1
|
Camargo-Escalante MO, Balcázar-López E, Albores Méndez EM, Winkler R, Herrera-Estrella A. LOX1- and PLP1-dependent transcriptional reprogramming is essential for injury-induced conidiophore development in a filamentous fungus. Microbiol Spectr 2023; 11:e0260723. [PMID: 37943049 PMCID: PMC10714772 DOI: 10.1128/spectrum.02607-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE In addition to being considered a biocontrol agent, the fungus Trichoderma atroviride is a relevant model for studying mechanisms of response to injury conserved in plants and animals that opens a new landscape in relation to regeneration and cell differentiation mechanisms. Here, we reveal the co-functionality of a lipoxygenase and a patatin-like phospholipase co-expressed in response to wounding in fungi. This pair of enzymes produces oxidized lipids that can function as signaling molecules or oxidative stress signals that, in ascomycetes, induce asexual development. Furthermore, we determined that both genes participate in the regulation of the synthesis of 13-HODE and the establishment of the physiological responses necessary for the formation of reproductive aerial mycelium ultimately leading to asexual development. Our results suggest an injury-induced pathway to produce oxylipins and uncovered physiological mechanisms regulated by LOX1 and PLP1 to induce conidiation, opening new hypotheses for the novo regeneration mechanisms of filamentous fungi.
Collapse
Affiliation(s)
- Martín O. Camargo-Escalante
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav, Irapuato, Guanajuato, Mexico
| | - Edgar Balcázar-López
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav, Irapuato, Guanajuato, Mexico
| | - Exsal M. Albores Méndez
- Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea Mexicanos, Secretaría de la Defensa Nacional, Mexico City, Mexico
| | - Robert Winkler
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav, Irapuato, Guanajuato, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav, Irapuato, Guanajuato, Mexico
| |
Collapse
|
2
|
Liu H, Zhang X, Chen W, Wang C. The regulatory functions of oxylipins in fungi: A review. J Basic Microbiol 2023; 63:1073-1084. [PMID: 37357952 DOI: 10.1002/jobm.202200721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 06/27/2023]
Abstract
Quorum sensing (QS) is a communication mechanism between microorganisms originally found in bacteria. In recent years, an important QS mechanism has been discovered in the field of fungi, namely, the lipoxygenase compound oxylipin of arachidonic acid acts as a QS molecule in life cycle control, particularly in the sexual and asexual development of fungi. However, the role of oxylipins in mediating eukaryotic communication has not been previously described. In this paper, we review the regulatory role of oxylipins and the underlying mechanisms and discuss the potential for application in major fungi. The role of oxylipin as a fungal quorum-sensing molecule is the main focus of the review. Besides, the quorum regulation of fungal morphological transformation, biofilm formation, virulence factors, secondary metabolism, infection, symbiosis, and other physiological behaviors are discussed. Moreover, future prospectives and applications are elaborated as well.
Collapse
Affiliation(s)
- Huiqian Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xizi Zhang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Wei Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Chengtao Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
3
|
Giorni P, Zhang L, Bavaresco L, Lucini L, Battilani P. Metabolomics Insight into the Variety-Mediated Responses to Aspergillus carbonarius Infection in Grapevine Berries. ACS OMEGA 2023; 8:32352-32364. [PMID: 37720731 PMCID: PMC10500680 DOI: 10.1021/acsomega.3c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/03/2023] [Indexed: 09/19/2023]
Abstract
Limited knowledge regarding the susceptibility of grape varieties to ochratoxin A (OTA)-producing fungi is available to date. This study aimed to investigate the susceptibility of different grape varieties to Aspergillus carbonarius concerning OTA contamination and modulation at the metabolome level. Six grape varieties were selected, sampled at early veraison and ripening, artificially inoculated with A. carbonarius, and incubated at two temperature regimes. Significant differences were observed across cultivars, with Barbera showing the highest incidence of moldy berries (around 30%), while Malvasia and Ortrugo showed the lowest incidence (about 2%). OTA contamination was the lowest in Ortrugo and Malvasia, and the highest in Croatina, although it was not significantly different from Barbera, Merlot, and Sauvignon Blanc. Fungal development and mycotoxin production changed with grape variety; the sugar content in berries could also have played a role. Unsupervised multivariate statistical analysis from metabolomic fingerprints highlighted cultivar-specific responses, although a more generalized response was observed by supervised OPLS-DA modeling. An accumulation of nitrogen-containing compounds (alkaloids and glucosinolates), phenylpropanoids, and terpenoids, in addition to phytoalexins, was observed in all samples. A broader modulation of the metabolome was observed in white grapes, which were less contaminated by OTA. Jasmonates and oxylipins were identified as critical upstream modulators in metabolomic profiles. A direct correlation between the plant defense machinery and OTA was not observed, but the information was acquired and can contribute to optimizing preventive actions.
Collapse
Affiliation(s)
- Paola Giorni
- Department
of Sustainable Crop Production, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Leilei Zhang
- Department
for Sustainable Food Process, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Bavaresco
- Department
of Sustainable Crop Production, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department
for Sustainable Food Process, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Paola Battilani
- Department
of Sustainable Crop Production, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
4
|
Jiang N, Wang L, Jiang D, Wang M, Yu H, Yao W. Combined metabolome and transcriptome analysis reveal the mechanism of eugenol inhibition of Aspergillus carbonarius growth in table grapes (Vitis vinifera L.). Food Res Int 2023; 170:112934. [PMID: 37316002 DOI: 10.1016/j.foodres.2023.112934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 06/16/2023]
Abstract
During storage, Aspergillus carbonarius (A. carbonarius) can easily infect grape berries, resulting in a pronounced decline in nutritional value and substantial economic loss for the grape industry. Characterised by broad-spectrum antibacterial activity, eugenol is proven to significantly inhibit A. carbonarius and ochratoxin A (OTA) in vitro. In this study, the potential mechanism of eugenol against A. carbonarius in grapes ('Kyoho') was evaluated using integrative transcriptomic and metabolomics analyses. After eugenol treatment at 50 mM, the inhibition of OTA was reduced by 100%, despite a 56.2% inhibition of A. carbonarius. In the meantime, mycelial growth was completely inhibited by 100 mM eugenol in grape berries. The application of eugenol to grapes stimulated the activity of several enzymes involved in disease resistance, namely catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), chitinase (CHI), β-1,3-glucanase (GLU), cinnamate-4-hydroxylase (C4H), phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL) and glutathione (GSH) content. In addition, the contents of abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA) in eugenol-treated grapes were higher after A. carbonarius inoculation. Combined transcriptomic and metabolomic analysis revealed that in phenylpropane biosynthesis, there were a variety of differentially expressed metabolites (DEMs) and differentially expressed genes (DEGs), and the plant hormone signalling pathway changed significantly. Among these, the levels of 47 polyphenol metabolites significantly increased in eugenol-treated grape berries compared to noneugenol-treated berries. Meanwhile, we investigated the transcript levels of 39 genes in 6 phytohormones signalling in response to eugenol-treated grape berries followed by A. carbonarius inoculation. These results suggest that eugenol positively improved the disease resistance of grapes and might be potentially beneficial for the prevention and treatment of A. carbonarius-caused disease.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Institute of Quality Standard and Testing Technology of Beijing Academy of Agriculture and Forestry Sciences, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China
| | - Liuqing Wang
- Institute of Quality Standard and Testing Technology of Beijing Academy of Agriculture and Forestry Sciences, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China
| | - Dongmei Jiang
- Institute of Quality Standard and Testing Technology of Beijing Academy of Agriculture and Forestry Sciences, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology of Beijing Academy of Agriculture and Forestry Sciences, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
5
|
Wei S, Hu C, Zhang Y, Lv Y, Zhang S, Zhai H, Hu Y. AnAzf1 acts as a positive regulator of ochratoxin A biosynthesis in Aspergillus niger. Appl Microbiol Biotechnol 2023; 107:2501-2514. [PMID: 36809388 DOI: 10.1007/s00253-023-12404-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/23/2023]
Abstract
Aspergillus niger produces genotoxic and carcinogenic ochratoxin A (OTA) that severely threatens human and animal health. Transcription factor Azf1 is essential in regulating fungal cell development and primary metabolism. However, its effect and mechanism on secondary metabolism are unclear. Here, we characterized and deleted a Azf1 homolog gene, An15g00120 (AnAzf1), in A. niger, which completely blocked OTA production, and repressed the OTA cluster genes, p450, nrps, hal, and bzip at the transcriptional level. The results indicated that AnAzf1 was a positive regulator of OTA biosynthesis. Transcriptome sequencing results showed that the AnAzf1 deletion significantly upregulated antioxidant genes and downregulated oxidative phosphorylation genes. Enzymes involved in reactive oxygen species (ROS) scavenging, including catalase (CAT) and peroxidase (POD) were increased, and the corresponding ROS levels were decreased. Upregulation of genes (cat, catA, hog1, and gfd) in the MAPK pathway and downregulation of genes in iron homeostasis were associated with decreased ROS levels, linking the altered MAPK pathway and iron homeostasis to lower ROS levels caused by AnAzf1 deletion. Additionally, enzymes including complex I (NADH-ubiquinone oxidoreductase), and complex V (ATP synthase), as well as ATP levels, were significantly decreased, indicating impaired oxidative phosphorylation caused by the AnAzf1-deletion. During lower ROS levels and impaired oxidative phosphorylation, OTA was not produced in ∆AnAzf1. Together, these results strongly suggested that AnAzf1 deletion blocked OTA production in A. niger by a synergistic interference of ROS accumulation and oxidative phosphorylation. KEY POINTS: • AnAzf1 positively regulated OTA biosynthesis in A. niger. • Deletion of AnAzf1 decreased ROS levels and impaired oxidative phosphorylation. • An altered MAPK pathway and iron homeostasis were associated with lower ROS levels.
Collapse
Affiliation(s)
- Shan Wei
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Chaojiang Hu
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Yige Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Yangyong Lv
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Shuaibing Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Huanchen Zhai
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Yuansen Hu
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
6
|
Gao J, Liu H, Zhang Z, Liang Z. Quorum Sensing-Mediated Lipid Oxidation Further Regulating the Environmental Adaptability of Aspergillus ochraceus. Metabolites 2023; 13:metabo13040491. [PMID: 37110150 PMCID: PMC10146863 DOI: 10.3390/metabo13040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Quorum sensing (QS) is a cellular strategy of communication between intra- and inter-specific microorganisms, characterized by the release of quorum sensing molecules (QSMs) that achieve coordination to adaptation to the environment. In Aspergillus, lipids carry population density-mediated stresses, and their oxidative metabolite oxylipins act as signaling to transmit information inside cells to regulate fungal development in a synchronized way. In this study, we investigated the regulation of density-dependent lipid metabolism in the toxigenic fungi Aspergillus ochraceus by the oxidative lipid metabolomics in conjunction with transcriptomics. In addition to proven hydroxyoctadecadienoic acids (HODEs), prostaglandins (PGs) also appear to have the properties of QSM. As a class of signaling molecule, oxylipins regulate the fungal morphology, secondary metabolism, and host infection through the G protein signaling pathway. The results of combined omics lay a foundation for further verification of oxylipin function, which is expected to elucidate the complex adaptability mechanism in Aspergillus and realize fungal utilization and damage control.
Collapse
Affiliation(s)
- Jing Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huiqing Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
7
|
Abramczyk B, Pecio Ł, Kozachok S, Kowalczyk M, Marzec-Grządziel A, Król E, Gałązka A, Oleszek W. Pioneering Metabolomic Studies on Diaporthe eres Species Complex from Fruit Trees in the South-Eastern Poland. Molecules 2023; 28:molecules28031175. [PMID: 36770841 PMCID: PMC9920373 DOI: 10.3390/molecules28031175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Fungi from the genus Diaporthe have been reported as plant pathogens, endophytes, and saprophytes on a wide range of host plants worldwide. Their precise identification is problematic since many Diaporthe species can colonize a single host plant, whereas the same Diaporthe species can inhabit many hosts. Recently, Diaporthe has been proven to be a rich source of bioactive secondary metabolites. In our initial study, 40 Diaporthe isolates were analyzed for their metabolite production. A total of 153 compounds were identified based on their spectroscopic properties-Ultraviolet-visible and mass spectrometry. From these, 43 fungal metabolites were recognized as potential chemotaxonomic markers, mostly belonging to the drimane sesquiterpenoid-phthalide hybrid class. This group included mainly phytotoxic compounds such as cyclopaldic acid, altiloxin A, B, and their derivatives. To the best of our knowledge, this is the first report on the metabolomic studies on Diaporthe eres species complex from fruit trees in the South-Eastern Poland. The results from our study may provide the basis for the future research on the isolation of identified metabolites and on their bioactive potential for agricultural applications as biopesticides or biofertilizers.
Collapse
Affiliation(s)
- Barbara Abramczyk
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
- Correspondence:
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| | - Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Anna Marzec-Grządziel
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Ewa Król
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland
| | - Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| |
Collapse
|
8
|
Beccaccioli M, Pucci N, Salustri M, Scortichini M, Zaccaria M, Momeni B, Loreti S, Reverberi M, Scala V. Fungal and bacterial oxylipins are signals for intra- and inter-cellular communication within plant disease. FRONTIERS IN PLANT SCIENCE 2022; 13:823233. [PMID: 36186042 PMCID: PMC9524268 DOI: 10.3389/fpls.2022.823233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Lipids are central at various stages of host-pathogen interactions in determining virulence and modulating plant defense. Free fatty acids may act as substrates for oxidizing enzymes [e.g., lipoxygenases (LOXs) and dioxygenases (DOXs)] that synthesize oxylipins. Fatty acids and oxylipins function as modulators of several pathways in cell-to-cell communication; their structural similarity among plant, fungal, and bacterial taxa suggests potential in cross-kingdom communication. We provide a prospect of the known role of fatty acids and oxylipins in fungi and bacteria during plant-pathogen interactions. In the pathogens, oxylipin-mediated signaling pathways are crucial both in development and host infection. Here, we report on case studies suggesting that oxylipins derived from oleic, linoleic, and linolenic acids are crucial in modulating the pathogenic lifestyle in the host plant. Intriguingly, overlapping (fungi-plant/bacteria-plant) results suggest that different inter-kingdom pathosystems use similar lipid signals to reshape the lifestyle of the contenders and occasionally determine the outcome of the challenge.
Collapse
Affiliation(s)
- Marzia Beccaccioli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Nicoletta Pucci
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and the Analysis of Agricultural Economics (CREA), Rome, Italy
| | - Manuel Salustri
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Marco Scortichini
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and the Analysis of Agricultural Economics (CREA), Rome, Italy
| | - Marco Zaccaria
- Department of Biology, Boston College, Newton, MA, United States
| | - Babak Momeni
- Department of Biology, Boston College, Newton, MA, United States
| | - Stefania Loreti
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and the Analysis of Agricultural Economics (CREA), Rome, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Valeria Scala
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and the Analysis of Agricultural Economics (CREA), Rome, Italy
| |
Collapse
|
9
|
Wei S, Hu C, Nie P, Zhai H, Zhang S, Li N, Lv Y, Hu Y. Insights into the Underlying Mechanism of Ochratoxin A Production in Aspergillus niger CBS 513.88 Using Different Carbon Sources. Toxins (Basel) 2022; 14:toxins14080551. [PMID: 36006213 PMCID: PMC9415321 DOI: 10.3390/toxins14080551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
Aspergillus niger produces carcinogenic ochratoxin A (OTA), a serious food safety and human health concern. Here, the ability of A. niger CBS 513.88 to produce OTA using different carbon sources was investigated and the underlying regulatory mechanism was elucidated. The results indicated that 6% sucrose, glucose, and arabinose could trigger OTA biosynthesis and that 1586 differentially expressed genes (DEGs) overlapped compared to a non-inducing nutritional source, peptone. The genes that participated in OTA and its precursor phenylalanine biosynthesis, including pks, p450, nrps, hal, and bzip, were up-regulated, while the genes involved in oxidant detoxification, such as cat and pod, were down-regulated. Correspondingly, the activities of catalase and peroxidase were also decreased. Notably, the novel Gal4-like transcription factor An12g00840 (AnGal4), which is vital in regulating OTA biosynthesis, was identified. Deletion of AnGal4 elevated the OTA yields by 47.65%, 54.60%, and 309.23% using sucrose, glucose, and arabinose as carbon sources, respectively. Additionally, deletion of AnGal4 increased the superoxide anion and H2O2 contents, as well as the sensitivity to H2O2, using the three carbon sources. These results suggest that these three carbon sources repressed AnGal4, leading to the up-regulation of the OTA biosynthetic genes and alteration of cellular redox homeostasis, ultimately triggering OTA biosynthesis in A. niger.
Collapse
Affiliation(s)
- Shan Wei
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Chaojiang Hu
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Ping Nie
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Huanchen Zhai
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Shuaibing Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Na Li
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Yangyong Lv
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
- Correspondence: (Y.L.); (Y.H.)
| | - Yuansen Hu
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
- Correspondence: (Y.L.); (Y.H.)
| |
Collapse
|
10
|
Zhao M, Liu D, Liang Z, Huang K, Wu X. Antagonistic activity of Bacillus subtilis CW14 and its β-glucanase against Aspergillus ochraceus. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Qiu M, Wang Y, Sun L, Deng Q, Zhao J. Fatty Acids and Oxylipins as Antifungal and Anti-Mycotoxin Agents in Food: A Review. Toxins (Basel) 2021; 13:toxins13120852. [PMID: 34941690 PMCID: PMC8707646 DOI: 10.3390/toxins13120852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
Fungal contamination of food, especially by mycotoxigenic fungi, not only reduces the quality of the food, but can also cause serious diseases, thus posing a major food safety challenge to humans. Apart from sound food control systems, there is also a continual need to explore antifungal agents that can inhibit fungal growth and mycotoxin production in food. Many types of fatty acids (FAs) and their oxidized derivatives, oxylipins, have been found to exhibit such effects. In this review, we provide an update on the most recent literature on the occurrence and formation of FAs and oxylipins in food, their effects on fungal growth and mycotoxin synthesis, as well as the genetic and molecular mechanisms of actions. Research gaps in the field and needs for further studies in order to realizing the potential of FAs and oxylipins as natural antifungal preservatives in food are also discussed.
Collapse
Affiliation(s)
- Mei Qiu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.Q.); (L.S.); (Q.D.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
| | - Yaling Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.Q.); (L.S.); (Q.D.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Correspondence:
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.Q.); (L.S.); (Q.D.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.Q.); (L.S.); (Q.D.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
| | - Jian Zhao
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
12
|
Isolation and characterization of an activator-dependent protease from Aspergillus ochraceus screened from low denatured defatted soybean meal and the proteolysis of soy proteins. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Starke J, Harting R, Maurus I, Leonard M, Bremenkamp R, Heimel K, Kronstad JW, Braus GH. Unfolded Protein Response and Scaffold Independent Pheromone MAP Kinase Signaling Control Verticillium dahliae Growth, Development, and Plant Pathogenesis. J Fungi (Basel) 2021; 7:jof7040305. [PMID: 33921172 PMCID: PMC8071499 DOI: 10.3390/jof7040305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Differentiation, growth, and virulence of the vascular plant pathogen Verticillium dahliae depend on a network of interconnected cellular signaling cascades. The transcription factor Hac1 of the endoplasmic reticulum-associated unfolded protein response (UPR) is required for initial root colonization, fungal growth, and vascular propagation by conidiation. Hac1 is essential for the formation of microsclerotia as long-time survival resting structures in the field. Single endoplasmic reticulum-associated enzymes for linoleic acid production as precursors for oxylipin signal molecules support fungal growth but not pathogenicity. Microsclerotia development, growth, and virulence further require the pheromone response mitogen-activated protein kinase (MAPK) pathway, but without the Ham5 scaffold function. The MAPK phosphatase Rok1 limits resting structure development of V.dahliae, but promotes growth, conidiation, and virulence. The interplay between UPR and MAPK signaling cascades includes several potential targets for fungal growth control for supporting disease management of the vascular pathogen V.dahliae.
Collapse
Affiliation(s)
- Jessica Starke
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Isabel Maurus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Miriam Leonard
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Rica Bremenkamp
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Kai Heimel
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
- Correspondence: ; Tel.: +49-(0)551-39-33771
| |
Collapse
|
14
|
Physical and Chemical Methods for Reduction in Aflatoxin Content of Feed and Food. Toxins (Basel) 2021; 13:toxins13030204. [PMID: 33808964 PMCID: PMC7999035 DOI: 10.3390/toxins13030204] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/25/2022] Open
Abstract
Aflatoxins (AFs) are among the most harmful fungal secondary metabolites imposing serious health risks on both household animals and humans. The more frequent occurrence of aflatoxins in the feed and food chain is clearly foreseeable as a consequence of the extreme weather conditions recorded most recently worldwide. Furthermore, production parameters, such as unadjusted variety use and improper cultural practices, can also increase the incidence of contamination. In current aflatoxin control measures, emphasis is put on prevention including a plethora of pre-harvest methods, introduced to control Aspergillus infestations and to avoid the deleterious effects of aflatoxins on public health. Nevertheless, the continuous evaluation and improvement of post-harvest methods to combat these hazardous secondary metabolites are also required. Already in-use and emerging physical methods, such as pulsed electric fields and other nonthermal treatments as well as interventions with chemical agents such as acids, enzymes, gases, and absorbents in animal husbandry have been demonstrated as effective in reducing mycotoxins in feed and food. Although most of them have no disadvantageous effect either on nutritional properties or food safety, further research is needed to ensure the expected efficacy. Nevertheless, we can envisage the rapid spread of these easy-to-use, cost-effective, and safe post-harvest tools during storage and food processing.
Collapse
|
15
|
Gao J, Xu X, Huang K, Liang Z. Fungal G-Protein-Coupled Receptors: A Promising Mediator of the Impact of Extracellular Signals on Biosynthesis of Ochratoxin A. Front Microbiol 2021; 12:631392. [PMID: 33643259 PMCID: PMC7907439 DOI: 10.3389/fmicb.2021.631392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/21/2021] [Indexed: 01/17/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are transmembrane receptors involved in transducing signals from the external environment inside the cell, which enables fungi to coordinate cell transport, metabolism, and growth to promote their survival, reproduction, and virulence. There are 14 classes of GPCRs in fungi involved in sensing various ligands. In this paper, the synthesis of mycotoxins that are GPCR-mediated is discussed with respect to ligands, environmental stimuli, and intra-/interspecific communication. Despite their apparent importance in fungal biology, very little is known about the role of ochratoxin A (OTA) biosynthesis by Aspergillus ochraceus and the ligands that are involved. Fortunately, increasing evidence shows that the GPCR that involves the AF/ST (sterigmatocystin) pathway in fungi belongs to the same genus. Therefore, we speculate that GPCRs play an important role in a variety of environmental signals and downstream pathways in OTA biosynthesis. The verification of this inference will result in a more controllable GPCR target for control of fungal contamination in the future.
Collapse
Affiliation(s)
- Jing Gao
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Xinge Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhihong Liang
- Beijing Laboratory for Food Quality and Safety, Beijing, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Barrios-González J, Pérez-Sánchez A, Bibián ME. New knowledge about the biosynthesis of lovastatin and its production by fermentation of Aspergillus terreus. Appl Microbiol Biotechnol 2020; 104:8979-8998. [PMID: 32930839 DOI: 10.1007/s00253-020-10871-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/10/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
Lovastatin, and its semisynthetic derivative simvastatine, has great medical and economic importance, besides great potential for other uses. In the last years, a deeper and more complex view of secondary metabolism regulation has emerged, with the incorporation of cluster-specific and global transcription factors, and their relation to signaling cascades, as well as the new level of epigenetic regulation. Recently, a new mechanism, which regulates lovastatin biosynthesis, at transcriptional level, has been discovered: reactive oxygen species (ROS) regulation; also new unexpected environmental stimuli have been identified, which induce the synthesis of lovastatin, like quorum sensing-type molecules and support stimuli. The present review describes this new panorama and uses this information, together with the knowledge on lovastatin biosynthesis and genomics, as the foundation to analyze literature on optimization of fermentation parameters and medium composition, and also to fully understand new strategies for strain genetic improvement. This new knowledge has been applied to the development of more effective culture media, with the addition of molecules like butyrolactone I, oxylipins, and spermidine, or with addition of ROS-generating molecules to increase internal ROS levels in the cell. It has also been applied to the development of new strategies to generate overproducing strains of Aspergillus terreus, including engineering of the cluster-specific transcription factor (lovE), global transcription factors like the ones implicated in ROS regulation (or even mitochondrial alternative respiration aox gen), or the global regulator LaeA. Moreover, there is potential to apply some of these findings to the development of novel unconventional production systems. KEY POINTS: • New findings in regulation of lovastatin biosynthesis, like ROS regulation. • Induction by unexpected stimuli: autoinducer molecules and support stimuli. • Recent reports on culture medium and process optimization from this stand point. • Applications to molecular genetic strain improvement methods and production systems.
Collapse
Affiliation(s)
- Javier Barrios-González
- Departamento de Biotecnología, Universidad Autónoma Metropolitana -Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340, Iztapalapa, Ciudad de México, Mexico.
| | - Ailed Pérez-Sánchez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana -Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340, Iztapalapa, Ciudad de México, Mexico
| | - María Esmeralda Bibián
- Departamento de Biotecnología, Universidad Autónoma Metropolitana -Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340, Iztapalapa, Ciudad de México, Mexico
| |
Collapse
|
17
|
Pfliegler WP, Pócsi I, Győri Z, Pusztahelyi T. The Aspergilli and Their Mycotoxins: Metabolic Interactions With Plants and the Soil Biota. Front Microbiol 2020; 10:2921. [PMID: 32117074 PMCID: PMC7029702 DOI: 10.3389/fmicb.2019.02921] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/04/2019] [Indexed: 01/06/2023] Open
Abstract
Species of the highly diverse fungal genus Aspergillus are well-known agricultural pests, and, most importantly, producers of various mycotoxins threatening food safety worldwide. Mycotoxins are studied predominantly from the perspectives of human and livestock health. Meanwhile, their roles are far less known in nature. However, to understand the factors behind mycotoxin production, the roles of the toxins of Aspergilli must be understood from a complex ecological perspective, taking mold-plant, mold-microbe, and mold-animal interactions into account. The Aspergilli may switch between saprophytic and pathogenic lifestyles, and the production of secondary metabolites, such as mycotoxins, may vary according to these fungal ways of life. Recent studies highlighted the complex ecological network of soil microbiotas determining the niches that Aspergilli can fill in. Interactions with the soil microbiota and soil macro-organisms determine the role of secondary metabolite production to a great extent. While, upon infection of plants, metabolic communication including fungal secondary metabolites like aflatoxins, gliotoxin, patulin, cyclopiazonic acid, and ochratoxin, influences the fate of both the invader and the host. In this review, the role of mycotoxin producing Aspergillus species and their interactions in the ecosystem are discussed. We intend to highlight the complexity of the roles of the main toxic secondary metabolites as well as their fate in natural environments and agriculture, a field that still has important knowledge gaps.
Collapse
Affiliation(s)
- Walter P. Pfliegler
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Győri
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
18
|
Penicillin and cephalosporin biosyntheses are also regulated by reactive oxygen species. Appl Microbiol Biotechnol 2020; 104:1773-1783. [PMID: 31900551 DOI: 10.1007/s00253-019-10330-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
In an earlier work on lovastatin production by Aspergillus terreus, we found that reactive oxygen species (ROS) concentration increased to high levels precisely at the start of the production phase (idiophase) and that these levels were sustained during all idiophase. Moreover, it was shown that ROS regulate lovastatin biosynthesis. ROS regulation has also been reported for aflatoxins. It has been suggested that, due to their antioxidant activity, aflatoxins are regulated and synthesized like a second line of defense against oxidative stress. To study the possible ROS regulation of other industrially important secondary metabolites, we analyzed the relationship between ROS and penicillin biosynthesis by Penicillium chrysogenum and cephalosporin biosynthesis by Acremonium chrysogenum. Results revealed a similar ROS accumulation in idiophase in penicillin and cephalosporin fermentations. Moreover, when intracellular ROS concentrations were decreased by the addition of antioxidants to the cultures, penicillin and cephalosporin production were drastically reduced. When intracellular ROS were increased by the addition of exogenous ROS (H2O2) to the cultures, proportional increments in penicillin and cephalosporin biosyntheses were obtained. It was also shown that lovastatin, penicillin, and cephalosporin are not antioxidants. Taken together, our results provide evidence that ROS regulation is a general mechanism controlling secondary metabolism in fungi.
Collapse
|
19
|
Ricelli A, De Angelis M, Primitivo L, Righi G, Sappino C, Antonioletti R. Role of Some Food-Grade Synthesized Flavonoids on the Control of Ochratoxin A in Aspergillus carbonarius. Molecules 2019; 24:molecules24142553. [PMID: 31337014 PMCID: PMC6680773 DOI: 10.3390/molecules24142553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 01/26/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin with a serious impact on human health. In Mediterranean countries, the black Aspergilli group, in particular Aspergillus carbonarius, causes the highest OTA contamination. Here we describe the synthesis of three polyphenolic flavonoids: 5-hydroxy-6,7-dimethoxy-flavone (MOS), 5,6-dihydroxy-7-methoxy-flavone (NEG), and 5,6 dihydroxy-flavone (DHF), as well as their effect on the prevention of OTA biosynthesis and lipoxygenase (LOX) activity in A. carbonarius cultured in a conducive liquid medium. The best control effect on OTA biosynthesis was achieved using NEG and DHF. In fungal cultures treated with these compounds at 5, 25, and 50 μg/mL, OTA biosynthesis significantly decreased throughout the 8-day experiment. NEG and DHF appear to have an inhibiting effect also on the activity of LOX, whereas MOS, which did not significantly inhibit OTA production, had no effect on LOX activity. The presence of free hydroxyls in catecholic position in the molecule appears to be a determining factor for significantly inhibiting OTA biosynthesis. However, the presence of a methoxy group in C-7 in NEG could slightly lower the molecule’s reactivity increasing OTA inhibition by this molecule at 5 μg/mL. Polyphenolic flavonoids present in edible plants may be easily synthesized and used to control OTA biosynthesis.
Collapse
Affiliation(s)
- Alessandra Ricelli
- Institute of Molecular Biology and Pathology-CNR P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Martina De Angelis
- Institute of Molecular Biology and Pathology-CNR P.le Aldo Moro 5, 00185 Rome, Italy
- Department of Chemistry, Sapienza University, P.le A Moro 5, I-00185 Rome, Italy
| | - Ludovica Primitivo
- Institute of Molecular Biology and Pathology-CNR P.le Aldo Moro 5, 00185 Rome, Italy
- Department of Chemistry, Sapienza University, P.le A Moro 5, I-00185 Rome, Italy
| | - Giuliana Righi
- Institute of Molecular Biology and Pathology-CNR P.le Aldo Moro 5, 00185 Rome, Italy
| | - Carla Sappino
- Department of Chemistry, Sapienza University, P.le A Moro 5, I-00185 Rome, Italy
| | - Roberto Antonioletti
- Institute of Molecular Biology and Pathology-CNR P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
20
|
Derogis PBMC, Chaves-Fillho AB, Miyamoto S. Characterization of Hydroxy and Hydroperoxy Polyunsaturated Fatty Acids by Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:21-35. [DOI: 10.1007/978-3-030-11488-6_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Battilani P, Lanubile A, Scala V, Reverberi M, Gregori R, Falavigna C, Dall'asta C, Park Y, Bennett J, Borrego EJ, Kolomiets MV. Oxylipins from both pathogen and host antagonize jasmonic acid-mediated defence via the 9-lipoxygenase pathway in Fusarium verticillioides infection of maize. MOLECULAR PLANT PATHOLOGY 2018; 19:2162-2176. [PMID: 29660236 PMCID: PMC6638020 DOI: 10.1111/mpp.12690] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/22/2018] [Accepted: 04/08/2018] [Indexed: 05/29/2023]
Abstract
Oxylipins are a newly emerging group of signals that serve defence roles or promote virulence. To identify specific host and fungal genes and oxylipins governing the interactions between maize and Fusarium verticillioides, maize wild-type and lipoxygenase3 (lox3) mutant were inoculated with either F. verticillioides wild-type or linoleate-diol-synthase 1-deleted mutant (ΔFvlds1D). The results showed that lox3 mutants were more resistant to F. verticillioides. The reduced colonization on lox3 was associated with reduced fumonisin production and with a stronger and earlier induction of ZmLOX4, ZmLOX5 and ZmLOX12. In addition to the reported defence function of ZmLOX12, we showed that lox4 and lox5 mutants were more susceptible to F. verticillioides and possessed decreased jasmonate levels during infection, suggesting that these genes are essential for jasmonic acid (JA)-mediated defence. Oxylipin profiling revealed a dramatic reduction in fungal linoleate diol synthase 1 (LDS1)-derived oxylipins, especially 8-HpODE (8-hydroperoxyoctadecenoic acid), in infected lox3 kernels, indicating the importance of this molecule in virulence. Collectively, we make the following conclusions: (1) LOX3 is a major susceptibility factor induced by fungal LDS1-derived oxylipins to suppress JA-stimulating 9-LOXs; (2) LOX3-mediated signalling promotes the biosynthesis of virulence-promoting oxylipins in the fungus; and (3) both fungal LDS1- and host LOX3-produced oxylipins are essential for the normal infection and colonization processes of maize seed by F. verticillioides.
Collapse
Affiliation(s)
- Paola Battilani
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro Cuore29122 PiacenzaItaly
| | - Alessandra Lanubile
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro Cuore29122 PiacenzaItaly
| | - Valeria Scala
- CREA‐DC, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Center for Plant Protection and Certification00156 RomeItaly
| | - Massimo Reverberi
- Department of Environmental BiologyUniversity of Rome “Sapienza”00165 RomeItaly
| | - Rossella Gregori
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro Cuore29122 PiacenzaItaly
| | - Claudia Falavigna
- Department of Organic and Industrial ChemistryUniversity of Parma43124 ParmaItaly
| | - Chiara Dall'asta
- Department of Organic and Industrial ChemistryUniversity of Parma43124 ParmaItaly
| | - Yong‐Soon Park
- BK21 plus program, College of Biological Sciences and BiotechnologyChungnam National UniversityDaejeon 34134South Korea
| | - John Bennett
- Department of Plant Pathology and MicrobiologyTexas A&M University, College StationTX 77843‐2132USA
| | - Eli J. Borrego
- Department of Plant Pathology and MicrobiologyTexas A&M University, College StationTX 77843‐2132USA
| | - Michael V. Kolomiets
- Department of Plant Pathology and MicrobiologyTexas A&M University, College StationTX 77843‐2132USA
| |
Collapse
|
22
|
Li C, Song Y, Xiong L, Huang K, Liang Z. Initial Spore Density Has an Influence on Ochratoxin A Content in Aspergillus ochraceus CGMCC 3.4412 in PDB and Its Interaction with Seeds. Toxins (Basel) 2017; 9:E146. [PMID: 28430142 PMCID: PMC5408220 DOI: 10.3390/toxins9040146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 01/09/2017] [Accepted: 02/07/2017] [Indexed: 12/04/2022] Open
Abstract
The morphology and secondary metabolism of Aspergillus spp. are associated with initial spore density (ISD). Fatty acids (FA) are involved in the biosynthesis of aflatoxins (AF) through Aspergillus quorum sensing (QS). Here, we studied how ochratoxin A (OTA) was regulated by spore density in Aspergillus ochraceus CGMCC 3.4412. The results contribute to understanding the role of spore density in morphogenesis, OTA biosynthesis, and host-pathogen interactions. When A. ochraceus was grown in Potato Dextrose Broth (PDB) media at different spore densities (from 10¹ to 10⁶ spores/mL), more OTA was produced when ISD were increased, but a higher level of ISD inhibited OTA biosynthesis. Seed infection studies showed that peanuts (Arachis hypogaea) and soybeans (Glycine max) with high FA content were more susceptible to OTA production when infected by A. ochraceus and reactive oxygen species (ROS)-induced OTA biosynthesis. These results suggested that FA was vital for OTA biosynthesis, and that oxidative stress was closely related to OTA biosynthesis in A. ochraceus.
Collapse
Affiliation(s)
- Caiyan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yanmin Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Lu Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China.
| | - Zhihong Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
23
|
Comparative Transcriptome Analysis of Penicillium citrinum Cultured with Different Carbon Sources Identifies Genes Involved in Citrinin Biosynthesis. Toxins (Basel) 2017; 9:toxins9020069. [PMID: 28230802 PMCID: PMC5331448 DOI: 10.3390/toxins9020069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/13/2017] [Indexed: 11/17/2022] Open
Abstract
Citrinin is a toxic secondary metabolite of Penicillium citrinum and its contamination in many food items has been widely reported. However, research on the citrinin biosynthesis pathway and its regulation mechanism in P. citrinum is rarely reported. In this study, we investigated the effect of different carbon sources on citrinin production by P. citrinum and used transcriptome analysis to study the underlying molecular mechanism. Our results indicated that glucose, used as the sole carbon source, could significantly promote citrinin production by P. citrinum in Czapek’s broth medium compared with sucrose. A total of 19,967 unigenes were annotated by BLAST in Nr, Nt, Swiss-Prot and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Transcriptome comparison between P. citrinum cultured with sucrose and glucose revealed 1085 differentially expressed unigenes. Among them, 610 were upregulated while 475 were downregulated under glucose as compared to sucrose. KEGG pathway and Gene ontology (GO) analysis indicated that many metabolic processes (e.g., carbohydrate, secondary metabolism, fatty acid and amino acid metabolism) were affected, and potentially interesting genes that encoded putative components of signal transduction, stress response and transcription factor were identified. These genes obviously had important impacts on their regulation in citrinin biosynthesis, which provides a better understanding of the molecular mechanism of citrinin biosynthesis by P. citrinum.
Collapse
|
24
|
Musungu BM, Bhatnagar D, Brown RL, Payne GA, OBrian G, Fakhoury AM, Geisler M. A Network Approach of Gene Co-expression in the Zea mays/ Aspergillus flavus Pathosystem to Map Host/Pathogen Interaction Pathways. Front Genet 2016; 7:206. [PMID: 27917194 PMCID: PMC5116468 DOI: 10.3389/fgene.2016.00206] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/04/2016] [Indexed: 12/27/2022] Open
Abstract
A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus, a link between aflatoxin production and vesicular transport was identified within the network. There was significant interspecies correlation of expression between Z. mays and A. flavus for a subset of 104 Z. mays, and 1942 A. flavus genes. This resulted in an interspecies subnetwork enriched in multiple Z. mays genes involved in the production of ROS. In addition to the ROS from Z. mays, there was enrichment in the vesicular transport pathways and the aflatoxin pathway for A. flavus. Included in these genes, a key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays ROS producing genes within the network, suggesting AflS may be monitoring host ROS levels. The entire GEN for both host and pathogen, and the subset of interspecies correlations, is presented as a tool for hypothesis generation and discovery for events in the early stages of fungal infection of Z. mays by A. flavus.
Collapse
Affiliation(s)
- Bryan M Musungu
- Department of Plant Biology, Southern Illinois University, CarbondaleIL, USA; Southern Regional Research Center, United States Department of Agriculture - Agricultural Research Service, New OrleansLA, USA
| | - Deepak Bhatnagar
- Southern Regional Research Center, United States Department of Agriculture - Agricultural Research Service, New Orleans LA, USA
| | - Robert L Brown
- Southern Regional Research Center, United States Department of Agriculture - Agricultural Research Service, New Orleans LA, USA
| | - Gary A Payne
- Department of Plant Pathology, North Carolina State University, Raleigh NC, USA
| | - Greg OBrian
- Department of Plant Pathology, North Carolina State University, Raleigh NC, USA
| | - Ahmad M Fakhoury
- Department of Plant Soil and Agriculture Systems, Southern Illinois University, Carbondale IL, USA
| | - Matt Geisler
- Department of Plant Biology, Southern Illinois University, Carbondale IL, USA
| |
Collapse
|
25
|
Wang Y, Wang L, Liu F, Wang Q, Selvaraj JN, Xing F, Zhao Y, Liu Y. Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms. Toxins (Basel) 2016; 8:E83. [PMID: 27007394 PMCID: PMC4810228 DOI: 10.3390/toxins8030083] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/28/2016] [Accepted: 03/14/2016] [Indexed: 11/16/2022] Open
Abstract
Ochratoxin A (OTA), mainly produced by Aspergillus and Penicillum species, is one of the most important mycotoxin contaminants in agricultural products. It is detrimental to human health because of its nephrotoxicity, hepatotoxicity, carcinogenicity, teratogenicity, and immunosuppression. OTA structurally consists of adihydrocoumarin moiety linked with l-phenylalanine via an amide bond. OTA biosynthesis has been putatively hypothesized, although several contradictions exist on some processes of the biosynthetic pathway. We discuss recent information on molecular studies of OTA biosynthesis despite insufficient genetic background in detail. Accordingly, genetic regulation has also been explored with regard to the interaction between the regulators and the environmental factors. In this review, we focus on three aspects of OTA: OTA-producing strains, OTA biosynthetic pathway and the regulation mechanisms of OTA production. This can pave the way to assist in protecting food and feed from OTA contamination by understanding OTA biosynthetic pathway and regulatory mechanisms.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
- Key Laboratory of Agro-products Processing, Ministry of Agriculture, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| | - Liuqing Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| | - Fei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| | - Qi Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| | - Jonathan Nimal Selvaraj
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
- Key Laboratory of Agro-products Processing, Ministry of Agriculture, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| | - Yueju Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
- Key Laboratory of Agro-products Processing, Ministry of Agriculture, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
- Key Laboratory of Agro-products Processing, Ministry of Agriculture, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| |
Collapse
|
26
|
Yang Q, Zhang H, Zhang X, Zheng X, Qian J. Phytic Acid Enhances Biocontrol Activity of Rhodotorula mucilaginosa against Penicillium expansum Contamination and Patulin Production in Apples. Front Microbiol 2015; 6:1296. [PMID: 26635764 PMCID: PMC4655349 DOI: 10.3389/fmicb.2015.01296] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/06/2015] [Indexed: 12/02/2022] Open
Abstract
The effect of Rhodotorula mucilaginosa in combination with phytic acid (PA) on blue mold decay and patulin contamination of apples was investigated. Results from this study show that different concentrations of PA were effective in reducing the disease incidence of apples and that PA at concentration of 4 μmol/mL, decreased the incidence of blue mold decay in apples from 86.1 to 62.5%, and showed higher control efficacy compared to untreated, control fruit during storage at 20°C. However, R. mucilaginosa combined with PA (4 μmol/mL) showed better control efficacy of blue mold decay than R. mucilaginosa used as single treatment, the disease incidence was reduced to 62.5% and lesion diameter on apples was reduced to 16.59 cm. In in vitro experiments, the addition of PA enhanced the biocontrol effect of R. mucilaginosa against the growth of Penicillium expansum and reduced patulin level when compared with either R. mucilaginosa or PA used separately. R. mucilaginosa together with PA, improved the inhibition of patulin production in wounded apples, decreasing the content of patulin by 89.6% compared to the control, under experimental conditions. Both R. mucilaginosa and R. mucilaginosa in combination with PA degraded patulin in vitro. In conclusion, the appropriate combination of R. mucilaginosa and PA may provide an effective biocontrol method for reducing postharvest decay of apples.
Collapse
Affiliation(s)
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu UniversityZhenjiang, China
| | | | | | | |
Collapse
|
27
|
Menadione-Induced Oxidative Stress Re-Shapes the Oxylipin Profile of Aspergillus flavus and Its Lifestyle. Toxins (Basel) 2015; 7:4315-29. [PMID: 26512693 PMCID: PMC4626736 DOI: 10.3390/toxins7104315] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 12/14/2022] Open
Abstract
Aspergillus flavus is an efficient producer of mycotoxins, particularly aflatoxin B1, probably the most hepatocarcinogenic naturally-occurring compound. Although the inducing agents of toxin synthesis are not unanimously identified, there is evidence that oxidative stress is one of the main actors in play. In our study, we use menadione, a quinone extensively implemented in studies on ROS response in animal cells, for causing stress to A. flavus. For uncovering the molecular determinants that drive A. flavus in challenging oxidative stress conditions, we have evaluated a wide spectrum of several different parameters, ranging from metabolic (ROS and oxylipin profile) to transcriptional analysis (RNA-seq). There emerges a scenario in which A. flavus activates several metabolic processes under oxidative stress conditions for limiting the ROS-associated detrimental effects, as well as for triggering adaptive and escape strategies.
Collapse
|
28
|
A Caleosin-Like Protein with Peroxygenase Activity Mediates Aspergillus flavus Development, Aflatoxin Accumulation, and Seed Infection. Appl Environ Microbiol 2015; 81:6129-44. [PMID: 26116672 DOI: 10.1128/aem.00867-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/20/2015] [Indexed: 01/12/2023] Open
Abstract
Caleosins are a small family of calcium-binding proteins endowed with peroxygenase activity in plants. Caleosin-like genes are present in fungi; however, their functions have not been reported yet. In this work, we identify a plant caleosin-like protein in Aspergillus flavus that is highly expressed during the early stages of spore germination. A recombinant purified 32-kDa caleosin-like protein supported peroxygenase activities, including co-oxidation reactions and reduction of polyunsaturated fatty acid hydroperoxides. Deletion of the caleosin gene prevented fungal development. Alternatively, silencing of the gene led to the increased accumulation of endogenous polyunsaturated fatty acid hydroperoxides and antioxidant activities but to a reduction of fungal growth and conidium formation. Two key genes of the aflatoxin biosynthesis pathway, aflR and aflD, were downregulated in the strains in which A. flavus PXG (AfPXG) was silenced, leading to reduced aflatoxin B1 production in vitro. Application of caleosin/peroxygenase-derived oxylipins restored the wild-type phenotype in the strains in which AfPXG was silenced. PXG-deficient A. flavus strains were severely compromised in their capacity to infect maize seeds and to produce aflatoxin. Our results uncover a new branch of the fungal oxylipin pathway and may lead to the development of novel targets for controlling fungal disease.
Collapse
|
29
|
Hao J, Wu W, Wang Y, Yang Z, Liu Y, Lv Y, Zhai Y, Yang J, Liang Z, Huang K, Xu W. Arabidopsis thaliana defense response to the ochratoxin A-producing strain (Aspergillus ochraceus 3.4412). PLANT CELL REPORTS 2015; 34:705-19. [PMID: 25666274 DOI: 10.1007/s00299-014-1731-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 10/29/2014] [Accepted: 12/05/2014] [Indexed: 05/20/2023]
Abstract
OTA-producing strain Aspergillus ochraceus induced necrotic lesions, ROS accumulation and defense responses in Arabidopsis . Primary metabolic and defense-related proteins changed in proteomics. Ascorbate-glutathione cycle and voltage-dependent anion-selective channel proteins fluctuated. Mycotoxigenic fungi, as widespread contaminants by synthesizing mycotoxins in pre-/post-harvest infected plants and even stored commercial cereals, could usually induce plant-fungi defense responses. Notably, ochratoxin A (OTA) is a nephrotoxic, hepatotoxic, teratogenic, immunotoxic and phytotoxic mycotoxin. Herein, defense responses of model system Arabidopsis thaliana detached leaves to infection of Aspergillus ochraceus 3.4412, an OTA high-producing strain, were studied from physiological, proteomic and transcriptional perspectives. During the first 72 h after inoculation (hai), the newly formed hypersensitive responses-like lesions, decreased chlorophyll content, accumulated reactive oxygen species and upregulated defense genes expressions indicated the defense response was induced in the leaves with the possible earlier motivated jasmonic acid/ethylene signaling pathways and the later salicylic acid-related pathway. Moreover, proteomics using two-dimensional gel electrophoresis 72 hai showed 16 spots with significantly changed abundance and 13 spots corresponding to 12 unique proteins were successfully identified by MALDI-TOF/TOF MS/MS. Of these, six proteins were involved in basic metabolism and four in defense-related processes, which included glutathione-S-transferase F7, voltage-dependent anion-selective channel protein 3 (VDAC-3), osmotin-like protein OSM34 and blue copper-binding protein. Verified from proteomic and/or transcriptional perspectives, it is concluded that the primary metabolic pathways were suppressed with the ascorbate-glutathione cycle fluctuated in response to A. ochraceus and the modulation of VDACs suggested the possibility of structural damage and dysfunction of mitochondria in the process. Taken together, these findings exhibited a dynamic overview of the defense responses of A. thaliana to A. ochraceus and provided a better insight into the pathogen-resistance mechanisms in plants.
Collapse
Affiliation(s)
- Junran Hao
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dall'Asta C, Giorni P, Cirlini M, Reverberi M, Gregori R, Ludovici M, Camera E, Fanelli C, Battilani P, Scala V. Maize lipids play a pivotal role in the fumonisin accumulation. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1754] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of lipids in maize – Fusarium verticillioides interaction and fumonisin production in natural field conditions were investigated. In 2010, ten maize hybrids were grown in fields located in 3 districts in Northern Italy and sampled at 4 growing stages, from early dough to full ripe. Chemical composition, fungal incidence and free and hidden fumonisin contamination were determined in all grain samples. All the hybrids considered within this study showed a strong fungal incidence, with Fusarium section Liseola as prevalent, already at the early dough maturity and along the ripening period. Fumonisins accumulated over the growing season and reached the maximum level at the full ripe stage; hidden fumonisins were found significant in all the considered samples (~57% of the free form at harvest). Hybrid H9 showed more than 50% of kernels infected by Aspergillus flavus and no hidden fumonisins were detected. This finding stresses the relevance of monitoring both free and total fumonisins for a comprehensive assessment of consumer exposure to mycotoxins. Previous studies showed a positive correlation between the content of linoleic acid and fumonisin accumulation into maize kernels infected with Fusarium section Liseola. Hence, an untargeted and targeted lipid analysis of maize kernels along the growing season and at harvest was performed. Results suggested a significant involvement of lipid composition of maize kernels in fungal infection and toxin accumulation. Specifically, mass spectrometry data pinpointed that at least 4 lipid entities might differentiate high-contaminated from low-contaminated samples when the cut-off of 2,000 μg/kg of fumonisins was selected. Among them, the oxylipin 9-HODE and three sphingolipids were identified. These results suggest that sphingolipid and oxylipin metabolism in maize kernels interferes with F. verticillioides growth and fumonisin production in plants growing in field.
Collapse
Affiliation(s)
- C. Dall'Asta
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - P. Giorni
- Istituto di Entomologia e Patologia vegetale, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29100 Piacenza, Italy
| | - M. Cirlini
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - M. Reverberi
- Dipartimento di Biologia Ambientale, Università Sapienza, Largo Cristina di Svezia 24, 00165 Roma
| | - R. Gregori
- Istituto di Entomologia e Patologia vegetale, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29100 Piacenza, Italy
| | - M. Ludovici
- Laboratorio di Fisiopatologia Cutanea e Centro Integrato di Metabolomica, Istituto Dermatologico San Gallicano IRCCS, Via San Gallicano 25/a, 00153 Roma, Italy
| | - E. Camera
- Laboratorio di Fisiopatologia Cutanea e Centro Integrato di Metabolomica, Istituto Dermatologico San Gallicano IRCCS, Via San Gallicano 25/a, 00153 Roma, Italy
| | - C. Fanelli
- Dipartimento di Biologia Ambientale, Università Sapienza, Largo Cristina di Svezia 24, 00165 Roma
| | - P. Battilani
- Istituto di Entomologia e Patologia vegetale, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29100 Piacenza, Italy
| | - V. Scala
- Dipartimento di Biologia Ambientale, Università Sapienza, Largo Cristina di Svezia 24, 00165 Roma
| |
Collapse
|
31
|
Scala V, Giorni P, Cirlini M, Ludovici M, Visentin I, Cardinale F, Fabbri AA, Fanelli C, Reverberi M, Battilani P, Galaverna G, Dall'Asta C. LDS1-produced oxylipins are negative regulators of growth, conidiation and fumonisin synthesis in the fungal maize pathogen Fusarium verticillioides. Front Microbiol 2014; 5:669. [PMID: 25566199 PMCID: PMC4263177 DOI: 10.3389/fmicb.2014.00669] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/18/2014] [Indexed: 11/13/2022] Open
Abstract
Oxylipins are fatty acid-derived signaling compounds produced by all eukaryotes so far investigated; in mycotoxigenic fungi, they modulate toxin production and interactions with the host plants. Among the many enzymes responsible for oxylipin generation, Linoleate Diol Synthase 1 (LDS1) produces mainly 8-hydroperoxyoctadecenoic acid and subsequently different di-hydroxyoctadecenoic acids. In this study, we inactivated a copy of the putative LDS1 ortholog (acc. N. FVEG_09294.3) of Fusarium verticillioides, with the aim to investigate its influence on the oxylipin profile of the fungus, on its development, secondary metabolism and virulence. LC-MS/MS oxylipin profiling carried out on the selected mutant strain revealed significant quali-quantitative differences for several oxylipins when compared to the WT strain. The Fvlds1-deleted mutant grew better, produced more conidia, synthesized more fumonisins and infected maize cobs faster than the WT strain. We hypothesize that oxylipins may act as regulators of gene expression in the toxigenic plant pathogen F. verticillioides, in turn causing notable changes in its phenotype. These changes could relate to the ability of oxylipins to re-shape the transcriptional profile of F. verticillioides by inducing chromatin modifications and exerting a direct control on the transcription of secondary metabolism in fungi.
Collapse
Affiliation(s)
- Valeria Scala
- Department of Environmental Biology, University of Rome "Sapienza" Rome, Italy
| | - Paola Giorni
- Istituto di Entomologia e Patologia Vegetale, Università Cattolica del Sacro Cuore Piacenza, Italy
| | - Martina Cirlini
- Food Chemistry and Natural Substances Unit, Department of Organic and Industrial Chemistry, University of Parma Parma, Italy
| | - Matteo Ludovici
- Department of Environmental Biology, University of Rome "Sapienza" Rome, Italy
| | - Ivan Visentin
- Department of Agricultural, Food and Forestry Science, University of Turin Torino, Italy
| | - Francesca Cardinale
- Department of Agricultural, Food and Forestry Science, University of Turin Torino, Italy
| | - Anna A Fabbri
- Department of Environmental Biology, University of Rome "Sapienza" Rome, Italy
| | - Corrado Fanelli
- Department of Environmental Biology, University of Rome "Sapienza" Rome, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, University of Rome "Sapienza" Rome, Italy
| | - Paola Battilani
- Istituto di Entomologia e Patologia Vegetale, Università Cattolica del Sacro Cuore Piacenza, Italy
| | - Gianni Galaverna
- Food Chemistry and Natural Substances Unit, Department of Organic and Industrial Chemistry, University of Parma Parma, Italy
| | - Chiara Dall'Asta
- Food Chemistry and Natural Substances Unit, Department of Organic and Industrial Chemistry, University of Parma Parma, Italy
| |
Collapse
|
32
|
Ludovici M, Ialongo C, Reverberi M, Beccaccioli M, Scarpari M, Scala V. Quantitative profiling of oxylipins through comprehensive LC-MS/MS analysis of Fusarium verticillioides and maize kernels. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:2026-33. [PMID: 25255035 DOI: 10.1080/19440049.2014.968810] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fusarium verticillioides is one of the most important fungal pathogens causing ear and stalk rot in maize, even if frequently asymptomatic, producing a harmful series of compounds named fumonisins. Plant and fungal oxylipins play a crucial role in determining the outcome of the interaction between the pathogen and its host. Moreover, oxylipins result as signals able to modulate the secondary metabolism in fungi. In keeping with this, a novel, quantitative LC-MS/MS method was designed to quantify up to 17 different oxylipins produced by F. verticillioides and maize kernels. By applying this method, we were able to quantify oxylipin production in vitro - F. verticillioides grown into Czapek-Dox/yeast extract medium amended with 0.2% w/v of cracked maize - and in vivo, i.e. during its growth on detached mature maize ears. This study pinpoints the role of oxylipins in a plant pathogen such as F. verticillioides and sets up a novel tool aimed at understanding the role oxylipins play in mycotoxigenic pathogens during their interactions with respective hosts.
Collapse
Affiliation(s)
- Matteo Ludovici
- a Dipartimento di Biologia Ambientale , Università Sapienza , Rome , Italy
| | | | | | | | | | | |
Collapse
|
33
|
Scarpari M, Punelli M, Scala V, Zaccaria M, Nobili C, Ludovici M, Camera E, Fabbri AA, Reverberi M, Fanelli C. Lipids in Aspergillus flavus-maize interaction. Front Microbiol 2014; 5:74. [PMID: 24578700 PMCID: PMC3936598 DOI: 10.3389/fmicb.2014.00074] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/11/2014] [Indexed: 12/22/2022] Open
Abstract
In some filamentous fungi, the pathways related to the oxidative stress and oxylipins production are involved both in the process of host-recognition and in the pathogenic phase. In fact, recent studies have shown that the production of oxylipins in filamentous fungi, yeasts and chromists is also related to the development of the organism itself and to mechanisms of communication with the host at the cellular level. The oxylipins, also produced by the host during defense reactions, are able to induce sporulation and to regulate the biosynthesis of mycotoxins in several pathogenic fungi. In A. flavus, the oxylipins play a crucial role as signals for regulating the biosynthesis of aflatoxins, the conidiogenesis and the formation of sclerotia. To investigate the involvement of an oxylipins based cross-talk into Z. mays and A. flavus interaction, we analyzed the oxylipins profile of the wild type strain and of three mutants of A. flavus that are deleted at the Aflox1 gene level also during maize kernel invasion. A lipidomic approach has been addressed through the use of LC-ToF-MS, followed by a statistical analysis of the principal components (PCA). The results showed the existence of a difference between the oxylipins profile generated by the WT and the mutants onto challenged maize. In relation to this, aflatoxin synthesis which is largely hampered in vitro, is intriguingly restored. These results highlight the important role of maize oxylipin in driving secondary metabolism in A. flavus.
Collapse
Affiliation(s)
- Marzia Scarpari
- Dipartimento di Biologia Ambientale, Università Sapienza - Roma Roma, Italy
| | - Marta Punelli
- Dipartimento di Biologia Ambientale, Università Sapienza - Roma Roma, Italy
| | - Valeria Scala
- Dipartimento di Biologia Ambientale, Università Sapienza - Roma Roma, Italy
| | - Marco Zaccaria
- Dipartimento di Biologia Ambientale, Università Sapienza - Roma Roma, Italy
| | - Chiara Nobili
- Unità Tecnica Sviluppo Sostenibile ed Innovazione del Sistema Agro-industriale, Laboratorio Innovazione Agroindustriale, ENEA C.R. Casaccia Roma, Italy
| | | | | | - Anna A Fabbri
- Dipartimento di Biologia Ambientale, Università Sapienza - Roma Roma, Italy
| | - Massimo Reverberi
- Dipartimento di Biologia Ambientale, Università Sapienza - Roma Roma, Italy
| | - Corrado Fanelli
- Dipartimento di Biologia Ambientale, Università Sapienza - Roma Roma, Italy
| |
Collapse
|
34
|
Reverberi M, Fabbri AA, Fanelli C. Ochratoxin A and Related Mycotoxins. Fungal Biol 2014. [DOI: 10.1007/978-1-4939-1191-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Lanubile A, Logrieco A, Battilani P, Proctor RH, Marocco A. Transcriptional changes in developing maize kernels in response to fumonisin-producing and nonproducing strains of Fusarium verticillioides. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:183-92. [PMID: 23849125 DOI: 10.1016/j.plantsci.2013.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/10/2013] [Accepted: 05/15/2013] [Indexed: 05/07/2023]
Abstract
Fusarium verticillioides infects maize producing ear rot, yield loss and the accumulation of fumonisins. In the present study, a transcriptomic approach was employed to investigate the molecular aspects of the interaction of susceptible/resistant maize genotypes with fumonisin-producing/nonproducing strains of F. verticillioides over a time course of 4 days after inoculation. The fumonisin-nonproducing strain led transcription in susceptible maize kernels, starting from 48h post inoculation, with a peak of differentially expressed genes at 72h after inoculation. Pathogen attack altered the mRNA levels of approximately 1.0% of the total number of maize genes assayed, with 15% encoding proteins having potential functions in signal transduction mechanisms, and 9% in the category of transcription factors. These findings indicate that signalling and regulation pathways were prominent in the earlier phases of kernel colonization, inducing the following expression of defense genes. In the resistant maize genotype, the fum1 mutant of F. verticillioides, impaired in this polyketide synthase gene (PKS), provoked a delayed and weakened activation of defense and oxidative stress-related genes, compared to the wild-type strain. The inability to infect resistant kernels may be related to the lack of PKS activity and its association with the lipoxygenase pathway. Plant and fungal 9-lipoxygenases had greater expression after fum1 mutant inoculation, suggesting that PKS plays an indirect effect on pathogen colonization by interfering with the lipid mediated cross-talk between host and pathogen.
Collapse
Affiliation(s)
- Alessandra Lanubile
- Istituto di Agronomia, Genetica e Coltivazioni erbacee, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy.
| | | | | | | | | |
Collapse
|
36
|
Scala V, Camera E, Ludovici M, Dall'Asta C, Cirlini M, Giorni P, Battilani P, Bello C, Fabbri A, Fanelli C, Reverberi M. Fusarium verticillioides and maize interaction in vitro: relationship between oxylipin cross-talk and fumonisin synthesis. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2012.1527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fusarium verticillioides is one of the most important fungal pathogens causing ear and stalk rot in maize. Even if frequently asymptomatic, it can produce a harmful series of compounds named fumonisins. Plant and fungal oxylipins play a crucial role in determining the outcome of the interaction between the pathogen and its host. Moreover, oxylipins are factors able to modulate the secondary metabolism in fungi. To uncover the existence of the relationship between oxylipin production and fumonisin synthesis in F. verticillioides, we analysed some molecular and physiological parameters, such as the expression of genes whose products are related to oxylipin synthesis (i.e. lipoxygenase, diol synthases and fatty acid oxidase), the oxylipin profile of both cracked maize and the pathogen by using a lipidomic approach (i.e. combining LC-TOF and LC-MS/MS approaches with a robust statistical analysis) and the synthesis of fumonisin B1. The results suggested a close relationship between the modification of the pathogen oxylipin profile with the fumonisin synthesis. Notably, a modification of the oxylipin profile of the pathogen during its growth on cracked maize can be demonstrated. The switch in oxylipin synthesis could indicate that the ‘presence’ of maize determinants (e.g. plant cell wall fragments and/or lipids) was able to promote the modification of the pathogen lifestyle, also by adapting the secondary metabolism, notably fumonisin synthesis.
Collapse
Affiliation(s)
- V. Scala
- Dipartimento di Biologia Ambientale, Università ‘Sapienza’, Largo Cristina di Svezia 24, 00165 Rome, Italy
| | - E. Camera
- Laboratorio di Fisiopatologia Cutanea e Centro Integrato di Metabolomica, Istituto Dermatologico San Gallicano IRCCS, Via Chianesi 53, 00144 Rome, Italy
| | - M. Ludovici
- Laboratorio di Fisiopatologia Cutanea e Centro Integrato di Metabolomica, Istituto Dermatologico San Gallicano IRCCS, Via Chianesi 53, 00144 Rome, Italy
| | - C. Dall'Asta
- Dipartimento di Chimica Organica e Industriale, ‘Università degli Studi di Parma’, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - M. Cirlini
- Dipartimento di Chimica Organica e Industriale, ‘Università degli Studi di Parma’, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - P. Giorni
- Istituto di Entomologia e Patologia Vegetale, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - P. Battilani
- Istituto di Entomologia e Patologia Vegetale, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - C. Bello
- Dipartimento di Biologia Ambientale, Università ‘Sapienza’, Largo Cristina di Svezia 24, 00165 Rome, Italy
| | - A.A. Fabbri
- Dipartimento di Biologia Ambientale, Università ‘Sapienza’, Largo Cristina di Svezia 24, 00165 Rome, Italy
| | - C. Fanelli
- Dipartimento di Biologia Ambientale, Università ‘Sapienza’, Largo Cristina di Svezia 24, 00165 Rome, Italy
| | - M. Reverberi
- Dipartimento di Biologia Ambientale, Università ‘Sapienza’, Largo Cristina di Svezia 24, 00165 Rome, Italy
| |
Collapse
|
37
|
Reverberi M, Punelli M, Smith CA, Zjalic S, Scarpari M, Scala V, Cardinali G, Aspite N, Pinzari F, Payne GA, Fabbri AA, Fanelli C. How peroxisomes affect aflatoxin biosynthesis in Aspergillus flavus. PLoS One 2012; 7:e48097. [PMID: 23094106 PMCID: PMC3477134 DOI: 10.1371/journal.pone.0048097] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022] Open
Abstract
In filamentous fungi, peroxisomes are crucial for the primary metabolism and play a pivotal role in the formation of some secondary metabolites. Further, peroxisomes are important site for fatty acids β-oxidation, the formation of reactive oxygen species and for their scavenging through a complex of antioxidant activities. Oxidative stress is involved in different metabolic events in all organisms and it occurs during oxidative processes within the cell, including peroxisomal β-oxidation of fatty acids. In Aspergillus flavus, an unbalance towards an hyper-oxidant status into the cell is a prerequisite for the onset of aflatoxin biosynthesis. In our preliminary results, the use of bezafibrate, inducer of both peroxisomal β-oxidation and peroxisome proliferation in mammals, significantly enhanced the expression of pex11 and foxA and stimulated aflatoxin synthesis in A. flavus. This suggests the existence of a correlation among peroxisome proliferation, fatty acids β-oxidation and aflatoxin biosynthesis. To investigate this correlation, A. flavus was transformed with a vector containing P33, a gene from Cymbidium ringspot virus able to induce peroxisome proliferation, under the control of the promoter of the Cu,Zn-sod gene of A. flavus. This transcriptional control closely relates the onset of the antioxidant response to ROS increase, with the proliferation of peroxisomes in A. flavus. The AfP33 transformant strain show an up-regulation of lipid metabolism and an higher content of both intracellular ROS and some oxylipins. The combined presence of a higher amount of substrates (fatty acids-derived), an hyper-oxidant cell environment and of hormone-like signals (oxylipins) enhances the synthesis of aflatoxins in the AfP33 strain. The results obtained demonstrated a close link between peroxisome metabolism and aflatoxin synthesis.
Collapse
Affiliation(s)
- Massimo Reverberi
- Dipartimento di Biologia Ambientale, Università Sapienza, Roma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu L, Long LK, An Y, Yang J, Xu X, Hu CH, Liu G. The thioredoxin reductase-encoding gene ActrxR1 is involved in the cephalosporin C production of Acremonium chrysogenum in methionine-supplemented medium. Appl Microbiol Biotechnol 2012; 97:2551-62. [DOI: 10.1007/s00253-012-4368-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/08/2012] [Accepted: 08/12/2012] [Indexed: 10/28/2022]
|
39
|
De Rossi P, Ricelli A, Reverberi M, Bello C, Fabbri A, Fanelli C, De Rossi A, Corradini D, Nicoletti I. Grape variety related trans-resveratrol induction affects Aspergillus carbonarius growth and ochratoxin A biosynthesis. Int J Food Microbiol 2012; 156:127-32. [DOI: 10.1016/j.ijfoodmicro.2012.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/09/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
|
40
|
Aoyap1 regulates OTA synthesis by controlling cell redox balance in Aspergillus ochraceus. Appl Microbiol Biotechnol 2012; 95:1293-304. [PMID: 22410746 DOI: 10.1007/s00253-012-3985-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/17/2012] [Accepted: 02/17/2012] [Indexed: 10/28/2022]
Abstract
Among the various factors correlated with toxin production in fungi, oxidative stress is a crucial one. In relation to this, an important role is played by oxidative stress-related receptors. These receptors can transduce the "oxidative message" to the nucleus and promote a transcriptional change targeted at restoring the correct redox balance in the cell. In Aspergillus parasiticus, the knockout of the ApyapA gene, a homologue of the yeast Yap-1, disables the fungus's capacity to restore the correct redox balance in the cell. As a consequence, the onset of secondary metabolism and aflatoxins synthesis is triggered. Some clues as to the involvement of oxidative stress in the regulation of ochratoxin A (OTA) synthesis in Aspergillus ochraceus have already been provided by the disruption of the oxylipin-producer AoloxA gene. In this paper, we add further evidence that oxidative stress is also involved in the regulation of OTA biosynthesis in A. ochraceus. In fact, the use of certain oxidants and, especially, the deletion of the yap1-homologue Aoyap1 further emphasize the role played by this stress in controlling metabolic and morphological changes in A. ochraceus.
Collapse
|
41
|
Davolos D, Persiani AM, Pietrangeli B, Ricelli A, Maggi O. Aspergillus affinis sp. nov., a novel ochratoxin A-producing Aspergillus species (section Circumdati) isolated from decomposing leaves. Int J Syst Evol Microbiol 2011; 62:1007-1015. [PMID: 21788229 DOI: 10.1099/ijs.0.034785-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two ochratoxin A (OTA)-producing Aspergillus isolates, recently collected from submerged riparian decomposing leaves in Italy, were found to have a similar morphology to Aspergillus cretensis (subgenus Circumdati, section Circumdati). However, marked differences emerged between these two novel isolates and A. cretensis as the former displayed different colony features and had larger vesicles, metulae, phialides and conidia, as well as a distinct sclerotial form and size. In order to determine the taxonomic status and to infer the evolutionary relationships of these two morphologically identical isolates, a molecular phylogenetic analysis was performed on all the officially recognized lineages in the section Circumdati. The DNA sequences and the deduced amino acid residues from the nuclear loci were analysed. Both rRNA and protein coding genes were assessed, which are widely used to differentiate taxa belonging to genus Aspergillus at various evolutionary levels. The 5.8S rDNA gene and internal transcribed spacers (ITS), the D1/D2 domains of the 28S rDNA gene, a region of the tubulin beta chain gene (benA) and part of the calmodulin gene (cmd) were amplified by PCR and then sequenced. The analysis of the rRNA regions and of the benA and cmd sequence data indicated that the two isogenic isolates belonged to a genetically distinct OTA-producing species of the genus Aspergillus. The isolates are proposed as representing a novel species, Aspergillus affinis sp. nov., with the type strain ATCC MYA-4773T=CBS 129190=417). Phylogenetically, A. affinis sp. nov. appeared to be very closely related to A. cretensis, from which it could be distinguished by means of a morphological trait analysis.
Collapse
Affiliation(s)
- Domenico Davolos
- Department of Productive Plants and Interaction with the Environment (DIPIA), National Institute for Occupational Safety and Prevention (INAIL-exISPESL), Via Urbana, 167 - 00184 Rome, Italy
| | - Anna Maria Persiani
- Department of Environmental Biology, Sapienza University of Rome, P. le A. Moro, 5-00185 Rome, Italy
| | - Biancamaria Pietrangeli
- Department of Productive Plants and Interaction with the Environment (DIPIA), National Institute for Occupational Safety and Prevention (INAIL-exISPESL), Via Urbana, 167 - 00184 Rome, Italy
| | - Alessandra Ricelli
- Institute of Biomolecular Chemistry ICB-CNR, P. le A. Moro, 5 - 00185 Rome, Italy
| | - Oriana Maggi
- Department of Environmental Biology, Sapienza University of Rome, P. le A. Moro, 5-00185 Rome, Italy
| |
Collapse
|
42
|
Garza-López PM, Konigsberg M, Gómez-Quiroz LE, Loera O. Physiological and antioxidant response by Beauveria bassiana Bals (Vuill.) to different oxygen concentrations. World J Microbiol Biotechnol 2011; 28:353-9. [PMID: 22806811 DOI: 10.1007/s11274-011-0827-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 06/18/2011] [Indexed: 12/25/2022]
Abstract
The effect of three levels of oxygen (normal atmosphere (21% O(2)), low oxygen (16% O(2)) and enriched oxygen (26% O(2))) on the production and germination of conidia by Beauveria bassiana was evaluated using rice as a substrate. The maximum yield of conidia was achieved under hypoxia (16% O(2)) after 8 days of culture (1.51 × 10(9) conidia per gram of initial dry substrate), representing an increase of 32% compared to the normal atmosphere. However, germination was reduced by at least 27% due to atmospheric modifications. Comparison of antioxidant enzyme activity (superoxide dismutases and catalases) with the oxidation profiles of biomolecules (proteins and lipids) showed that a decrease in catalase activity in the final days of culture coincided with an increase in the amount of oxidized lipids, showing that oxidative stress was a consequence of pulses of different concentrations of O(2). This is the first study describing oxidative stress induction by atmospheric modification, with practical implications for conidia production.
Collapse
Affiliation(s)
- Paul Misael Garza-López
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, 09340, México, DF, Mexico
| | | | | | | |
Collapse
|
43
|
Proteome analysis of the fungus Aspergillus carbonarius under ochratoxin A producing conditions. Int J Food Microbiol 2011; 147:162-9. [PMID: 21531034 DOI: 10.1016/j.ijfoodmicro.2011.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/22/2011] [Accepted: 03/30/2011] [Indexed: 11/22/2022]
Abstract
Aspergillus carbonarius is an important ochratoxin A producing fungus that is responsible for mycotoxin contamination of grapes and wine. In this study, the proteomes of highly (W04-40) and weakly (W04-46) OTA-producing A. carbonarius strains were compared to identify proteins that may be involved in OTA biosynthesis. Protein samples were extracted from two biological replicates and subjected to two dimensional gel electrophoresis analysis and mass spectrometry. Expression profile comparison (PDQuest software), revealed 21 differential spots that were statistically significant and showed a two-fold change in expression, or greater. Among these, nine protein spots were identified by MALDI-MS/MS and MASCOT database and twelve remain unidentified. Of the identified proteins, seven showed a higher expression in strain W04-40 (high OTA producer) and two in strain W04-46 (low OTA producer). Some of the identified amino acid sequences shared homology with proteins involved in regulation, amino acid metabolism, oxidative stress and sporulation. It is worth noting the presence of a protein with 126.5 fold higher abundance in strain W04-40 showing homology with protein CipC, a protein with unknown function related with pathogenesis and mycotoxin production by some authors. Variations in protein expression were also further investigated at the mRNA level by real-time PCR analysis. The mRNA expression levels from three identified proteins including CipC showed correlation with protein expression levels. This study represents the first proteomic analysis for a comparison of two A. carbonarius strains with different OTA production and will contribute to a better understanding of the molecular events involved in OTA biosynthesis.
Collapse
|
44
|
Abstract
In nearly every living organism, metabolites derived from lipid peroxidation, the so-called oxylipins, are involved in regulating developmental processes as well as environmental responses. Among these bioactive lipids, the mammalian and plant oxylipins are the best characterized, and much information about their physiological role and biosynthetic pathways has accumulated during recent years. Although the occurrence of oxylipins and enzymes involved in their biosynthesis has been studied for nearly three decades, knowledge about fungal oxylipins is still scarce as compared with the situation in plants and mammals. However, the research performed so far has shown that the structural diversity of oxylipins produced by fungi is high and, furthermore, that the enzymes involved in oxylipin metabolism are diverse and often exhibit unusual catalytic activities. The aim of this review is to present a synopsis of the oxylipins identified so far in fungi and the enzymes involved in their biosynthesis.
Collapse
Affiliation(s)
- Florian Brodhun
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
45
|
Abstract
Aspergillus flavus is saprophytic soil fungus that infects and contaminates preharvest and postharvest seed crops with the carcinogenic secondary metabolite aflatoxin. The fungus is also an opportunistic animal and human pathogen causing aspergillosis diseases with incidence increasing in the immunocompromised population. Whole genome sequences of A. flavus have been released and reveal 55 secondary metabolite clusters that are regulated by different environmental regimes and the global secondary metabolite regulators LaeA and VeA. Characteristics of A. flavus associated with pathogenicity and niche specialization include secondary metabolite production, enzyme elaboration, and a sophisticated oxylipin host crosstalk associated with a quorum-like development program. One of the more promising strategies in field control involves the use of atoxic strains of A. flavus in competitive exclusion studies. In this review, we discuss A. flavus as an agricultural and medical threat and summarize recent research advances in genomics, elucidation of parameters of pathogenicity, and control measures.
Collapse
Affiliation(s)
- Saori Amaike
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
46
|
Reverberi M, Ricelli A, Zjalic S, Fabbri AA, Fanelli C. Natural functions of mycotoxins and control of their biosynthesis in fungi. Appl Microbiol Biotechnol 2010; 87:899-911. [PMID: 20495914 DOI: 10.1007/s00253-010-2657-5] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 12/31/2022]
Abstract
Mycotoxins are harmful secondary metabolites produced by a range of widespread fungi belonging in the main to Fusarium, Aspergillus and Penicillium genera. But why should fungi produce toxins? And how is the biosynthesis of these toxins regulated? Several separate factors are now known to be capable of modulating mycotoxin synthesis; however, in this study, focussing just on mycotoxins whose regulatory mechanisms have already been established, we introduce a further factor based on a novel consideration. Various different mycotoxin biosynthetic pathways appear to share a common factor in that they are all susceptible to the influence of reactive oxygen species. In fact, when a fungus receives an external stimulus, it reacts by activating, through a well-defined signal cascade, a profound change in its lifestyle. This change usually leads to the activation of global gene regulators and, in particular, of transcription factors which modulate mycotoxin gene cluster expression. Some mycotoxins have a clear-cut role both in generating a pathogenetic process, i.e. fumonisins and some trichothecenes, and in competing with other organisms, i.e. patulin. In other cases, such as aflatoxins, more than one role can be hypothesised. In this review, we suggest an "oxidative stress theory of mycotoxin biosynthesis" to explain the role and the regulation of some of the above mentioned toxins.
Collapse
Affiliation(s)
- Massimo Reverberi
- Department of Plant Biology, University Sapienza, L.go Cristina di Svezia 24, 00165, Rome, Italy.
| | | | | | | | | |
Collapse
|
47
|
The lipid language of plant-fungal interactions. Fungal Genet Biol 2010; 48:4-14. [PMID: 20519150 DOI: 10.1016/j.fgb.2010.05.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/12/2010] [Accepted: 05/12/2010] [Indexed: 11/20/2022]
Abstract
Lipid mediated cross-kingdom communication between hosts and pathogens is a rapidly emerging field in molecular plant-fungal interactions. Amidst our growing understanding of fungal and plant chemical cross-talk lies the distinct, yet little studied, role for a group of oxygenated lipids derived from polyunsaturated fatty acids, termed oxylipins. Endogenous fungal oxylipins are known for their roles in carrying out pathogenic strategies to successfully colonize their host, reproduce, and synthesize toxins. While plant oxylipins also have functions in reproduction and development, they are largely recognized as agents that facilitate resistance to pathogen attack. Here we review the composition and endogenous functions of oxylipins produced by both plants and fungi and introduce evidence which suggests that fungal pathogens exploit host oxylipins to facilitate their own virulence and pathogenic development. Specifically, we describe how fungi induce plant lipid metabolism to utilize plant oxylipins in order to promote G-protein-mediated regulation of sporulation and mycotoxin production in the fungus. The use of host-ligand mimicry (i.e. coronatine) to manipulate plant defense responses that benefit the fungus are also implicated.
Collapse
|