanceros-Méndez S, Kluskens L, Mota M. Transformation of Escherichia coli JM109 using pUC19 by the Yoshida effect. J Microbiol Methods 2015; 115:1-5. [DOI: 10.1016/j.mimet.2015.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 05/08/2015] [Indexed: 11/25/2022]
|
7
|
Abstract
The use of antibiotics in animal husbandry has long been associated with the appearance of antibiotic resistance and virulence factor determinants. Nonetheless, the number of cases of human infection involving resistant or virulent microorganisms that originate in farms is increasing. While many antibiotics have been banned as dietary supplements in some countries, other additives thought to be innocuous in terms of the development and spread of antibiotic resistance are used as growth promoters. In fact, several clay materials are routinely added to animal feed with the aim of improving growth and animal product quality. However, recent findings suggest that sepiolite, a clay additive, mediates the direct transfer of plasmids between different bacterial species. We therefore hypothesize that clays present in animal feed facilitate the horizontal transfer of resistance determinants in the digestive tract of farm animals.
Collapse
|
8
|
Mitsudome Y, Takahama M, Hirose J, Yoshida N. The use of nano-sized acicular material, sliding friction, and antisense DNA oligonucleotides to silence bacterial genes. AMB Express 2014; 4:70. [PMID: 25401071 PMCID: PMC4230895 DOI: 10.1186/s13568-014-0070-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/15/2014] [Indexed: 11/15/2022] Open
Abstract
Viable bacterial cells impaled with a single particle of a nano-sized acicular material formed when a mixture containing the cells and the material was exposed to a sliding friction field between polystyrene and agar gel; hereafter, we refer to these impaled cells as penetrons. We have used nano-sized acicular material to establish a novel method for bacterial transformation. Here, we generated penetrons that carried antisense DNA adsorbed on nano-sized acicular material (α-sepiolite) by providing sliding friction onto the surface of agar gel; we then investigated whether penetron formation was applicable to gene silencing techniques. Antisense DNA was artificially synthesized as 15 or 90mer DNA oligonucleotides based on the sequences around the translation start codon of target mRNAs. Mixtures of bacterial cells with antisense DNA adsorbed on α-sepiolite were stimulated by sliding friction on the surface of agar gel for 60 s. Upon formation of Escherichia coli penetrons, β-lactamase and β-galactosidase expression was evaluated by counting the numbers of colonies formed on LB agar containing ampicillin and by measuring β-galactosidase activity respectively. The numbers of ampicillin resistant colonies and the β-galactosidase activity derived from penetrons bearing antisense DNA (90mer) was repressed to 15% and 25%, respectively, of that of control penetrons which lacked antisense DNA. Biphenyl metabolite, ring cleavage yellow compound produced by Pseudomonas pseudoalcaligenes penetron treated with antisense oligonucleotide DNA targeted to bphD increased higher than that lacking antisense DNA. This result indicated that expression of bphD in P. pseudoalcaligenes penetrons was repressed by antisense DNA that targeted bphD mRNA. Sporulation rates of Bacillus subtilis penetrons treated with antisense DNA (15mer) targeted to spo0A decreased to 24.4% relative to penetrons lacking antisense DNA. This novel method of gene silencing has substantial promise for elucidation of gene function in bacterial species that have been refractory to experimental introduction of exogenous DNA.
Collapse
|
9
|
Ruiz-Hitzky E, Darder M, Alcântara ACS, Wicklein B, Aranda P. Recent Advances on Fibrous Clay-Based Nanocomposites. ORGANIC-INORGANIC HYBRID NANOMATERIALS 2014. [DOI: 10.1007/12_2014_283] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
A simple bacterial transformation method using magnesium- and calcium-aminoclays. J Microbiol Methods 2013; 95:97-101. [PMID: 23911572 DOI: 10.1016/j.mimet.2013.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/19/2013] [Accepted: 07/20/2013] [Indexed: 11/22/2022]
Abstract
An efficient and user-friendly bacterial transformation method by simple spreading cells with aminoclays was demonstrated. Compared to the reported transformation approaches using DNA adsorption or wrapping onto (in)organic fibers, the spontaneously generated clay-coated DNA suprastructures by mixing DNA with aminoclay resulted in transformants in both Gram-negative (Escherichia coli) and Gram-positive cells (Streptococcus mutans). Notably, the wild type S. mutans showed comparable transformation efficiency to that of the E. coli host for recombinant DNA cloning. This is a potentially promising result because other trials such as heat-shock, electroporation, and treatment with sepiolite for introducing DNA into the wild type S. mutans failed. Under defined conditions, the transformation efficiency of E. coli XL1-Blue and S. mutans exhibited ~2 × 10(5) and ~6 × 10(3)CFU/μg of plasmid DNA using magnesium-aminoclay. In contrast, transformation efficiency was higher in S. mutans than that in E. coli XL1-Blue for calcium-aminoclay. It was also confirmed that each plasmid transformed into E. coli and S. mutans was stably maintained and that they expressed the inserted gene encoding the green fluorescent protein during prolonged growth of up to 80 generations.
Collapse
|
11
|
The animal food supplement sepiolite promotes a direct horizontal transfer of antibiotic resistance plasmids between bacterial species. Antimicrob Agents Chemother 2013; 57:2651-3. [PMID: 23529735 DOI: 10.1128/aac.02363-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Animal fodder is routinely complemented with antibiotics together with other food supplements to improve growth. For instance, sepiolite is currently used as a dietary coadjuvant in animal feed, as it increases animal growth parameters and improves meat and derived final product quality. This type of food additive has so far been considered innocuous for the development and spread of antibiotic resistance. In this study, we demonstrate that sepiolite promotes the direct horizontal transfer of antibiotic resistance plasmids between bacterial species. The conditions needed for plasmid transfer (sepiolite and friction forces) occur in the digestive tracts of farm animals, which routinely receive sepiolite as a food additive. Furthermore, this effect may be aggravated by the use of antibiotics supplied as growth promoters.
Collapse
|
12
|
Simple DNA transformation in Pseudomonas based on the Yoshida effect. J Microbiol Methods 2012; 89:95-8. [PMID: 22405834 DOI: 10.1016/j.mimet.2012.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 11/24/2022]
Abstract
Current protocols of recombinant DNA research, including gene cloning and complementation, quantification of gene expression and tagging with reporter proteins, are usually limited by the availability of effective bacteria transformation tools different from Escherichia coli. This is particularly relevant with respect to the Pseudomonas species due to their biotechnological and sanitary importance. Here, we describe an optimized and efficient plasmid transference protocol based on the Yoshida effect, a method that relies on DNA uptake mediated by friction forces. The main advantages of this method are: (i) no competent cell preparation is needed, (ii) cells in any physiological state can be used, (iii) the procedure is performed directly on agar plates and (iv) the protocol, which is neither time-consuming nor labor-intensive, offers good efficiency. This approach promises to become the gold standard for day to day genetic manipulation in Pseudomonas.
Collapse
|
13
|
Yuan L, Wang H, Yu Q, Wu Z, Brash JL, Chen H. “Nano-catalyst” for DNA transformation. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm10734h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Tan H, Fu L, Seno M. Optimization of bacterial plasmid transformation using nanomaterials based on the Yoshida effect. Int J Mol Sci 2010; 11:4961-72. [PMID: 21614185 PMCID: PMC3100829 DOI: 10.3390/ijms11124962] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/15/2010] [Accepted: 12/01/2010] [Indexed: 11/17/2022] Open
Abstract
With the help of sepiolite, a unique method for transforming DNA into bacteria, based on the Yoshida effect, has been developed recently. However, we confronted many problems when this newest method was tried. Only a few transformants could be obtained even when 100 ng of plasmid pET15b was used, and a successful result seemed difficult to repeat. To address this problem, we optimized the operating method and could achieve about 15,000 transformants using the same amount of plasmid, which could match the efficiency gained using the calcium chloride transformation method. Meanwhile, the results could also be reproduced well. In the same way, carbon nanotubes were used to attain more than 15,000 transformants in the same situation. Therefore, the transformation method could be extended to other nanomaterials. Meanwhile, compared with the mechanism previously reported, we verified quite a different principle for the mechanism responsible for such a transformation. In sum, this unique transformation can be developed to become the third widely-used transformation method in laboratories in addition to the chemical method and electroporation.
Collapse
Affiliation(s)
- Haidong Tan
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; E-Mail:
| | - Li Fu
- Department of Breast Cancer Pathology and Research Laboratory, State Key Laboratory of Breast Cancer Research, Cancer Hospital of Tianjin Medical University, Tianjin 300060, China; E-Mail:
| | - Masaharu Seno
- Department of Medical and Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|
15
|
Wilharm G, Lepka D, Faber F, Hofmann J, Kerrinnes T, Skiebe E. A simple and rapid method of bacterial transformation. J Microbiol Methods 2010; 80:215-6. [PMID: 20004690 DOI: 10.1016/j.mimet.2009.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/19/2009] [Accepted: 12/02/2009] [Indexed: 10/20/2022]
Abstract
Recently, a unique method for bacterial transformation using nanofibers to inoculate DNA has been developed by Naoto Yoshida and colleagues. We have verified the principle, transforming Escherichia coli, Yersinia enterocolitica and Acinetobacter baumannii, and have established a user-friendly protocol. A buffered suspension of sepiolite-an inexpensive, fibrous yet inoffensive mineral-is mixed with bacteria and transforming DNA and the mixture directly spread on selective agar.
Collapse
Affiliation(s)
- Gottfried Wilharm
- Robert Koch-Institute, Wernigerode Branch, Burgstr. 37, D-38855 Wernigerode, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Methodologies to increase the transformation efficiencies and the range of bacteria that can be transformed. Appl Microbiol Biotechnol 2009; 85:1301-13. [DOI: 10.1007/s00253-009-2349-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 11/06/2009] [Accepted: 11/07/2009] [Indexed: 10/20/2022]
|