1
|
Pullen RM, Decker SR, Subramanian V, Adler MJ, Tobias AV, Perisin M, Sund CJ, Servinsky MD, Kozlowski MT. Considerations for Domestication of Novel Strains of Filamentous Fungi. ACS Synth Biol 2025. [PMID: 39883596 DOI: 10.1021/acssynbio.4c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Fungi, especially filamentous fungi, are a relatively understudied, biotechnologically useful resource with incredible potential for commercial applications. These multicellular eukaryotic organisms have long been exploited for their natural production of useful commodity chemicals and proteins such as enzymes used in starch processing, detergents, food and feed production, pulping and paper making and biofuels production. The ability of filamentous fungi to use a wide range of feedstocks is another key advantage. As chassis organisms, filamentous fungi can express cellular machinery, and metabolic and signal transduction pathways from both prokaryotic and eukaryotic origins. Their genomes abound with novel genetic elements and metabolic processes that can be harnessed for biotechnology applications. Synthetic biology tools are becoming inexpensive, modular, and expansive while systems biology is beginning to provide the level of understanding required to design increasingly complex synthetic systems. This review covers the challenges of working in filamentous fungi and offers a perspective on the approaches needed to exploit fungi as microbial cell factories.
Collapse
Affiliation(s)
- Randi M Pullen
- DEVCOM Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United States
| | - Stephen R Decker
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | | | - Meaghan J Adler
- DEVCOM Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United States
| | - Alexander V Tobias
- DEVCOM Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United States
| | - Matthew Perisin
- DEVCOM Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United States
| | - Christian J Sund
- DEVCOM Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United States
| | - Matthew D Servinsky
- DEVCOM Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United States
| | - Mark T Kozlowski
- DEVCOM Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United States
| |
Collapse
|
2
|
CRISPR/Cas9-Based Genome Editing and Its Application in Aspergillus Species. J Fungi (Basel) 2022; 8:jof8050467. [PMID: 35628723 PMCID: PMC9143064 DOI: 10.3390/jof8050467] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Aspergillus, a genus of filamentous fungi, is extensively distributed in nature and plays crucial roles in the decomposition of organic materials as an important environmental microorganism as well as in the traditional fermentation and food processing industries. Furthermore, due to their strong potential to secrete a large variety of hydrolytic enzymes and other natural products by manipulating gene expression and/or introducing new biosynthetic pathways, several Aspergillus species have been widely exploited as microbial cell factories. In recent years, with the development of next-generation genome sequencing technology and genetic engineering methods, the production and utilization of various homo-/heterologous-proteins and natural products in Aspergillus species have been well studied. As a newly developed genome editing technology, the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system has been used to edit and modify genes in Aspergilli. So far, the CRISPR/Cas9-based approach has been widely employed to improve the efficiency of gene modification in the strain type Aspergillus nidulans and other industrially important and pathogenic Aspergillus species, including Aspergillus oryzae, Aspergillus niger, and Aspergillus fumigatus. This review highlights the current development of CRISPR/Cas9-based genome editing technology and its application in basic research and the production of recombination proteins and natural products in the Aspergillus species.
Collapse
|
3
|
Lazzarini A, Colaiezzi R, Gabriele F, Crucianelli M. Support-Activity Relationship in Heterogeneous Catalysis for Biomass Valorization and Fine-Chemicals Production. MATERIALS 2021; 14:ma14226796. [PMID: 34832198 PMCID: PMC8619138 DOI: 10.3390/ma14226796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
Heterogeneous catalysts are progressively expanding their field of application, from high-throughput reactions for traditional industrial chemistry with production volumes reaching millions of tons per year, a sector in which they are key players, to more niche applications for the production of fine chemicals. These novel applications require a progressive utilization reduction of fossil feedstocks, in favor of renewable ones. Biomasses are the most accessible source of organic precursors, having as advantage their low cost and even distribution across the globe. Unfortunately, they are intrinsically inhomogeneous in nature and their efficient exploitation requires novel catalysts. In this process, an accurate design of the active phase performing the reaction is important; nevertheless, we are often neglecting the importance of the support in guaranteeing stable performances and improving catalytic activity. This review has the goal of gathering and highlighting the cases in which the supports (either derived or not from biomass wastes) share the worth of performing the catalysis with the active phase, for those reactions involving the synthesis of fine chemicals starting from biomasses as feedstocks.
Collapse
|
4
|
Cirujano FG, Dhakshinamoorthy A. Challenges and Opportunities for the Encapsulation of Enzymes over Porous Solids for Biodiesel Production and Cellulose Valorization into Glucose. ChemCatChem 2021. [DOI: 10.1002/cctc.202100943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Francisco G. Cirujano
- Institute of Molecular Science (ICMOL) Universidad de Valencia 46980 Paterna Valencia Spain
| | | |
Collapse
|
5
|
Jin FJ, Hu S, Wang BT, Jin L. Advances in Genetic Engineering Technology and Its Application in the Industrial Fungus Aspergillus oryzae. Front Microbiol 2021; 12:644404. [PMID: 33708187 PMCID: PMC7940364 DOI: 10.3389/fmicb.2021.644404] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
The filamentous fungus Aspergillus oryzae is an important strain in the traditional fermentation and food processing industries and is often used in the production of soy sauce, soybean paste, and liquor-making. In addition, A. oryzae has a strong capacity to secrete large amounts of hydrolytic enzymes; therefore, it has also been used in the enzyme industry as a cell factory for the production of numerous native and heterologous enzymes. However, the production and secretion of foreign proteins by A. oryzae are often limited by numerous bottlenecks that occur during transcription, translation, protein folding, translocation, degradation, transport, secretion, etc. The existence of these problems makes it difficult to achieve the desired target in the production of foreign proteins by A. oryzae. In recent years, with the decipherment of the whole genome sequence, basic research and genetic engineering technologies related to the production and utilization of A. oryzae have been well developed, such as the improvement of homologous recombination efficiency, application of selectable marker genes, development of large chromosome deletion technology, utilization of hyphal fusion techniques, and application of CRISPR/Cas9 genome editing systems. The development and establishment of these genetic engineering technologies provided a great deal of technical support for the industrial production and application of A. oryzae. This paper reviews the advances in basic research and genetic engineering technologies of the fermentation strain A. oryzae mentioned above to open up more effective ways and research space for the breeding of A. oryzae production strains in the future.
Collapse
Affiliation(s)
- Feng-Jie Jin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Shuang Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Bao-Teng Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Long Jin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
6
|
Elhussiny NI, Khattab AENA, El-Refai HA, Mohamed SS, Shetaia YM, Amin HA. Assessment of waste frying oil transesterification capacities of local isolated Aspergilli species and mutants. MYCOSCIENCE 2020. [DOI: 10.1016/j.myc.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Concentration of Lipase from Aspergillus oryzae Expressing Fusarium heterosporum by Nanofiltration to Enhance Transesterification. Processes (Basel) 2020. [DOI: 10.3390/pr8040450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nanofiltration membrane separation is an energy-saving technology that was used in this study to concentrate extracellular lipase and increase its total activity for biodiesel production. Lipase was produced by recombinant Aspergillus oryzae expressing Fusarium heterosporum lipase (FHL). A sulfonated polyethersulfone nanofiltration membrane, NTR-7410, with a molecular weight cut-off of 3 kDa was used for the separation, because recombinant lipase has a molecular weight of approximately 20 kDa, which differs from commercial lipase at around 30 kDa for CalleraTM Trans L (CalT). After concentration via nanofiltration, recombinant lipase achieved a 96.8% yield of fatty acid methyl ester (FAME) from unrefined palm oil, compared to 50.2% for CalT in 24 h. Meanwhile, the initial lipase activity (32.6 U/mL) of recombinant lipase was similar to that of CalT. The composition of FAME produced from recombinant concentrated lipase, i.e., C14:1, C16:0, C18:0, C18:1 cis, and C18:2 cis were 0.79%, 34.46%, 5.41%, 45.90%, and 12.46%, respectively, after transesterification. This FAME composition, even after being subjected to nanofiltration, was not significantly different from that produced from CalT. This study reveals the applicability of a simple and scalable nanofiltration membrane technology that can enhance enzymatic biodiesel production.
Collapse
|
8
|
Amoah J, Ho SH, Hama S, Yoshida A, Nakanishi A, Hasunuma T, Ogino C, Kondo A. Conversion of Chlamydomonas sp. JSC4 lipids to biodiesel using Fusarium heterosporum lipase-expressing Aspergillus oryzae whole-cell as biocatalyst. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Exploring substrate specificities of a recombinant Rhizopus oryzae lipase in biodiesel synthesis. N Biotechnol 2017; 39:59-67. [DOI: 10.1016/j.nbt.2017.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 03/10/2017] [Accepted: 07/04/2017] [Indexed: 12/21/2022]
|
10
|
Fusarium species—a promising tool box for industrial biotechnology. Appl Microbiol Biotechnol 2017; 101:3493-3511. [DOI: 10.1007/s00253-017-8255-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/25/2022]
|
11
|
Amoah J, Quayson E, Hama S, Yoshida A, Hasunuma T, Ogino C, Kondo A. Simultaneous conversion of free fatty acids and triglycerides to biodiesel by immobilizedAspergillus oryzaeexpressingFusarium heterosporumlipase. Biotechnol J 2016; 12. [DOI: 10.1002/biot.201600400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/12/2016] [Accepted: 11/15/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Jerome Amoah
- Department of Chemical Science and Engineering; Graduate School of Engineering; Kobe University; Rokkodai, Nada-ku, Kobe Japan
| | - Emmanuel Quayson
- Department of Chemical Science and Engineering; Graduate School of Engineering; Kobe University; Rokkodai, Nada-ku, Kobe Japan
| | - Shinji Hama
- Bio-energy Corporation; Research and Development Laboratory; Minaminanamatsu, Amagasaki Japan
| | - Ayumi Yoshida
- Bio-energy Corporation; Research and Development Laboratory; Minaminanamatsu, Amagasaki Japan
| | - Tomohisa Hasunuma
- Department of Science, Technology and Innovation; Graduate School of Science, Technology and Innovation; Kobe University; Rokkodai, Nada-ku, Kobe Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering; Graduate School of Engineering; Kobe University; Rokkodai, Nada-ku, Kobe Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering; Graduate School of Engineering; Kobe University; Rokkodai, Nada-ku, Kobe Japan
| |
Collapse
|
12
|
Amoah J, Ho SH, Hama S, Yoshida A, Nakanishi A, Hasunuma T, Ogino C, Kondo A. Lipase cocktail for efficient conversion of oils containing phospholipids to biodiesel. BIORESOURCE TECHNOLOGY 2016; 211:224-30. [PMID: 27019125 DOI: 10.1016/j.biortech.2016.03.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 05/13/2023]
Abstract
The presence of phospholipid has been a challenge in liquid enzymatic biodiesel production. Among six lipases that were screened, lipase AY had the highest hydrolysis activity and a competitive transesterification activity. However, it yielded only 21.1% FAME from oil containing phospholipids. By replacing portions of these lipases with a more robust bioFAME lipase, CalT, the combination of lipase AY-CalT gave the highest FAME yield with the least amounts of free fatty acids and partial glycerides. A higher methanol addition rate reduced FAME yields for lipase DF-CalT and A10D-CalT combinations while that of lipase AY-CalT combination improved. Optimizing the methanol addition rate for lipase AY-CalT resulted in a FAME yield of 88.1% at 2h and more than 95% at 6h. This effective use of lipases could be applied for the rapid and economic conversion of unrefined oils to biodiesel.
Collapse
Affiliation(s)
- Jerome Amoah
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Shih-Hsin Ho
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Shinji Hama
- Bio-energy Corporation, Research and Development Laboratory, 2-9-7 Minaminanamatsu, Amagasaki 660-0053, Japan
| | - Ayumi Yoshida
- Bio-energy Corporation, Research and Development Laboratory, 2-9-7 Minaminanamatsu, Amagasaki 660-0053, Japan
| | - Akihito Nakanishi
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan.
| |
Collapse
|
13
|
Amoah J, Ho SH, Hama S, Yoshida A, Nakanishi A, Hasunuma T, Ogino C, Kondo A. Converting oils high in phospholipids to biodiesel using immobilized Aspergillus oryzae whole-cell biocatalysts expressing Fusarium heterosporum lipase. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.08.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Yan J, Yan Y, Madzak C, Han B. Harnessing biodiesel-producing microbes: from genetic engineering of lipase to metabolic engineering of fatty acid biosynthetic pathway. Crit Rev Biotechnol 2015; 37:26-36. [DOI: 10.3109/07388551.2015.1104531] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Borrelli GM, Trono D. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications. Int J Mol Sci 2015; 16:20774-840. [PMID: 26340621 PMCID: PMC4613230 DOI: 10.3390/ijms160920774] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/17/2015] [Accepted: 08/11/2015] [Indexed: 11/29/2022] Open
Abstract
Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes.
Collapse
Affiliation(s)
- Grazia M Borrelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 200-71122 Foggia, Italy.
| | - Daniela Trono
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 200-71122 Foggia, Italy.
| |
Collapse
|
16
|
Hama S, Onodera K, Yoshida A, Noda H, Kondo A. Improved production of phospholipase A1 by recombinant Aspergillus oryzae through immobilization to control the fungal morphology under nutrient-limited conditions. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Preparation of immobilized whole cell biocatalyst and biodiesel production using a packed-bed bioreactor. Bioprocess Biosyst Eng 2014; 37:2189-98. [PMID: 24770957 DOI: 10.1007/s00449-014-1196-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 04/13/2014] [Indexed: 10/25/2022]
Abstract
Rhizopus oryzae NBRC 4697 was selected from among promising candidates as a biocatalyst for biodiesel production. This microorganism was immobilized on to polyurethane foam coated with activated carbon for reuse, and, for biodiesel production. Vacuum drying of the immobilized cells was found to be more efficient than natural or freeze-drying processes. Although the immobilized cells were severely inhibited by a molar ratio of methanol to soybean oil in excess of 2.0, stepwise methanol addition (3 aliquots at 24-h feeding intervals) significantly prevented methanol inhibition. A packed-bed bioreactor (PBB) containing the immobilized whole cell biocatalyst was then operated under circulating batch mode. Stepwise methanol feeding was used to mitigate methanol inhibition of the immobilized cells in the PBB. An increase in the feeding rate (circulating rate) of the reaction mixture barely affected biodiesel production, while an increase in the packing volume of the immobilized cells enhanced biodiesel production noticeably. Finally, repeated circulating batch operation of the PBB was carried out for five consecutive rounds without a noticeable decrease in the performance of the PBB for the three rounds.
Collapse
|
18
|
Brault G, Shareck F, Hurtubise Y, Lépine F, Doucet N. Short-chain flavor ester synthesis in organic media by an E. coli whole-cell biocatalyst expressing a newly characterized heterologous lipase. PLoS One 2014; 9:e91872. [PMID: 24670408 PMCID: PMC3966760 DOI: 10.1371/journal.pone.0091872] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/16/2014] [Indexed: 11/18/2022] Open
Abstract
Short-chain aliphatic esters are small volatile molecules that produce fruity and pleasant aromas and flavors. Most of these esters are artificially produced or extracted from natural sources at high cost. It is, however, possible to 'naturally' produce these molecules using biocatalysts such as lipases and esterases. A gene coding for a newly uncovered lipase was isolated from a previous metagenomic study and cloned into E. coli BL21 (DE3) for overexpression using the pET16b plasmid. Using this recombinant strain as a whole-cell biocatalyst, short chain esters were efficiently synthesized by transesterification and esterification reactions in organic media. The recombinant lipase (LipIAF5-2) showed good affinity toward glyceryl trioctanoate and the highest conversion yields were obtained for the transesterification of glyceryl triacetate with methanol. Using a simple cetyl-trimethylammonium bromide pretreatment increased the synthetic activity by a six-fold factor and the whole-cell biocatalyst showed the highest activity at 40°C with a relatively high water content of 10% (w/w). The whole-cell biocatalyst showed excellent tolerance to alcohol and short-chain fatty acid denaturation. Substrate affinity was equally effective with all primary alcohols tested as acyl acceptors, with a slight preference for methanol. The best transesterification conversion of 50 mmol glyceryl triacetate into isoamyl acetate (banana fragrance) provided near 100% yield after 24 hours using 10% biocatalyst loading (w/w) in a fluidized bed reactor, allowing recycling of the biocatalyst up to five times. These results show promising potential for an industrial approach aimed at the biosynthesis of short-chain esters, namely for natural flavor and fragrance production in micro-aqueous media.
Collapse
Affiliation(s)
- Guillaume Brault
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - François Shareck
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Yves Hurtubise
- Innu-Science Canada, Inc., Local 119, Trois-Rivières, Québec, Canada
| | - François Lépine
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Nicolas Doucet
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
- PROTEO, the Québec Network for Research on Protein Function, Structure, and Engineering, Québec, Canada
- GRASP, Groupe de Recherche Axé sur la Structure des Protéines, Québec, Canada
- * E-mail:
| |
Collapse
|
19
|
Adachi D, Hama S, Nakashima K, Bogaki T, Ogino C, Kondo A. Production of biodiesel from plant oil hydrolysates using an Aspergillus oryzae whole-cell biocatalyst highly expressing Candida antarctica lipase B. BIORESOURCE TECHNOLOGY 2013; 135:410-416. [PMID: 22850174 DOI: 10.1016/j.biortech.2012.06.092] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/21/2012] [Accepted: 06/26/2012] [Indexed: 06/01/2023]
Abstract
For enzymatic biodiesel production from plant oil hydrolysates, an Aspergillus oryzae whole-cell biocatalyst that expresses Candida antarctica lipase B (r-CALB) with high esterification activity was developed. Each of soybean and palm oils was hydrolyzed using Candida rugosa lipase, and the resultant hydrolysates were subjected to esterification where immobilized r-CALB was used as a catalyst. In esterification, r-CALB afforded a methyl ester content of more than 90% after 6 h with the addition of 1.5 M equivalents of methanol. Favorably, stepwise additions of methanol and a little water were unnecessary for maintaining the lipase stability of r-CALB during esterification. During long-term esterification in a rotator, r-CALB can be recycled for 20 cycles without a significant loss of lipase activity, resulting in a methyl ester content of more than 90% even after the 20th batch. Therefore, the presented reaction system using r-CALB shows promise for biodiesel production from plant oil hydrolysates.
Collapse
Affiliation(s)
- Daisuke Adachi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Kobe 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
20
|
A robust whole-cell biocatalyst that introduces a thermo- and solvent-tolerant lipase into Aspergillus oryzae cells: Characterization and application to enzymatic biodiesel production. Enzyme Microb Technol 2013; 52:331-5. [DOI: 10.1016/j.enzmictec.2013.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 01/26/2023]
|
21
|
Adachi D, Koda R, Hama S, Yamada R, Nakashima K, Ogino C, Kondo A. An integrative process model of enzymatic biodiesel production through ethanol fermentation of brown rice followed by lipase-catalyzed ethanolysis in a water-containing system. Enzyme Microb Technol 2013; 52:118-22. [DOI: 10.1016/j.enzmictec.2012.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 10/27/2022]
|
22
|
Yoshida A, Hama S, Tamadani N, Noda H, Fukuda H, Kondo A. Continuous production of biodiesel using whole-cell biocatalysts: Sequential conversion of an aqueous oil emulsion into anhydrous product. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Yoshida A, Hama S, Tamadani N, Fukuda H, Kondo A. Improved performance of a packed-bed reactor for biodiesel production through whole-cell biocatalysis employing a high-lipase-expression system. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2011.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Prakash R, Aulakh SS. Transesterification of used edible and non-edible oils to alkyl esters by Aspergillus sp. as a whole cell catalyst. J Basic Microbiol 2011; 51:607-13. [DOI: 10.1002/jobm.201000536] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 04/07/2011] [Indexed: 11/06/2022]
|
25
|
Adachi D, Hama S, Numata T, Nakashima K, Ogino C, Fukuda H, Kondo A. Development of an Aspergillus oryzae whole-cell biocatalyst coexpressing triglyceride and partial glyceride lipases for biodiesel production. BIORESOURCE TECHNOLOGY 2011; 102:6723-6729. [PMID: 21507622 DOI: 10.1016/j.biortech.2011.03.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 03/17/2011] [Accepted: 03/19/2011] [Indexed: 05/30/2023]
Abstract
An Aspergillus oryzae whole-cell biocatalyst which coexpresses Fusarium heterosporum lipase (FHL) and mono- and di-acylglycerol lipase B (mdlB) in the same cell has been developed to improve biodiesel production. By screening a number of transformants, the best strain was obtained when FHL gene was integrated into A. oryzae chromosome using sC selection marker while mdlB was integrated using niaD selection marker. The reaction system using the lipase-coexpressing whole-cells was found to be superior in biodiesel production to others such as lipase-mixing and two-step reactions, affording the highest reaction rate and the highest ME content (98%). Moreover, an ME content of more than 90% was maintained during 10 repeated batch cycles. The whole-cell biocatalyst developed in this work would be promising biocatalysts for efficient biodiesel production.
Collapse
Affiliation(s)
- Daisuke Adachi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Highly efficient biodiesel production by a whole-cell biocatalyst employing a system with high lipase expression in Aspergillus oryzae. Appl Microbiol Biotechnol 2011; 90:1171-7. [DOI: 10.1007/s00253-011-3186-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/09/2011] [Accepted: 02/12/2011] [Indexed: 10/18/2022]
|
27
|
Colin VL, Baigorí MD, Pera LM. Mycelium-bound lipase production from Aspergillus niger MYA 135, and its potential applications for the transesterification of ethanol. J Basic Microbiol 2011; 51:236-42. [PMID: 21298682 DOI: 10.1002/jobm.201000232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 09/12/2010] [Indexed: 11/10/2022]
Abstract
The potential biotechnological applications of both constitutive and inducible lipase sources from Aspergillus niger MYA 135 were evaluated. To this end, the effect of environmental conditions on mycelium-bound lipase production from this strain was studied, when cultured either in the absence or presence of 2% olive oil. It was previously reported that mycelium-bound lipase from Aspergillus niger MYA 135 possess high stability in reaction mixtures containing ethanol; which could be especially important for their use in biodiesel synthesis. In this connection, the performance of the lipase sources produced in the transesterification of ethanol using p-nitrophenyl palmitate as acyl donor was also explored. Under our assay conditions, hydrolytic and synthetic activity of the mycelia produced in the absence or presence of olive oil were not highly correlated. While the hydrolytic activity was strongly increased by the addition of lipid to the culture medium, the best performance in the transesterification reactions of ethanol were associated with mycelia produced in absence of olive oil. Interestingly, the supplementation of the culture medium with Fe(+3) increased the transesterification activity by 71%, as compared to the activity previously reported for this strain. Therefore, the constitutive lipase sources from Aspergillus niger MYA 135 are considered to be promising for industrial biodiesel-fuel production.
Collapse
|
28
|
Koda R, Numata T, Hama S, Tamalampudi S, Nakashima K, Tanaka T, Ogino C, Fukuda H, Kondo A. Ethanolysis of rapeseed oil to produce biodiesel fuel catalyzed by Fusarium heterosporum lipase-expressing fungus immobilized whole-cell biocatalysts. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Surfactant-modified yeast whole-cell biocatalyst displaying lipase on cell surface for enzymatic production of structured lipids in organic media. Appl Microbiol Biotechnol 2010; 87:537-43. [PMID: 20336291 DOI: 10.1007/s00253-010-2519-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 02/22/2010] [Accepted: 02/22/2010] [Indexed: 10/19/2022]
Abstract
The cell surface engineering system, in which functional proteins are genetically displayed on microbial cell surfaces, has recently become a powerful tool for applied biotechnology. Here, we report on the surfactant modification of surface-displayed lipase to improve its performance for enzymatic synthesis reactions. The lipase activities of the surfactant-modified yeast displaying Rhizopus oryzae lipase (ROL) were evaluated in both aqueous and nonaqueous systems. Despite the similar lipase activities of control and surfactant-modified cells in aqueous media, the treatment with nonionic surfactants increased the specific lipase activity of the ROL-displaying yeast in n-hexane. In particular, the Tween 20-modified cells increased the cell surface hydrophobicity significantly among a series of Tween surfactants tested, resulting in 8-30 times higher specific activity in organic solvents with relatively high log P values. The developed cells were successfully used for the enzymatic synthesis of phospholipids and fatty acid methyl esters in n-hexane, whereas the nontreated cells produced a significantly low yield. Our results thus indicate that surfactant modification of the cell surface can enhance the potential of the surface-displayed lipase for bioconversion.
Collapse
|
30
|
Production of biodiesel fuel from soybean oil catalyzed by fungus whole-cell biocatalysts in ionic liquids. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2009.08.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Röttig A, Wenning L, Bröker D, Steinbüchel A. Fatty acid alkyl esters: perspectives for production of alternative biofuels. Appl Microbiol Biotechnol 2009; 85:1713-33. [DOI: 10.1007/s00253-009-2383-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/23/2009] [Accepted: 11/24/2009] [Indexed: 12/01/2022]
|
32
|
|
33
|
Uthoff S, Bröker D, Steinbüchel A. Current state and perspectives of producing biodiesel-like compounds by biotechnology. Microb Biotechnol 2009; 2:551-65. [PMID: 21255288 PMCID: PMC3815363 DOI: 10.1111/j.1751-7915.2009.00139.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The global demand for crude oil is expected to continue to rise in future while simultaneously oil production is currently reaching its peak. Subsequently, rising oil prices and their negative impacts on economy, together with an increased environmental awareness of our society, directed the focus also on the biotechnological production of fuels. Although a wide variety of such fuels has been suggested, only the production of ethanol and biodiesel has reached a certain economic feasibility and volume, yet. This review focuses on the current state and perspectives of biotechnological production of biodiesel‐like compounds. At present by far most of the produced biodiesel is obtained by chemical transesterification reactions, which cannot meet the demands of a totally ‘green’ fuel production. Therefore, also several biotechnological biodiesel production processes are currently being developed. Biotechnological production can be achieved by purified enzymes in the soluble state, which requires cost‐intensive protein preparation. Alternatively, enzymes could be immobilized on an appropriate matrix, enabling a reuse of the enzyme, although the formation of by‐products may provide difficulties to maintain the enzyme activity. Processes in presence of organic solvents like t‐butanol have been developed, which enhance by‐product solubility and therefore prevent loss of enzyme activity. As another approach the application of whole‐cell catalysis for the production of fatty acid ethyl esters, which is also referred to as ‘microdiesel’, by recombinant microorganisms has recently been suggested.
Collapse
Affiliation(s)
- Stefan Uthoff
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Münster, Germany
| | | | | |
Collapse
|