1
|
Xue T, Chen D, Su Q, Yuan X, Liu K, Huang L, Fang J, Chen J, He W, Chen Y. Improved ethanol tolerance and production of Saccharomyces cerevisiae by global transcription machinery engineering via directed evolution of the SPT8 gene. FOOD BIOTECHNOL 2019. [DOI: 10.1080/08905436.2019.1572517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ting Xue
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
- Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Duo Chen
- Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Qiuqiong Su
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Fujian Normal University, Fuzhou, China
| | - Xue Yuan
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Fujian Normal University, Fuzhou, China
| | - Kui Liu
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Fujian Normal University, Fuzhou, China
| | - Luqiang Huang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Jingping Fang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Jiebo Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjin He
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
- Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
2
|
Affiliation(s)
- Tao Jin
- Iowa State University; Department of Chemical and Biological Engineering; 2114 Sweeney Hall, 618 Bissell Rd. Ames, IA 50011 USA
| | - Jieni Lian
- Iowa State University; Department of Chemical and Biological Engineering; 2114 Sweeney Hall, 618 Bissell Rd. Ames, IA 50011 USA
| | - Laura R. Jarboe
- Iowa State University; Department of Chemical and Biological Engineering; 2114 Sweeney Hall, 618 Bissell Rd. Ames, IA 50011 USA
| |
Collapse
|
3
|
Gu P, Su T, Qi Q. Novel technologies provide more engineering strategies for amino acid-producing microorganisms. Appl Microbiol Biotechnol 2016; 100:2097-105. [PMID: 26754821 DOI: 10.1007/s00253-015-7276-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/20/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
Abstract
Traditionally, amino acid-producing strains were obtained by random mutagenesis and subsequent selection. With the development of genetic and metabolic engineering techniques, various microorganisms with high amino acid production yields are now constructed by rational design of targeted biosynthetic pathways. Recently, novel technologies derived from systems and synthetic biology have emerged and open a new promising avenue towards the engineering of amino acid production microorganisms. In this review, these approaches, including rational engineering of rate-limiting enzymes, real-time sensing of end-products, pathway optimization on the chromosome, transcription factor-mediated strain improvement, and metabolic modeling and flux analysis, were summarized with regard to their application in microbial amino acid production.
Collapse
Affiliation(s)
- Pengfei Gu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China.
| |
Collapse
|
4
|
Petruzzi L, Rosaria Corbo M, Sinigaglia M, Bevilacqua A. Brewer’s yeast in controlled and uncontrolled fermentations, with a focus on novel, nonconventional, and superior strains. FOOD REVIEWS INTERNATIONAL 2015. [DOI: 10.1080/87559129.2015.1075211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Basak S, Jiang R. Enhancing E. coli tolerance towards oxidative stress via engineering its global regulator cAMP receptor protein (CRP). PLoS One 2012; 7:e51179. [PMID: 23251448 PMCID: PMC3522674 DOI: 10.1371/journal.pone.0051179] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/30/2012] [Indexed: 12/11/2022] Open
Abstract
Oxidative damage to microbial hosts often occurs under stressful conditions during bioprocessing. Classical strain engineering approaches are usually both time-consuming and labor intensive. Here, we aim to improve E. coli performance under oxidative stress via engineering its global regulator cAMP receptor protein (CRP), which can directly or indirectly regulate redox-sensing regulators SoxR and OxyR, and other ~400 genes in E. coli. Error-prone PCR technique was employed to introduce modifications to CRP, and three mutants (OM1~OM3) were identified with improved tolerance via H(2)O(2) enrichment selection. The best mutant OM3 could grow in 12 mM H(2)O(2) with the growth rate of 0.6 h(-1), whereas the growth of wild type was completely inhibited at this H(2)O(2) concentration. OM3 also elicited enhanced thermotolerance at 48°C as well as resistance against cumene hydroperoxide. The investigation about intracellular reactive oxygen species (ROS), which determines cell viability, indicated that the accumulation of ROS in OM3 was always lower than in WT with or without H(2)O(2) treatment. Genome-wide DNA microarray analysis has shown not only CRP-regulated genes have demonstrated great transcriptional level changes (up to 8.9-fold), but also RpoS- and OxyR-regulated genes (up to 7.7-fold). qRT-PCR data and enzyme activity assay suggested that catalase (katE) could be a major antioxidant enzyme in OM3 instead of alkyl hydroperoxide reductase or superoxide dismutase. To our knowledge, this is the first work on improving E. coli oxidative stress resistance by reframing its transcription machinery through its native global regulator. The positive outcome of this approach may suggest that engineering CRP can be successfully implemented as an efficient strain engineering alternative for E. coli.
Collapse
Affiliation(s)
- Souvik Basak
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Rongrong Jiang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
6
|
Wang Z, Gao C, Wang Q, Liang Q, Qi Q. Production of pyruvate in Saccharomyces cerevisiae through adaptive evolution and rational cofactor metabolic engineering. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Puligundla P, Smogrovicova D, Obulam VSR, Ko S. Very high gravity (VHG) ethanolic brewing and fermentation: a research update. J Ind Microbiol Biotechnol 2011; 38:1133-44. [DOI: 10.1007/s10295-011-0999-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 06/07/2011] [Indexed: 11/30/2022]
|