1
|
Zhao C, Zhao J, Han J, Mei Y, Fang H. Improved consolidated bioprocessing for itaconic acid production by simultaneous optimization of cellulase and metabolic pathway of Neurospora crassa. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:57. [PMID: 38685114 PMCID: PMC11059683 DOI: 10.1186/s13068-024-02505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024]
Abstract
Lignocellulose was directly used in itaconic acid production by a model filamentous fungus Neurospora crassa. The promoters of two clock control genes and cellobiohydrolase 1 gene were selected for heterologous genes expression by evaluating different types of promoters. The effect of overexpression of different cellulase was compared, and it was found that expression of cellobiohydrolase 2 from Trichoderma reesei increased the filter paper activity by 2 times, the cellobiohydrolase activity by 4.5 times, and that the itaconic acid titer was also significantly improved. A bidirectional cis-aconitic acid accumulation strategy was established by constructing the reverse glyoxylate shunt and expressing the transporter MTTA, which increased itaconic acid production to 637.2 mg/L. The simultaneous optimization of cellulase and metabolic pathway was more conducive to the improvement of cellulase activity than that of cellulase alone, so as to further increase itaconic acid production. Finally, through the combination of fermentation by optimized strains and medium optimization, the titers of itaconic acid using Avicel and corn stover as substrate were 1165.1 mg/L and 871.3 mg/L, respectively. The results prove the potential of the consolidated bioprocessing that directly converts lignocellulose to itaconic acid by a model cellulase synthesizing strain.
Collapse
Affiliation(s)
- Chen Zhao
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jiajia Zhao
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
- The Second Department of Vaccine, Lanzhou Institute of Biological Products Co., Ltd., Lanzhou, 730046, China
| | - Jingjing Han
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaojie Mei
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Fang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 733 Jianshe 3rd Road, Hangzhou, 311200, Zhejiang, China.
| |
Collapse
|
2
|
Liu D, Garrigues S, de Vries RP. Heterologous protein production in filamentous fungi. Appl Microbiol Biotechnol 2023; 107:5019-5033. [PMID: 37405433 PMCID: PMC10386965 DOI: 10.1007/s00253-023-12660-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Filamentous fungi are able to produce a wide range of valuable proteins and enzymes for many industrial applications. Recent advances in fungal genomics and experimental technologies are rapidly changing the approaches for the development and use of filamentous fungi as hosts for the production of both homologous and heterologous proteins. In this review, we highlight the benefits and challenges of using filamentous fungi for the production of heterologous proteins. We review various techniques commonly employed to improve the heterologous protein production in filamentous fungi, such as strong and inducible promoters, codon optimization, more efficient signal peptides for secretion, carrier proteins, engineering of glycosylation sites, regulation of the unfolded protein response and endoplasmic reticulum associated protein degradation, optimization of the intracellular transport process, regulation of unconventional protein secretion, and construction of protease-deficient strains. KEY POINTS: • This review updates the knowledge on heterologous protein production in filamentous fungi. • Several fungal cell factories and potential candidates are discussed. • Insights into improving heterologous gene expression are given.
Collapse
Affiliation(s)
- Dujuan Liu
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Sandra Garrigues
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Food Biotechnology, Instituto de Agroquímica Y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Havlik D, Brandt U, Bohle K, Fleißner A. Establishment of Neurospora crassa as a host for heterologous protein production using a human antibody fragment as a model product. Microb Cell Fact 2017; 16:128. [PMID: 28743272 PMCID: PMC5526295 DOI: 10.1186/s12934-017-0734-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022] Open
Abstract
Background Filamentous fungi are commonly used as production hosts for bulk enzymes in biotechnological applications. Their robust and quick growth combined with their ability to secrete large amounts of protein directly into the culture medium makes fungi appealing organisms for the generation of novel production systems. The red bread mold Neurospora crassa has long been established as a model system in basic research. It can be very easily genetically manipulated and a wealth of molecular tools and mutants are available. In addition, N. crassa is very fast growing and non-toxic. All of these features point to a high but so far untapped potential of this fungus for biotechnological applications. In this study, we used genetic engineering and bioprocess development in a design-build-test-cycle process to establish N. crassa as a production host for heterologous proteins. Results The human antibody fragment HT186-D11 was fused to a truncated version of the endogenous enzyme glucoamylase (GLA-1), which served as a carrier protein to achieve secretion into the culture medium. A modular expression cassette was constructed and tested under the control of different promoters. Protease activity was identified as a major limitation of the production strain, and the effects of different mutations causing protease deficiencies were compared. Furthermore, a parallel bioreactor system (1 L) was employed to develop and optimize a production process, including the comparison of different culture media and cultivation parameters. After successful optimization of the production strain and the cultivation conditions an exemplary scale up to a 10 L stirred tank reactor was performed. Conclusions The data of this study indicate that N. crassa is suited for the production and secretion of heterologous proteins. Controlling expression by the optimized promoter Pccg1nr in a fourfold protease deletion strain resulted in the successful secretion of the heterologous product with estimated yields of 3 mg/L of the fusion protein. The fungus could easily be cultivated in bioreactors and a first scale-up was successful. The system holds therefore much potential, warranting further efforts in optimization. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0734-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Havlik
- Division of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Inhoffenstr. 7, Braunschweig, 38124, Germany.,Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.,Navigo Proteins GmbH, Heinrich-Damerow-Str. 1, 06120, Halle (Saale), Germany
| | - Ulrike Brandt
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Kathrin Bohle
- Division of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Inhoffenstr. 7, Braunschweig, 38124, Germany
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
4
|
Su X, Schmitz G, Zhang M, Mackie RI, Cann IKO. Heterologous gene expression in filamentous fungi. ADVANCES IN APPLIED MICROBIOLOGY 2016; 81:1-61. [PMID: 22958526 DOI: 10.1016/b978-0-12-394382-8.00001-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi.
Collapse
Affiliation(s)
- Xiaoyun Su
- Energy Biosciences Institute, University of Illinois, Urbana, IL, USA; Institute for Genomic Biology, University of Illinois, Urbana, IL, USA; Equal contribution
| | | | | | | | | |
Collapse
|
5
|
Goebels C, Thonn A, Gonzalez-Hilarion S, Rolland O, Moyrand F, Beilharz TH, Janbon G. Introns regulate gene expression in Cryptococcus neoformans in a Pab2p dependent pathway. PLoS Genet 2013; 9:e1003686. [PMID: 23966870 PMCID: PMC3744415 DOI: 10.1371/journal.pgen.1003686] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/17/2013] [Indexed: 11/18/2022] Open
Abstract
Most Cryptococccus neoformans genes are interrupted by introns, and alternative splicing occurs very often. In this study, we examined the influence of introns on C. neoformans gene expression. For most tested genes, elimination of introns greatly reduces mRNA accumulation. Strikingly, the number and the position of introns modulate the gene expression level in a cumulative manner. A screen for mutant strains able to express functionally an intronless allele revealed that the nuclear poly(A) binding protein Pab2 modulates intron-dependent regulation of gene expression in C. neoformans. PAB2 deletion partially restored accumulation of intronless mRNA. In addition, our results demonstrated that the essential nucleases Rrp44p and Xrn2p are implicated in the degradation of mRNA transcribed from an intronless allele in C. neoformans. Double mutant constructions and over-expression experiments suggested that Pab2p and Xrn2p could act in the same pathway whereas Rrp44p appears to act independently. Finally, deletion of the RRP6 or the CID14 gene, encoding the nuclear exosome nuclease and the TRAMP complex associated poly(A) polymerase, respectively, has no effect on intronless allele expression. Cryptococcus neoformans is a major human pathogen responsible for deadly infection in immunocompromised patients. The analysis of its genome previously revealed that most of its genes are interrupted by introns. Here, we demonstrate that introns modulate gene expression in a cumulative manner. We also demonstrate that introns can play a positive or a negative role in this process. We identify a nuclear poly(A) binding protein (Pab2p) as implicated in the intron-dependent control of gene expression in C. neoformans. We also demonstrate that the essential nucleases Rrp44p and Xrn2p are implicated in two independent pathways controlling the intron-dependent regulation of gene expression in C. neoformans. Xrn2p regulation seems to depend on Pab2p whereas Rrp44p acts independently. In contrast, the other exosome nuclease Rrp6p and the TRAMP associated poly(A) polymerase Cid14p do not appear to be implicated in this regulation. Our results provide new insights into the regulation of gene expression in eukaryotes and more specifically into the biology and virulence of C. neoformans.
Collapse
Affiliation(s)
- Carolin Goebels
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
| | - Aline Thonn
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
| | - Sara Gonzalez-Hilarion
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
| | - Olga Rolland
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
| | - Frederique Moyrand
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
| | - Traude H. Beilharz
- Monash University, Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Guilhem Janbon
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
- * E-mail:
| |
Collapse
|
6
|
Molecular analysis of fungal gene expression upon interkingdom competition with insects. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2013. [PMID: 23065625 DOI: 10.1007/978-1-62703-122-6_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Fungi produce an astonishing variety of secondary metabolites, some of which belong to the most toxic compounds in the living world. However, the benefits of secondary metabolites for fungi are often obscure. Here we describe a method that will aid in the analysis of fungal gene expression upon interkingdom competition with insects. It allows for isolation of fungal RNA from surface-grown mycelium after confrontation with insect larvae, and subsequent molecular analysis.
Collapse
|
7
|
Expression and characterization of the Neurospora crassa endoglucanase GH5-1. Protein Expr Purif 2010; 75:147-54. [PMID: 20826217 DOI: 10.1016/j.pep.2010.08.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/28/2010] [Accepted: 08/30/2010] [Indexed: 11/22/2022]
Abstract
Filamentous fungi secrete a wide range of enzymes, including cellulases and hemicellulases, with potential applications in the production of lignocellulosic biofuels. Of the cellulolytic fungi, Hypocrea jecorina (anamorph Trichoderma reesei) is the best characterized in terms of cellulose degradation, but other cellulolytic fungi, such as the model filamentous fungus Neurospora crassa, can serve a crucial role in building our knowledge about the fungal response to biomass due to the many molecular and genetic tools available for this organism. Here we cloned and expressed GH5-1 (NCU00762), a secreted endoglucanase in N. crassa. The protein was produced using a ccg-1 promoter under conditions in which no other cellulases are present. Native GH5-1 (nGH5-1) and this recombinant GH5-1 (rGH5-1) were purified to gauge differences in glycosylation and activity; both rGH5-1 and nGH5-1 were similarly glycosylated, with an estimated molecular weight of 52kDa. On azo-carboxymethylcellulose, rGH5-1 activity was equal to that of nGH5-1, and on cellulose (Avicel) rGH5-1 was 20% more active. The activity of a GH5-1-GFP fusion protein (rGH5-1-GFP-6xHis) was similar to rGH5-1 and nGH5-1. To determine the binding pattern of catalytically active rGH5-1-GFP-6xHis to plant cell walls, Arabidopsis seedlings were incubated with rGH5-1-GFP-6xHis or Pontamine Fast Scarlet 4B (S4B), a cellulose-specific dye. Confocal microscopy showed that rGH5-1-GFP-6xHis bound in linear, longitudinal patterns on seedling roots, similar to S4B. The functional expression and characterization of rGH5-1 and its GFP fusion derivative set important precedents for further investigation of biomass degradation by filamentous fungi, especially N. crassa, with applications for characterization and manipulation of novel enzymes.
Collapse
|