1
|
Cao Y, Li J, Liu L, Du G, Liu Y. Harnessing microbial heterogeneity for improved biosynthesis fueled by synthetic biology. Synth Syst Biotechnol 2024; 10:281-293. [PMID: 39686977 PMCID: PMC11646789 DOI: 10.1016/j.synbio.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Metabolic engineering-driven microbial cell factories have made great progress in the efficient bioproduction of biochemical and recombinant proteins. However, the low efficiency and robustness of microbial cell factories limit their industrial applications. Harnessing microbial heterogeneity contributes to solving this. In this review, the origins of microbial heterogeneity and its effects on biosynthesis are first summarized. Synthetic biology-driven tools and strategies that can be used to improve biosynthesis by increasing and reducing microbial heterogeneity are then systematically summarized. Next, novel single-cell technologies available for unraveling microbial heterogeneity and facilitating heterogeneity regulation are discussed. Furthermore, a combined workflow of increasing genetic heterogeneity in the strain-building step to help in screening highly productive strains - reducing heterogeneity in the production process to obtain highly robust strains (IHP-RHR) facilitated by single-cell technologies was proposed to obtain highly productive and robust strains by harnessing microbial heterogeneity. Finally, the prospects and future challenges are discussed.
Collapse
Affiliation(s)
- Yanting Cao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Midani FS, David LA. Tracking defined microbial communities by multicolor flow cytometry reveals tradeoffs between productivity and diversity. Front Microbiol 2023; 13:910390. [PMID: 36687598 PMCID: PMC9849913 DOI: 10.3389/fmicb.2022.910390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/29/2022] [Indexed: 01/07/2023] Open
Abstract
Cross feeding between microbes is ubiquitous, but its impact on the diversity and productivity of microbial communities is incompletely understood. A reductionist approach using simple microbial communities has the potential to detect cross feeding interactions and their impact on ecosystem properties. However, quantifying abundance of more than two microbes in a community in a high throughput fashion requires rapid, inexpensive assays. Here, we show that multicolor flow cytometry combined with a machine learning-based classifier can rapidly quantify species abundances in simple, synthetic microbial communities. Our approach measures community structure over time and detects the exchange of metabolites in a four-member community of fluorescent Bacteroides species. Notably, we quantified species abundances in co-cultures and detected evidence of cooperation in polysaccharide processing and competition for monosaccharide utilization. We also observed that co-culturing on simple sugars, but not complex sugars, reduced microbial productivity, although less productive communities maintained higher community diversity. In summary, our multicolor flow cytometric approach presents an economical, tractable model system for microbial ecology using well-studied human bacteria. It can be extended to include additional species, evaluate more complex environments, and assay response of communities to a variety of disturbances.
Collapse
Affiliation(s)
- Firas S. Midani
- Center for Genomic and Computational Biology, Duke University, Durham, NC, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Lawrence A. David
- Center for Genomic and Computational Biology, Duke University, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
3
|
Hartmann FSF, Udugama IA, Seibold GM, Sugiyama H, Gernaey KV. Digital models in biotechnology: Towards multi-scale integration and implementation. Biotechnol Adv 2022; 60:108015. [PMID: 35781047 DOI: 10.1016/j.biotechadv.2022.108015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 12/28/2022]
Abstract
Industrial biotechnology encompasses a large area of multi-scale and multi-disciplinary research activities. With the recent megatrend of digitalization sweeping across all industries, there is an increased focus in the biotechnology industry on developing, integrating and applying digital models to improve all aspects of industrial biotechnology. Given the rapid development of this field, we systematically classify the state-of-art modelling concepts applied at different scales in industrial biotechnology and critically discuss their current usage, advantages and limitations. Further, we critically analyzed current strategies to couple cell models with computational fluid dynamics to study the performance of industrial microorganisms in large-scale bioprocesses, which is of crucial importance for the bio-based production industries. One of the most challenging aspects in this context is gathering intracellular data under industrially relevant conditions. Towards comprehensive models, we discuss how different scale-down concepts combined with appropriate analytical tools can capture intracellular states of single cells. We finally illustrated how the efforts could be used to develop digitals models suitable for both cell factory design and process optimization at industrial scales in the future.
Collapse
Affiliation(s)
- Fabian S F Hartmann
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Isuru A Udugama
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 228 A, 2800 Kgs. Lyngby, Denmark.
| | - Gerd M Seibold
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Hirokazu Sugiyama
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Krist V Gernaey
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 228 A, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
4
|
Wright NR, Rønnest NP, Sonnenschein N. Single-Cell Technologies to Understand the Mechanisms of Cellular Adaptation in Chemostats. Front Bioeng Biotechnol 2020; 8:579841. [PMID: 33392163 PMCID: PMC7775484 DOI: 10.3389/fbioe.2020.579841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
There is a growing interest in continuous manufacturing within the bioprocessing community. In this context, the chemostat process is an important unit operation. The current application of chemostat processes in industry is limited although many high yielding processes are reported in literature. In order to reach the full potential of the chemostat in continuous manufacture, the output should be constant. However, adaptation is often observed resulting in changed productivities over time. The observed adaptation can be coupled to the selective pressure of the nutrient-limited environment in the chemostat. We argue that population heterogeneity should be taken into account when studying adaptation in the chemostat. We propose to investigate adaptation at the single-cell level and discuss the potential of different single-cell technologies, which could be used to increase the understanding of the phenomena. Currently, none of the discussed single-cell technologies fulfill all our criteria but in combination they may reveal important information, which can be used to understand and potentially control the adaptation.
Collapse
Affiliation(s)
- Naia Risager Wright
- Novo Nordisk A/S, Bagsvaerd, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Blankenburg S, Hentschker C, Nagel A, Hildebrandt P, Michalik S, Dittmar D, Surmann K, Völker U. Improving Proteome Coverage for Small Sample Amounts: An Advanced Method for Proteomics Approaches with Low Bacterial Cell Numbers. Proteomics 2019; 19:e1900192. [DOI: 10.1002/pmic.201900192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/29/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Sascha Blankenburg
- Interfaculty Institute for Genetics and Functional GenomicsUniversity Medicine Greifswald Felix‐Hausdorff‐Str. 8 17475 Greifswald Germany
| | - Christian Hentschker
- Interfaculty Institute for Genetics and Functional GenomicsUniversity Medicine Greifswald Felix‐Hausdorff‐Str. 8 17475 Greifswald Germany
| | - Anna Nagel
- Interfaculty Institute for Genetics and Functional GenomicsUniversity Medicine Greifswald Felix‐Hausdorff‐Str. 8 17475 Greifswald Germany
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional GenomicsUniversity Medicine Greifswald Felix‐Hausdorff‐Str. 8 17475 Greifswald Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional GenomicsUniversity Medicine Greifswald Felix‐Hausdorff‐Str. 8 17475 Greifswald Germany
| | - Denise Dittmar
- Interfaculty Institute for Genetics and Functional GenomicsUniversity Medicine Greifswald Felix‐Hausdorff‐Str. 8 17475 Greifswald Germany
| | - Kristin Surmann
- Interfaculty Institute for Genetics and Functional GenomicsUniversity Medicine Greifswald Felix‐Hausdorff‐Str. 8 17475 Greifswald Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional GenomicsUniversity Medicine Greifswald Felix‐Hausdorff‐Str. 8 17475 Greifswald Germany
| |
Collapse
|
6
|
Chen C, Harst A, You W, Xu J, Ning K, Poetsch A. Proteomic study uncovers molecular principles of single-cell-level phenotypic heterogeneity in lipid storage of Nannochloropsis oceanica. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:21. [PMID: 30740142 PMCID: PMC6360718 DOI: 10.1186/s13068-019-1361-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Nannochloropsis oceanica belongs to a large group of photoautotrophic eukaryotic organisms that play important roles in fixation and cycling of atmospheric CO2. Its capability of storing solar energy and carbon dioxide in the form of triacylglycerol (TAG) of up to 60% of total weight under nitrogen deprivation stress sparked interest in its use for biofuel production. Phenotypes varying in lipid accumulation among an N. oceanica population can be disclosed by single-cell analysis/sorting using fluorescence-activated cell sorting (FACS); yet the phenomenon of single cell heterogeneity in an algae population remains to be fully understood at the molecular level. In this study, combination of FACS and proteomics was used for identification, quantification and differentiation of these heterogeneities on the molecular level. RESULTS For N. oceanica cultivated under nitrogen deplete (-N) and replete (+N) conditions, two groups differing in lipid content were distinguished. These differentiations could be recognized on the population as well as the single-cell levels; proteomics uncovered alterations in carbon fixation and flux, photosynthetic machinery, lipid storage and turnover in the populations. Although heterogeneity patterns have been affected by nitrogen supply and cultivation conditions of the N. oceanica populations, differentiation itself seems to be very robust against these factors: cultivation under +N, -N, in shaker bottles, and in a photo-bioreactor all split into two subpopulations. Intriguingly, population heterogeneity resumed after subpopulations were separately recultivated for a second round, refuting the possible development of genetic heterogeneity in the course of sorting and cultivation. CONCLUSIONS This work illustrates for the first time the feasibility of combining FACS and (prote)-omics for mechanistic understanding of phenotypic heterogeneity in lipid-producing microalgae. Such combinatorial method can facilitate molecular breeding and design of bioprocesses.
Collapse
Affiliation(s)
- Chaoyun Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Andreas Harst
- Plant Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Wuxin You
- Plant Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 Shandong China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 Shandong China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth, PL4 8AA UK
| |
Collapse
|
7
|
Queiroz PS, Ruas FAD, Barboza NR, de Castro Borges W, Guerra-Sá R. Alterations in the proteomic composition of Serratia marcescens in response to manganese (II). BMC Biotechnol 2018; 18:83. [PMID: 30594179 PMCID: PMC6311052 DOI: 10.1186/s12896-018-0493-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/17/2018] [Indexed: 02/03/2023] Open
Abstract
Background Proteomics is an important tool for the investigation of dynamic physiological responses of microbes under heavy metal stress. To gain insight into how bacteria respond to manganese (II) and identify the proteins involved in Mn (II) oxidation, the shotgun proteomics approach was applied to a potential Mn (II)-oxidizing Serratia marcescens strain cultivated in the absence and presence of Mn (II). Results The LG1 strain, which grew equally well in the two conditions, was found to express a set of proteins related to cellular processes vital for survival, as well as proteins involved in adaptation and tolerance to Mn (II). The multicopper oxidase CueO was identified, indicating its probable participation in the Mn (II) bio-oxidation; however, its expression was not modulated by the presence of Mn (II). A set of proteins related to cell and metabolic processes vital to the cells were downregulated in the presence of Mn (II), while cell membrane-related proteins involved in the maintenance of cell integrity and survival under stress were upregulated under this condition. Conclusions These findings indicate that the LG1 strain may be applied successfully in the bioremediation of Mn (II), and the shotgun approach provides an efficient means for obtaining the total proteome of this species.
Collapse
Affiliation(s)
- Pollyana Santos Queiroz
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Biológicas (DECBI) & Instituto de Ciências Exatas e Biológica (NUPEB), Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - France Anne Dias Ruas
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Biológicas (DECBI) & Instituto de Ciências Exatas e Biológica (NUPEB), Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Natália Rocha Barboza
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Biológicas (DECBI) & Instituto de Ciências Exatas e Biológica (NUPEB), Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - William de Castro Borges
- Laboratório de Enzimologia e Proteômica, Departamento de Ciências Biológicas (DECBI), Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Renata Guerra-Sá
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Biológicas (DECBI) & Instituto de Ciências Exatas e Biológica (NUPEB), Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil.
| |
Collapse
|
8
|
Freiherr von Boeselager R, Pfeifer E, Frunzke J. Cytometry meets next-generation sequencing - RNA-Seq of sorted subpopulations reveals regional replication and iron-triggered prophage induction in Corynebacterium glutamicum. Sci Rep 2018; 8:14856. [PMID: 30291266 PMCID: PMC6173762 DOI: 10.1038/s41598-018-32997-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/19/2018] [Indexed: 12/18/2022] Open
Abstract
Phenotypic diversification is key to microbial adaptation. Currently, advanced technological approaches offer insights into cell-to-cell variation of bacterial populations at a spatiotemporal resolution. However, the underlying molecular causes or consequences often remain obscure. In this study, we developed a workflow combining fluorescence-activated cell sorting and RNA-sequencing, thereby allowing transcriptomic analysis of 106 bacterial cells. As a proof of concept, the workflow was applied to study prophage induction in a subpopulation of Corynebacterium glutamicum. Remarkably, both the phage genes and flanking genomic regions of the CGP3 prophage revealed significantly increased coverage upon prophage induction - a phenomenon that to date has been obscured by bulk approaches. Genome sequencing of prophage-induced populations suggested regional replication at the CGP3 locus in C. glutamicum. Finally, the workflow was applied to unravel iron-triggered prophage induction in early exponential cultures. Here, an up-shift in iron levels resulted in a heterogeneous response of an SOS (PdivS) reporter. RNA-sequencing of the induced subpopulation confirmed induction of the SOS response triggering also activation of the CGP3 prophage. The fraction of CGP3-induced cells was enhanced in a mutant lacking the iron regulator DtxR suffering from enhanced iron uptake. Altogether, these findings demonstrate the potential of the established workflow to gain insights into the phenotypic dynamics of bacterial populations.
Collapse
Affiliation(s)
| | - Eugen Pfeifer
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Julia Frunzke
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
9
|
Lambrecht J, Schattenberg F, Harms H, Mueller S. Characterizing Microbiome Dynamics - Flow Cytometry Based Workflows from Pure Cultures to Natural Communities. J Vis Exp 2018. [PMID: 30059034 DOI: 10.3791/58033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The investigation of pure cultures and monitoring of microbial community dynamics is vital to understand and control natural ecosystems and technical applications driven by microorganisms. Next generation sequencing methods are widely utilized to resolve microbiomes, but they are generally resource and time intensive and deliver mostly qualitative information. Flow cytometric microbiome analysis does not suffer from those disadvantages and can provide relative subcommunity abundances and absolute cell numbers at-line. Although it does not deliver direct phylogenetic information, it can enhance the analysis depth and resolution of sequencing approaches. In sharp contrast to medical applications in both research and routine settings, flow cytometry is still not widely used for microbiome analysis. Missing information on sample preparation and data analysis pipelines may create an entry barrier for the researchers facing microbiome analysis challenges that would often be textbook flow cytometry applications. Here, we present three comprehensive workflows for pure cultures, complex communities in clear medium and complex communities in challenging matrices, respectively. We describe individual sampling and fixation procedures and optimized staining protocols for the respective sample sets. We elaborate the cytometric analysis with a complex research centered and an application focused bench top device, describe the cell sorting procedure and suggest data analysis packages. We furthermore propose important experimental controls and apply the presented workflows to the respective sample sets.
Collapse
Affiliation(s)
- Johannes Lambrecht
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ
| | - Florian Schattenberg
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ
| | - Susann Mueller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ;
| |
Collapse
|
10
|
Heins AL, Weuster-Botz D. Population heterogeneity in microbial bioprocesses: origin, analysis, mechanisms, and future perspectives. Bioprocess Biosyst Eng 2018. [PMID: 29541890 DOI: 10.1007/s00449-018-1922-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Population heterogeneity is omnipresent in all bioprocesses even in homogenous environments. Its origin, however, is only so well understood that potential strategies like bet-hedging, noise in gene expression and division of labour that lead to population heterogeneity can be derived from experimental studies simulating the dynamics in industrial scale bioprocesses. This review aims at summarizing the current state of the different parts of single cell studies in bioprocesses. This includes setups to visualize different phenotypes of single cells, computational approaches connecting single cell physiology with environmental influence and special cultivation setups like scale-down reactors that have been proven to be useful to simulate large-scale conditions. A step in between investigation of populations and single cells is studying subpopulations with distinct properties that differ from the rest of the population with sub-omics methods which are also presented here. Moreover, the current knowledge about population heterogeneity in bioprocesses is summarized for relevant industrial production hosts and mixed cultures, as they provide the unique opportunity to distribute metabolic burden and optimize production processes in a way that is impossible in traditional monocultures. In the end, approaches to explain the underlying mechanism of population heterogeneity and the evidences found to support each hypothesis are presented. For instance, population heterogeneity serving as a bet-hedging strategy that is used as coordinated action against bioprocess-related stresses while at the same time spreading the risk between individual cells as it ensures the survival of least a part of the population in any environment the cells encounter.
Collapse
Affiliation(s)
- Anna-Lena Heins
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany.
| | - Dirk Weuster-Botz
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| |
Collapse
|
11
|
Pereira H, Schulze PS, Schüler LM, Santos T, Barreira L, Varela J. Fluorescence activated cell-sorting principles and applications in microalgal biotechnology. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.12.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Koch C, Müller S. Personalized microbiome dynamics – Cytometric fingerprints for routine diagnostics. Mol Aspects Med 2018; 59:123-134. [DOI: 10.1016/j.mam.2017.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023]
|
13
|
Harst A, Albaum SP, Bojarzyn T, Trötschel C, Poetsch A. Proteomics of FACS-sorted heterogeneous Corynebacterium glutamicum populations. J Proteomics 2017; 160:1-7. [PMID: 28323243 DOI: 10.1016/j.jprot.2017.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/26/2017] [Accepted: 03/13/2017] [Indexed: 01/20/2023]
Abstract
The metabolic status of individual cells in microbial cultures can differ, being relevant for biotechnology, environmental and medical microbiology. However, it is hardly understood in molecular detail due to limitations of current analytical tools. Here, we demonstrate that FACS in combination with proteomics can be used to sort and analyze cell populations based on their metabolic state. A previously established GFP reporter system was used to detect and sort single Corynebacterium glutamicum cells based on the concentration of branched chain amino acids (BCAA) using FACS. A proteomics workflow optimized for small cell numbers was used to quantitatively compare proteomes of a ΔaceE mutant, lacking functional pyruvate dehydrogenase (PD), and the wild type. About 800 proteins could be quantified from 1,000,000 cells. In the ΔaceE mutant BCAA production was coordinated with upregulation of the glyoxylate cycle and TCA cycle to counter the lack of acetyl CoA resulting from the deletion of aceE. BIOLOGICAL SIGNIFICANCE Metabolic pathways in C. glutamicum WT and ΔaceE, devoid of functional pyruvate dehydrogenase, were compared to understand proteome changes that contribute to the high production of branched chain amino acids (BCAA) in the ΔaceE strain. The data complements previous metabolome studies and corroborates the role of malate provided by the glyoxylate cycle and increased activity of glycolysis and pyruvate carboxylase reaction to replenish the TCA cycle. A slight increase in acetohydroxyacid synthase (ILV subunit B) substantiates the previously reported increased pyruvate pool in C. glutamicumΔaceE, and the benefit of additional ilv gene cluster overexpression for BCAA production.
Collapse
Affiliation(s)
- Andreas Harst
- Department of Plant Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Stefan P Albaum
- Bioinformatics Resource Facility, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Tanja Bojarzyn
- Department of Plant Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Christian Trötschel
- Department of Plant Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Ansgar Poetsch
- Department of Plant Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany; School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth PL4 8AA, United Kingdom.
| |
Collapse
|
14
|
Herbst FA, Lünsmann V, Kjeldal H, Jehmlich N, Tholey A, von Bergen M, Nielsen JL, Hettich RL, Seifert J, Nielsen PH. Enhancing metaproteomics--The value of models and defined environmental microbial systems. Proteomics 2016; 16:783-98. [PMID: 26621789 DOI: 10.1002/pmic.201500305] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/03/2015] [Accepted: 11/26/2015] [Indexed: 12/24/2022]
Abstract
Metaproteomics--the large-scale characterization of the entire protein complement of environmental microbiota at a given point in time--has provided new features to study complex microbial communities in order to unravel these "black boxes." New technical challenges arose that were not an issue for classical proteome analytics before that could be tackled by the application of different model systems. Here, we review different current and future model systems for metaproteome analysis. Following a short introduction to microbial communities and metaproteomics, we introduce model systems for clinical and biotechnological research questions including acid mine drainage, anaerobic digesters, and activated sludge. Model systems are useful to evaluate the challenges encountered within (but not limited to) metaproteomics, including species complexity and coverage, biomass availability, or reliable protein extraction. The implementation of model systems can be considered as a step forward to better understand microbial community responses and ecological functions of single member organisms. In the future, improvements are necessary to fully explore complex environmental systems by metaproteomics.
Collapse
Affiliation(s)
- Florian-Alexander Herbst
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Vanessa Lünsmann
- Department of Proteomics, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Henrik Kjeldal
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Nico Jehmlich
- Department of Proteomics, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Martin von Bergen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.,Department of Proteomics, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Lab, Oak Ridge, TN, USA
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Per Halkjaer Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| |
Collapse
|
15
|
Arnfinnsdottir NB, Bjørkøy AV, Lale R, Sletmoen M. Heterogeneity in GFP expression in isogenic populations of P. putida KT2440 investigated using flow cytometry and bacterial microarrays. RSC Adv 2016. [DOI: 10.1039/c5ra23757b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fluorescence intensities were determined using both flow cytometry and bacterial microarrays for Pseudomonas putida expressing GFP upon addition of an inducer. Fluorescence micrographs revealed static inter-cell differences in fluorescence emission.
Collapse
Affiliation(s)
- N. B. Arnfinnsdottir
- Biophysics and Medical Technology
- Department of Physics
- Norwegian University of Science and Technology
- NO-7491 Trondheim
- Norway
| | - A. V. Bjørkøy
- Biophysics and Medical Technology
- Department of Physics
- Norwegian University of Science and Technology
- NO-7491 Trondheim
- Norway
| | - R. Lale
- Department of Biotechnology
- Norwegian University of Science and Technology
- NO-7491 Trondheim
- Norway
| | - M. Sletmoen
- Department of Biotechnology
- Norwegian University of Science and Technology
- NO-7491 Trondheim
- Norway
| |
Collapse
|
16
|
Lieder S, Jahn M, Koepff J, Müller S, Takors R. Environmental stress speeds up DNA replication inPseudomonas putidain chemostat cultivations. Biotechnol J 2015; 11:155-63. [DOI: 10.1002/biot.201500059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/10/2015] [Accepted: 08/04/2015] [Indexed: 01/31/2023]
Affiliation(s)
- Sarah Lieder
- Institute for Biochemical Engineering; University of Stuttgart; Stuttgart Germany
| | - Michael Jahn
- Department of Environmental Microbiology; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Joachim Koepff
- Institute for Biochemical Engineering; University of Stuttgart; Stuttgart Germany
| | - Susann Müller
- Department of Environmental Microbiology; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Ralf Takors
- Institute for Biochemical Engineering; University of Stuttgart; Stuttgart Germany
| |
Collapse
|
17
|
Mahr R, Frunzke J. Transcription factor-based biosensors in biotechnology: current state and future prospects. Appl Microbiol Biotechnol 2015; 100:79-90. [PMID: 26521244 PMCID: PMC4700088 DOI: 10.1007/s00253-015-7090-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 01/01/2023]
Abstract
Living organisms have evolved a plethora of sensing systems for the intra- and extracellular detection of small molecules, ions or physical parameters. Several recent studies have demonstrated that these principles can be exploited to devise synthetic regulatory circuits for metabolic engineering strategies. In this context, transcription factors (TFs) controlling microbial physiology at the level of transcription play a major role in biosensor design, since they can be implemented in synthetic circuits controlling gene expression in dependency of, for example, small molecule production. Here, we review recent progress on the utilization of TF-based biosensors in microbial biotechnology highlighting different areas of application. Recent advances in metabolic engineering reveal TF-based sensors to be versatile tools for strain and enzyme development using high-throughput (HT) screening strategies and adaptive laboratory evolution, the optimization of heterologous pathways via the implementation of dynamic control circuits and for the monitoring of single-cell productivity in live cell imaging studies. These examples underline the immense potential of TF-based biosensor circuits but also identify limitations and room for further optimization.
Collapse
Affiliation(s)
- Regina Mahr
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
18
|
Heyer R, Kohrs F, Reichl U, Benndorf D. Metaproteomics of complex microbial communities in biogas plants. Microb Biotechnol 2015; 8:749-63. [PMID: 25874383 PMCID: PMC4554464 DOI: 10.1111/1751-7915.12276] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 11/29/2022] Open
Abstract
Production of biogas from agricultural biomass or organic wastes is an important source of renewable energy. Although thousands of biogas plants (BGPs) are operating in Germany, there is still a significant potential to improve yields, e.g. from fibrous substrates. In addition, process stability should be optimized. Besides evaluating technical measures, improving our understanding of microbial communities involved into the biogas process is considered as key issue to achieve both goals. Microscopic and genetic approaches to analyse community composition provide valuable experimental data, but fail to detect presence of enzymes and overall metabolic activity of microbial communities. Therefore, metaproteomics can significantly contribute to elucidate critical steps in the conversion of biomass to methane as it delivers combined functional and phylogenetic data. Although metaproteomics analyses are challenged by sample impurities, sample complexity and redundant protein identification, and are still limited by the availability of genome sequences, recent studies have shown promising results. In the following, the workflow and potential pitfalls for metaproteomics of samples from full-scale BGP are discussed. In addition, the value of metaproteomics to contribute to the further advancement of microbial ecology is evaluated. Finally, synergistic effects expected when metaproteomics is combined with advanced imaging techniques, metagenomics, metatranscriptomics and metabolomics are addressed.
Collapse
Affiliation(s)
- Robert Heyer
- Bioprocess Engineering, Otto von Guericke University MagdeburgUniversitätsplatz 2, Magdeburg, 39106, Germany
- Max Planck Institute for Dynamics of Complex Technical SystemsSandtorstr. 1, Magdeburg, 39106, Germany
| | - Fabian Kohrs
- Bioprocess Engineering, Otto von Guericke University MagdeburgUniversitätsplatz 2, Magdeburg, 39106, Germany
- Max Planck Institute for Dynamics of Complex Technical SystemsSandtorstr. 1, Magdeburg, 39106, Germany
| | - Udo Reichl
- Bioprocess Engineering, Otto von Guericke University MagdeburgUniversitätsplatz 2, Magdeburg, 39106, Germany
- Max Planck Institute for Dynamics of Complex Technical SystemsSandtorstr. 1, Magdeburg, 39106, Germany
| | - Dirk Benndorf
- Bioprocess Engineering, Otto von Guericke University MagdeburgUniversitätsplatz 2, Magdeburg, 39106, Germany
- Max Planck Institute for Dynamics of Complex Technical SystemsSandtorstr. 1, Magdeburg, 39106, Germany
| |
Collapse
|
19
|
Otsuka Y, Muto A, Takeuchi R, Okada C, Ishikawa M, Nakamura K, Yamamoto N, Dose H, Nakahigashi K, Tanishima S, Suharnan S, Nomura W, Nakayashiki T, Aref WG, Bochner BR, Conway T, Gribskov M, Kihara D, Rudd KE, Tohsato Y, Wanner BL, Mori H. GenoBase: comprehensive resource database of Escherichia coli K-12. Nucleic Acids Res 2014; 43:D606-17. [PMID: 25399415 PMCID: PMC4383962 DOI: 10.1093/nar/gku1164] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Comprehensive experimental resources, such as ORFeome clone libraries and deletion mutant collections, are fundamental tools for elucidation of gene function. Data sets by omics analysis using these resources provide key information for functional analysis, modeling and simulation both in individual and systematic approaches. With the long-term goal of complete understanding of a cell, we have over the past decade created a variety of clone and mutant sets for functional genomics studies of Escherichia coli K-12. We have made these experimental resources freely available to the academic community worldwide. Accordingly, these resources have now been used in numerous investigations of a multitude of cell processes. Quality control is extremely important for evaluating results generated by these resources. Because the annotation has been changed since 2005, which we originally used for the construction, we have updated these genomic resources accordingly. Here, we describe GenoBase (http://ecoli.naist.jp/GB/), which contains key information about comprehensive experimental resources of E. coli K-12, their quality control and several omics data sets generated using these resources.
Collapse
Affiliation(s)
- Yuta Otsuka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Ai Muto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Rikiya Takeuchi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Chihiro Okada
- Mitsubishi Space Software Co., LTD., 5-4-36 Tsukaguchihonnmachi, Amagasaki, Hyougo 661-0001, Japan
| | - Motokazu Ishikawa
- Mitsubishi Space Software Co., LTD., 5-4-36 Tsukaguchihonnmachi, Amagasaki, Hyougo 661-0001, Japan
| | - Koichiro Nakamura
- Mitsubishi Space Software Co., LTD., 5-4-36 Tsukaguchihonnmachi, Amagasaki, Hyougo 661-0001, Japan
| | - Natsuko Yamamoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Hitomi Dose
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Kenji Nakahigashi
- Institute of Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
| | - Shigeki Tanishima
- Mitsubishi Space Software Co., LTD., 5-4-36 Tsukaguchihonnmachi, Amagasaki, Hyougo 661-0001, Japan
| | - Sivasundaram Suharnan
- Axiohelix, Okinawa Sangyo Shien Center, 502,1831-1, Oroku, Naha-shi, Okinawa 901-0152, Japan
| | - Wataru Nomura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Toru Nakayashiki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Walid G Aref
- Department of Computer Science, Purdue University, 305 N. University Street, West Lafayette, IN 47907-2107, USA
| | | | - Tyrrell Conway
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019-0245, USA
| | - Michael Gribskov
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, 305 N. University Street, West Lafayette, IN 47907-2107, USA Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | - Kenneth E Rudd
- Department Biochemistry and Molecular Biology, University of Miami, P.O. Box 016129, Miami, FL 33101-6129, USA
| | - Yukako Tohsato
- Department of Bioinformatics, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Barry L Wanner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hirotada Mori
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| |
Collapse
|
20
|
Applications of flow cytometry to characterize bacterial physiological responses. BIOMED RESEARCH INTERNATIONAL 2014; 2014:461941. [PMID: 25276788 PMCID: PMC4174974 DOI: 10.1155/2014/461941] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/13/2014] [Accepted: 08/13/2014] [Indexed: 12/30/2022]
Abstract
Although reports of flow cytometry (FCM) applied to bacterial analysis are increasing, studies of FCM related to human cells still vastly outnumber other reports. However, current advances in FCM combined with a new generation of cellular reporter probes have made this technique suitable for analyzing physiological responses in bacteria. We review how FCM has been applied to characterize distinct physiological conditions in bacteria including responses to antibiotics and other cytotoxic chemicals and physical factors, pathogen-host interactions, cell differentiation during biofilm formation, and the mechanisms governing development pathways such as sporulation. Since FCM is suitable for performing studies at the single-cell level, we describe how this powerful technique has yielded invaluable information about the heterogeneous distribution of differently and even specialized responding cells and how it may help to provide insights about how cell interaction takes place in complex structures, such as those that prevail in bacterial biofilms.
Collapse
|
21
|
Lieder S, Jahn M, Seifert J, von Bergen M, Müller S, Takors R. Subpopulation-proteomics reveal growth rate, but not cell cycling, as a major impact on protein composition in Pseudomonas putida KT2440. AMB Express 2014; 4:71. [PMID: 25401072 PMCID: PMC4230896 DOI: 10.1186/s13568-014-0071-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 12/14/2022] Open
Abstract
Population heterogeneity occurring in industrial microbial bioprocesses is regarded as a putative effector causing performance loss in large scale. While the existence of subpopulations is a commonly accepted fact, their appearance and impact on process performance still remains rather unclear. During cell cycling, distinct subpopulations differing in cell division state and DNA content appear which contribute individually to the efficiency of the bioprocess. To identify stressed or impaired subpopulations, we analyzed the interplay of growth rate, cell cycle and phenotypic profile of subpopulations by using flow cytometry and cell sorting in conjunction with mass spectrometry based global proteomics. Adjusting distinct growth rates in chemostats with the model strain Pseudomonas putida KT2440, cells were differentiated by DNA content reflecting different cell cycle stages. The proteome of separated subpopulations at given growth rates was found to be highly similar, while different growth rates caused major changes of the protein inventory with respect to e.g. carbon storage, motility, lipid metabolism and the translational machinery. In conclusion, cells in various cell cycle stages at the same growth rate were found to have similar to identical proteome profiles showing no significant population heterogeneity on the proteome level. In contrast, the growth rate clearly determines the protein composition and therefore the metabolic strategy of the cells.
Collapse
Affiliation(s)
- Sarah Lieder
- Institute for Biochemical Engineering, University of Stuttgart, Allmandring 31, Stuttgart, Germany
| | - Michael Jahn
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, Leipzig, 04318, Germany
| | - Jana Seifert
- Department of Proteomics, Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, Leipzig, 04318, Germany
- Institute of Animal Nutrition, University of Hohenheim, Emil-Wolff-Straße 8 and 10, Stuttgart, 70599, Germany
| | - Martin von Bergen
- Department of Proteomics, Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, Leipzig, 04318, Germany
- Department of Metabolomics, Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, Leipzig, 04318, Germany
- Department of Biotechnology, Chemistry and Environmental Engineering, University of Aalborg, Sohngaardsholmsvej 49, Aalborg, 9000, Denmark
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, Leipzig, 04318, Germany
| | - Ralf Takors
- Institute for Biochemical Engineering, University of Stuttgart, Allmandring 31, Stuttgart, Germany
| |
Collapse
|
22
|
Jahn M, Vorpahl C, Türkowsky D, Lindmeyer M, Bühler B, Harms H, Müller S. Accurate Determination of Plasmid Copy Number of Flow-Sorted Cells using Droplet Digital PCR. Anal Chem 2014; 86:5969-76. [DOI: 10.1021/ac501118v] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Michael Jahn
- Helmholtz-Centre
for Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Carsten Vorpahl
- Helmholtz-Centre
for Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Dominique Türkowsky
- Helmholtz-Centre
for Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Martin Lindmeyer
- Laboratory
of Chemical Biotechnology, Department of Biochemical and Chemical
Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227 Dortmund, Germany
| | - Bruno Bühler
- Laboratory
of Chemical Biotechnology, Department of Biochemical and Chemical
Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227 Dortmund, Germany
| | - Hauke Harms
- Helmholtz-Centre
for Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Susann Müller
- Helmholtz-Centre
for Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
23
|
Bharti RK, Srivastava S, Thakur IS. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide. PLoS One 2014; 9:e91300. [PMID: 24619032 PMCID: PMC3949746 DOI: 10.1371/journal.pone.0091300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/08/2014] [Indexed: 11/19/2022] Open
Abstract
A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.
Collapse
Affiliation(s)
- Randhir K. Bharti
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shaili Srivastava
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
24
|
Boon E, Meehan CJ, Whidden C, Wong DHJ, Langille MGI, Beiko RG. Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol Rev 2014; 38:90-118. [PMID: 23909933 PMCID: PMC4298764 DOI: 10.1111/1574-6976.12035] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/02/2013] [Accepted: 07/10/2013] [Indexed: 12/17/2022] Open
Abstract
A central challenge in microbial community ecology is the delineation of appropriate units of biodiversity, which can be taxonomic, phylogenetic, or functional in nature. The term 'community' is applied ambiguously; in some cases, the term refers simply to a set of observed entities, while in other cases, it requires that these entities interact with one another. Microorganisms can rapidly gain and lose genes, potentially decoupling community roles from taxonomic and phylogenetic groupings. Trait-based approaches offer a useful alternative, but many traits can be defined based on gene functions, metabolic modules, and genomic properties, and the optimal set of traits to choose is often not obvious. An analysis that considers taxon assignment and traits in concert may be ideal, with the strengths of each approach offsetting the weaknesses of the other. Individual genes also merit consideration as entities in an ecological analysis, with characteristics such as diversity, turnover, and interactions modeled using genes rather than organisms as entities. We identify some promising avenues of research that are likely to yield a deeper understanding of microbial communities that shift from observation-based questions of 'Who is there?' and 'What are they doing?' to the mechanistically driven question of 'How will they respond?'
Collapse
Affiliation(s)
- Eva Boon
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Depke M, Surmann K, Hildebrandt P, Jehmlich N, Michalik S, Stanca SE, Fritzsche W, Völker U, Schmidt F. Labeling of the pathogenic bacteriumStaphylococcus aureuswith gold or ferric oxide-core nanoparticles highlights new capabilities for investigation of host-pathogen interactions. Cytometry A 2013; 85:140-50. [DOI: 10.1002/cyto.a.22425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/13/2013] [Accepted: 11/21/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Maren Depke
- ZIK-FunGene Junior Research Group “Applied Proteomics,” Department of Functional Genomics; Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald; Greifswald Germany
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics; University Medicine Greifswald; Greifswald Germany
| | - Petra Hildebrandt
- ZIK-FunGene Junior Research Group “Applied Proteomics,” Department of Functional Genomics; Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald; Greifswald Germany
| | - Nico Jehmlich
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics; University Medicine Greifswald; Greifswald Germany
| | - Stephan Michalik
- ZIK-FunGene Junior Research Group “Applied Proteomics,” Department of Functional Genomics; Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald; Greifswald Germany
| | | | | | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics; University Medicine Greifswald; Greifswald Germany
| | - Frank Schmidt
- ZIK-FunGene Junior Research Group “Applied Proteomics,” Department of Functional Genomics; Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald; Greifswald Germany
| |
Collapse
|
26
|
Affiliation(s)
- Dirk Benndorf
- Department of Bioprocess Engineering; Otto von Guericke University Magdeburg; Magdeburg Germany
| | - Udo Reichl
- Department of Bioprocess Engineering; Otto von Guericke University Magdeburg; Magdeburg Germany
- Department of Bioprocess Engineering; Max Planck Institute for Dynamics of Complex Technical Systems; Magdeburg Germany
| |
Collapse
|
27
|
Pförtner H, Wagner J, Surmann K, Hildebrandt P, Ernst S, Bernhardt J, Schurmann C, Gutjahr M, Depke M, Jehmlich U, Dhople V, Hammer E, Steil L, Völker U, Schmidt F. A proteomics workflow for quantitative and time-resolved analysis of adaptation reactions of internalized bacteria. Methods 2013; 61:244-50. [DOI: 10.1016/j.ymeth.2013.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 03/21/2013] [Accepted: 04/13/2013] [Indexed: 01/01/2023] Open
|
28
|
Recovery of soil unicellular eukaryotes: an efficiency and activity analysis on the single cell level. J Microbiol Methods 2013; 95:463-9. [PMID: 23680233 DOI: 10.1016/j.mimet.2013.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 11/22/2022]
Abstract
Eukaryotic unicellular organisms are an important part of the soil microbial community, but they are often neglected in soil functional microbial diversity analysis, principally due to the absence of specific investigation methods in the special soil environment. In this study we used a method based on high-density centrifugation to specifically isolate intact algal and yeast cells, with the aim to analyze them with flow cytometry and sort them for further molecular analysis such as deep sequencing. Recovery efficiency was tested at low abundance levels that fit those in natural environments (10(4) to 10(6) cells per g soil). Five algae and five yeast morphospecies isolated from soil were used for the testing. Recovery efficiency was between 1.5 to 43.16% and 2 to 30.2%, respectively, and was dependent on soil type for three of the algae. Control treatments without soil showed that the majority of cells were lost due to the method itself (58% and 55.8% respectively). However, the cell extraction technique did not much compromise cell vitality because a fluorescein di-acetate assay indicated high viability percentages (73.3% and 97.2% of cells, respectively). The low abundant algae and yeast morphospecies recovered from soil were cytometrically analyzed and sorted. Following, their DNA was isolated and amplified using specific primers. The developed workflow enables isolation and enrichment of intact autotrophic and heterotrophic soil unicellular eukaryotes from natural environments for subsequent application of deep sequencing technologies.
Collapse
|
29
|
Jahn M, Seifert J, von Bergen M, Schmid A, Bühler B, Müller S. Subpopulation-proteomics in prokaryotic populations. Curr Opin Biotechnol 2013; 24:79-87. [DOI: 10.1016/j.copbio.2012.10.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/15/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
|
30
|
Neumeyer A, Hübschmann T, Müller S, Frunzke J. Monitoring of population dynamics of Corynebacterium glutamicum by multiparameter flow cytometry. Microb Biotechnol 2012; 6:157-67. [PMID: 23279937 PMCID: PMC3917458 DOI: 10.1111/1751-7915.12018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/31/2012] [Accepted: 11/03/2012] [Indexed: 11/29/2022] Open
Abstract
Phenotypic variation of microbial populations is a well-known phenomenon and may have significant impact on the success of industrial bioprocesses. Flow cytometry (FC) and the large repertoire of fluorescent dyes bring the high-throughput analysis of multiple parameters in single bacterial cells into reach. In this study, we evaluated a set of different fluorescent dyes for suitability in FC single cell analysis of the biotechnological platform organism Corynebacterium glutamicum. Already simple scattering properties of C. glutamicum cells in the flow cytometer were shown to provide valuable information on the growth activity of analysed cells. Furthermore, we used DAPI staining for a FC-based determination of the DNA content of C. glutamicum cells grown on standard minimal or complex media. Characteristic DNA patterns were observed mirroring the typical uncoupled DNA synthesis in the logarithmic (log) growth phase and are in agreement with a symmetric type of cell division of C. glutamicum. Application of the fluorescent dyes Syto 9, propidium iodide, and DiOC2(3) allowed the identification of subpopulations with reduced viability and membrane potential within early log and stationary phase populations. The presented data highlight the potential of FC-based analyses for online monitoring of C. glutamicum bioprocesses and provide a first reference for future applications and protocols.
Collapse
Affiliation(s)
- Andrea Neumeyer
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | | | | | | |
Collapse
|
31
|
Bernhardt J, Michalik S, Wollscheid B, Völker U, Schmidt F. Proteomics approaches for the analysis of enriched microbial subpopulations and visualization of complex functional information. Curr Opin Biotechnol 2012; 24:112-9. [PMID: 23141770 DOI: 10.1016/j.copbio.2012.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/28/2012] [Accepted: 10/09/2012] [Indexed: 02/05/2023]
Abstract
Advances in the separation of microbial subpopulations and in proteomics technologies have paved the way for the global molecular characterization of microbial cells that share common functional characteristics. Quantitative characterization of the dynamics of microbial proteomes enables an unprecedented view of the adaptive responses of microbes to environmental stimuli or during interaction with other species or host cells. However, the intrinsic complexity of such data requires sophisticated visualization methods for the display, mining, interpretation and efficient exploitation of these data resources. In this review, we discuss how new approaches in data visualization such as streamgraphs, network graphs or Voronoi treemaps are being used in the field to provide new insights into the functional complexity of microbial cells, populations and multispecies consortia.
Collapse
Affiliation(s)
- Jörg Bernhardt
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Friedrich-Ludwig-Jahn-Strasse 15, D-17487 Greifswald, Germany
| | | | | | | | | |
Collapse
|
32
|
Müller S, Hübschmann T, Kleinsteuber S, Vogt C. High resolution single cell analytics to follow microbial community dynamics in anaerobic ecosystems. Methods 2012; 57:338-49. [DOI: 10.1016/j.ymeth.2012.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/07/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022] Open
|
33
|
Korneli C, David F, Biedendieck R, Jahn D, Wittmann C. Getting the big beast to work--systems biotechnology of Bacillus megaterium for novel high-value proteins. J Biotechnol 2012; 163:87-96. [PMID: 22750448 DOI: 10.1016/j.jbiotec.2012.06.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 12/31/2022]
Abstract
The high industrial relevance of the soil bacterium Bacillus megaterium as host for recombinant proteins is driving systems-wide analyses of its metabolic and regulatory networks. The present review highlights novel systems biology tools available to unravel the various cellular components on the level of metabolic and regulatory networks. These provide a rational platform for systems metabolic engineering of B. megaterium. In line, a number of interesting studies have particularly focused on studying recombinant B. megaterium in its industrial bioprocess environment thus integrating systems metabolic engineering with systems biotechnology and providing the full picture toward optimal processes.
Collapse
Affiliation(s)
- Claudia Korneli
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
34
|
Hyka P, Lickova S, Přibyl P, Melzoch K, Kovar K. Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol Adv 2012; 31:2-16. [PMID: 22561949 DOI: 10.1016/j.biotechadv.2012.04.007] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/30/2012] [Accepted: 04/17/2012] [Indexed: 01/24/2023]
Abstract
The current interest in microalgae as a sustainable source of next generation biofuels and other valuable substances is driving exploration of their use as unique biotechnological production systems. To design and optimise appropriate production strategies, the behaviour of particular microalgal species should be well characterised under different culture conditions. Thus, flow cytometric (FCM) methods, which are already well established in environmental and toxicological studies of microalgae, are also useful for analysing the physiological state of microalgae, and have the potential to contribute to the rapid development of feasible bioprocesses. These methods are commonly based on the examination of intrinsic features of individual cells within a population (such as autofluorescence or size). Cells possessing the desired physiological or morphological features, which are detectable with or without fluorescent staining, are counted or isolated (sorted) using an FCM device. The options for implementation of FCM in the development of biotechnological processes detailed in this review are (i) analysing the chemical composition of biomass, (ii) monitoring cellular enzyme activity and cell viability, and (iii) sorting cells to isolate those overproducing the target compound or for the preparation of axenic cultures.
Collapse
Affiliation(s)
- P Hyka
- Institute of Biotechnology, Zurich University of Applied Sciences (ZHAW), Campus Grüental, CH-8820 Wädenswil, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Key players and team play: anaerobic microbial communities in hydrocarbon-contaminated aquifers. Appl Microbiol Biotechnol 2012; 94:851-73. [PMID: 22476263 DOI: 10.1007/s00253-012-4025-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 02/06/2023]
Abstract
Biodegradation of anthropogenic pollutants in shallow aquifers is an important microbial ecosystem service which is mainly brought about by indigenous anaerobic microorganisms. For the management of contaminated sites, risk assessment and control of natural attenuation, the assessment of in situ biodegradation and the underlying microbial processes is essential. The development of novel molecular methods, "omics" approaches, and high-throughput techniques has revealed new insight into complex microbial communities and their functions in anoxic environmental systems. This review summarizes recent advances in the application of molecular methods to study anaerobic microbial communities in contaminated terrestrial subsurface ecosystems. We focus on current approaches to analyze composition, dynamics, and functional diversity of subsurface communities, to link identity to activity and metabolic function, and to identify the ecophysiological role of not yet cultured microbes and syntrophic consortia. We discuss recent molecular surveys of contaminated sites from an ecological viewpoint regarding degrader ecotypes, abiotic factors shaping anaerobic communities, and biotic interactions underpinning the importance of microbial cooperation for microbial ecosystem services such as contaminant degradation.
Collapse
|
36
|
Davies E, Stankovic B, Vian A, Wood AJ. Where has all the message gone? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:23-32. [PMID: 22325863 DOI: 10.1016/j.plantsci.2011.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 05/31/2023]
Abstract
We provide a brief history of polyribosomes, ergosomes, prosomes, informosomes, maternal mRNA, stored mRNA, and RNP particles. Even though most published research focuses on total mRNA rather than polysomal mRNA and often assumes they are synonymous - i.e., if a functional mRNA is present, it must be translated - results from our laboratories comparing polysomal RNA and total mRNA in a range of "normal" issues show that some transcripts are almost totally absent from polysomes while others are almost entirely associated with polysomes. We describe a recent model from yeast showing various destinies for polysomal mRNA once it has been released from polysomes. The main points we want to emphasize are; a) when mRNA leaves polysomes to go to prosomes, P-bodies, stress granules, etc., it is not necessarily destined for degradation - it can be re-utilized; b) "normal" tissue, not just seeds and stressed tissue, contains functional non-polysomal mRNA; c) association of mRNA with different classes of polysomes affects their sub-cellular location and translatability; and d) drawbacks, misinterpretations, and false hopes arise from analysis of total mRNA rather than polysomal mRNA and from presuming that all polysomes are "created equal".
Collapse
Affiliation(s)
- Eric Davies
- Department of Plant Biology, North Carolina State University, Raleigh, NC, USA
| | | | | | | |
Collapse
|
37
|
Musat N, Foster R, Vagner T, Adam B, Kuypers MMM. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev 2012; 36:486-511. [DOI: 10.1111/j.1574-6976.2011.00303.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 08/22/2011] [Indexed: 11/30/2022] Open
|
38
|
David F, Berger A, Hänsch R, Rohde M, Franco-Lara E. Single cell analysis applied to antibody fragment production with Bacillus megaterium: development of advanced physiology and bioprocess state estimation tools. Microb Cell Fact 2011; 10:23. [PMID: 21496219 PMCID: PMC3101136 DOI: 10.1186/1475-2859-10-23] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 04/15/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Single cell analysis for bioprocess monitoring is an important tool to gain deeper insights into particular cell behavior and population dynamics of production processes and can be very useful for discrimination of the real bottleneck between product biosynthesis and secretion, respectively. RESULTS Here different dyes for viability estimation considering membrane potential (DiOC2(3), DiBAC4(3), DiOC6(3)) and cell integrity (DiBAC4(3)/PI, Syto9/PI) were successfully evaluated for Bacillus megaterium cell characterization. It was possible to establish an appropriate assay to measure the production intensities of single cells revealing certain product secretion dynamics. Methods were tested regarding their sensitivity by evaluating fluorescence surface density and fluorescent specific concentration in relation to the electronic cell volume. The assays established were applied at different stages of a bioprocess where the antibody fragment D1.3 scFv production and secretion by B. megaterium was studied. CONCLUSIONS It was possible to distinguish between live, metabolic active, depolarized, dormant, and dead cells and to discriminate between high and low productive cells. The methods were shown to be suitable tools for process monitoring at single cell level allowing a better process understanding, increasing robustness and forming a firm basis for physiology-based analysis and optimization with the general application for bioprocess development.
Collapse
Affiliation(s)
- Florian David
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Germany
| | | | | | | | | |
Collapse
|
39
|
Single cell analytics: an overview. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 124:99-122. [PMID: 21072695 DOI: 10.1007/10_2010_96] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The research field of single cell analysis is rapidly expanding, driven by developments in flow cytometry, microscopy, lab-on-a-chip devices, and many other fields. The promises of these developments include deciphering cellular mechanisms and the quantification of cell-to-cell differences, ideally with spatio-temporal resolution. However, these promises are challenging as the analytical techniques have to cope with minute analyte amounts and concentrations. We formulate first these challenges and then present state-of-the-art analytical techniques available to investigate the different cellular hierarchies--from the genome to the phenome, i.e., the sum of all phenotypes.
Collapse
|