1
|
Lo HH, Chang HC, Liao CT, Hsiao YM. Expression and function of clpS and clpA in Xanthomonas campestris pv. campestris. Antonie van Leeuwenhoek 2022; 115:589-607. [PMID: 35322326 DOI: 10.1007/s10482-022-01725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
ATP-dependent proteases (FtsH, Lon, and Clp family proteins) are ubiquitous in bacteria and play essential roles in numerous regulatory cell processes. Xanthomonas campestris pv. campestris is a Gram-negative pathogen that can cause black rot diseases in crucifers. The genome of X. campestris pv. campestris has several clp genes, namely, clpS, clpA, clpX, clpP, clpQ, and clpY. Among these genes, only clpX and clpP is known to be required for pathogenicity. Here, we focused on two uncharacterized clp genes (clpS and clpA) that encode the adaptor (ClpS) and ATPase subunit (ClpA) of the ClpAP protease complex. Transcriptional analysis revealed that the expression of clpS and clpA was growth phase-dependent and affected by the growth temperature. The inactivation of clpA, but not of clpS, resulted in susceptibility to high temperature and attenuated virulence in the host plant. The altered phenotypes of the clpA mutant could be complemented in trans. Site-directed mutagenesis revealed that K223 and K504 were the amino acid residues critical for ClpA function in heat tolerance. The protein expression profile shown by the clpA mutant in response to heat stress was different from that exhibited by the wild type. In summary, we characterized two clp genes (clpS and clpA) by examining their expression profiles and functions in different processes, including stress tolerance and pathogenicity. We demonstrated that clpS and clpA were expressed in a temperature-dependent manner and that clpA was required for the survival at high temperature and full virulence of X. campestris pv. campestris. This work represents the first time that clpS and clpA were characterized in Xanthomonas.
Collapse
Affiliation(s)
- Hsueh-Hsia Lo
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Hsiao-Ching Chang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Chao-Tsai Liao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Yi-Min Hsiao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan.
| |
Collapse
|
2
|
Li CE, Liao CT, Lo HH, Hsiao YM. Functional Characterization and Transcriptional Analysis of clpP of Xanthomonas campestris pv. campestris. Curr Microbiol 2020; 77:2876-2885. [PMID: 32623486 DOI: 10.1007/s00284-020-02093-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/15/2020] [Indexed: 01/24/2023]
Abstract
The caseinolytic protease (Clp) system is essential for survival under stress conditions and for virulence in several pathogenic bacteria. Xanthomonas campestris pv. campestris (Xcc) is a plant pathogen which causes black rot disease in crucifers. In this study, the Xcc clpP gene which is annotated to encode the proteolytic core of Clp was characterized. Mutation of clpP resulted in susceptibility to high temperature and puromycin stresses. Site-directed mutagenesis revealed that S105, H130, and D179 are critical amino acid residues for ClpP function in puromycin tolerance. Inactivation of clpP also revealed an attenuation of virulence on the host plant and a reduction in the production of extracellular cellulase, mannanase, pectinase, and protease. The affected phenotypes of the clpP mutant could be complemented to wild-type levels by the intact clpP gene. Transcriptional analysis revealed that expression of clpP is induced under heat shock condition.
Collapse
Affiliation(s)
- Chih-En Li
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Chao-Tsai Liao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Hsueh-Hsia Lo
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Yi-Min Hsiao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan.
| |
Collapse
|
3
|
Santiago CRDN, Assis RDAB, Moreira LM, Digiampietri LA. Gene Tags Assessment by Comparative Genomics (GTACG): A User-Friendly Framework for Bacterial Comparative Genomics. Front Genet 2019; 10:725. [PMID: 31507629 PMCID: PMC6718126 DOI: 10.3389/fgene.2019.00725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/10/2019] [Indexed: 12/04/2022] Open
Abstract
Genomics research has produced an exponential amount of data. However, the genetic knowledge pertaining to certain phenotypic characteristics is lacking. Also, a considerable part of these genomes have coding sequences (CDSs) with unknown functions, posing additional challenges to researchers. Phylogenetically close microorganisms share much of their CDSs, and certain phenotypes unique to a set of microorganisms may be the result of the genes found exclusively in those microorganisms. This study presents the GTACG framework, an easy-to-use tool for identifying in the subgroups of bacterial genomes whose microorganisms have common phenotypic characteristics, to find data that differentiates them from other associated genomes in a simple and fast way. The GTACG analysis is based on the formation of homologous CDS clusters from local alignments. The front-end is easy to use, and the installation packages have been developed to enable users lacking knowledge of programming languages or bioinformatics analyze high-throughput data using the tool. The validation of the GTACG framework has been carried out based on a case report involving a set of 161 genomes from the Xanthomonadaceae family, in which 19 families of orthologous proteins were found in 90% of the plant-associated genomes, allowing the identification of the proteins potentially associated with adaptation and virulence in plant tissue. The results show the potential use of GTACG in the search for new targets for molecular studies, and GTACG can be used as a research tool by biologists who lack advanced knowledge in the use of computational tools for bacterial comparative genomics.
Collapse
Affiliation(s)
| | - Renata de Almeida Barbosa Assis
- Biotecnology Graduate Program, Núcleo de Pesquisas em Ciências Biológicas, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Leandro Marcio Moreira
- Biotecnology Graduate Program, Núcleo de Pesquisas em Ciências Biológicas, Federal University of Ouro Preto, Ouro Preto, Brazil
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Luciano Antonio Digiampietri
- Bioinformatics Graduate Program, University of Sao Paulo, Sao Paulo, Brazil
- School of Arts, Science, and Humanities, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Liao CT, Liu YF, Chiang YC, Lo HH, Du SC, Hsu PC, Hsiao YM. Functional characterization and transcriptome analysis reveal multiple roles for prc in the pathogenicity of the black rot pathogen Xanthomonas campestris pv. campestris. Res Microbiol 2016; 167:299-312. [PMID: 26804425 DOI: 10.1016/j.resmic.2016.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/29/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
Gram-negative phytopathogenic Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot in crucifers. The ability of Xcc to incite this disease in plants depends on a number of factors, including exopolysaccharides, extracellular enzymes and biofilm production. In this study, transposon mutagenesis led to identification of the prc gene, encoding a tail-specific protease, which plays a role in Xcc pathogenesis. Mutation of prc resulted in decreased virulence, extracellular protease production and bacterial attachment, with restoration to the levels of wild type by the intact prc gene. From subsequent quantitative RT-PCR analysis and reporter assay, the major extracellular protease gene prt1, biofilm-related gene galE encoding a UDP-galactose 4-epimerase and two putative adhesin genes (yapH and XC_4290 encoding autotransporter-like protein H and hemagglutinin, respectively) were found to be reduced in the prc mutant. Results of transcriptome profiling of Xcc wild type and prc mutant by RNA sequencing (RNA-Seq) showed that mutation of prc in Xcc leads to alteration in the transcriptional levels (more than twofold) of 91 genes. These differentially expressed genes were associated with a wide range of biological functions such as carbohydrate transport and metabolism, cell wall/membrane biogenesis, posttranslational modification, protein turnover and chaperones, inorganic ion transport and metabolism and signal transduction mechanisms. The results of this study facilitate the functional understanding of and provide new information about the regulatory role of prc.
Collapse
Affiliation(s)
- Chao-Tsai Liao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
| | - Yu-Fan Liu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Ying-Chuan Chiang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
| | - Hsueh-Hsia Lo
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
| | - Shin-Chiao Du
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
| | - Pei-Chi Hsu
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
| | - Yi-Min Hsiao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
| |
Collapse
|
5
|
Eisenhardt BD. Small heat shock proteins: recent developments. Biomol Concepts 2015; 4:583-95. [PMID: 25436758 DOI: 10.1515/bmc-2013-0028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/07/2013] [Indexed: 12/14/2022] Open
Abstract
Small heat shock proteins (sHSPs) are abundantly present in many different organisms at elevated temperatures. Members of the subgroup of alpha crystallin domain (ACD)-type sHSPs belong to the large family of protein chaperones. They bind non-native proteins in an ATP-independent manner, thereby holding the incorporated clients soluble for subsequent refolding by other molecular chaperoning systems. sHSPs do not actively refold incorporated peptides therefore they are sometimes referred to as holdases. Varying numbers of sHSPs have been documented in the different domains of life and dependent on the analyzed organism. Generally, diverse sHSPs possess more sequence similarities in the conserved ACD, whereas the N- and C-terminal extensions are less conserved. Despite their designation as sHSPs, they are not solely present during heat stress. sHSPs presumably help to protect cells under various stresses, but they were also found during development, e.g., in embryonic development of higher plants which is associated with ongoing seed desiccation. The functional and physiological relevance of several different sHSPs in one organism remains still unclear, especially in plants where several highly similar sHSPs are present in the same compartment. The wide range of biotic and abiotic stresses that induce the expression of multiple sHSP genes makes it challenging to define the physiological relevance of each of these versatile proteins.
Collapse
|
6
|
Haslbeck M, Vierling E. A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol 2015; 427:1537-48. [PMID: 25681016 DOI: 10.1016/j.jmb.2015.02.002] [Citation(s) in RCA: 391] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
Small heat shock proteins (sHsps) are virtually ubiquitous molecular chaperones that can prevent the irreversible aggregation of denaturing proteins. sHsps complex with a variety of non-native proteins in an ATP-independent manner and, in the context of the stress response, form a first line of defense against protein aggregation in order to maintain protein homeostasis. In vertebrates, they act to maintain the clarity of the eye lens, and in humans, sHsp mutations are linked to myopathies and neuropathies. Although found in all domains of life, sHsps are quite diverse and have evolved independently in metazoans, plants and fungi. sHsp monomers range in size from approximately 12 to 42kDa and are defined by a conserved β-sandwich α-crystallin domain, flanked by variable N- and C-terminal sequences. Most sHsps form large oligomeric ensembles with a broad distribution of different, sphere- or barrel-like oligomers, with the size and structure of the oligomers dictated by features of the N- and C-termini. The activity of sHsps is regulated by mechanisms that change the equilibrium distribution in tertiary features and/or quaternary structure of the sHsp ensembles. Cooperation and/or co-assembly between different sHsps in the same cellular compartment add an underexplored level of complexity to sHsp structure and function.
Collapse
Affiliation(s)
- Martin Haslbeck
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85 748 Garching, Germany.
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Life Science Laboratories, N329 240 Thatcher Road, Amherst, MA 01003-9364, USA.
| |
Collapse
|
7
|
Abstract
Small heat shock proteins (sHsps) are molecular chaperones that prevent the aggregation of nonnative proteins. The sHsps investigated to date mostly form large, oligomeric complexes. The typical bacterial scenario seemed to be a two-component sHsps system of two homologous sHsps, such as the Escherichia coli sHsps IbpA and IbpB. With a view to expand our knowledge on bacterial sHsps, we analyzed the sHsp system of the bacterium Deinococcus radiodurans, which is resistant against various stress conditions. D. radiodurans encodes two sHsps, termed Hsp17.7 and Hsp20.2. Surprisingly, Hsp17.7 forms only chaperone active dimers, although its crystal structure reveals the typical α-crystallin fold. In contrast, Hsp20.2 is predominantly a 36mer that dissociates into smaller oligomeric assemblies that bind substrate proteins stably. Whereas Hsp20.2 cooperates with the ATP-dependent bacterial chaperones in their refolding, Hsp17.7 keeps substrates in a refolding-competent state by transient interactions. In summary, we show that these two sHsps are strikingly different in their quaternary structures and chaperone properties, defining a second type of bacterial two-component sHsp system.
Collapse
|
8
|
Guzzo J. Biotechnical applications of small heat shock proteins from bacteria. Int J Biochem Cell Biol 2012; 44:1698-705. [PMID: 22706478 DOI: 10.1016/j.biocel.2012.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 01/05/2023]
Abstract
The stress responses of most bacteria are thought to involve the upregulation of small heat shock proteins. We describe here some of the most pertinent aspects of small heat shock proteins, to highlight their potential for use in various applications. Bacterial species have between one and 13 genes encoding small heat shock proteins, the precise number depending on the species considered. Major efforts have recently been made to characterize the protein protection and membrane stabilization mechanisms involving small heat shock proteins in bacteria. These proteins seem to be involved in the acquisition of cellular heat tolerance. They could therefore potentially be used to maintain cell viability under unfavorable conditions, such as heat shock or chemical treatments. This review highlights the potential roles of applications of small heat shock proteins in stabilizing overproduced heterologous proteins in Escherichia coli, purified bacterial small heat shock proteins in protein biochip technology, proteomic analysis and food technology and the potential impact of these proteins on some diseases. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
Affiliation(s)
- Jean Guzzo
- UMR A PAM Université de Bourgogne/Agrosup Dijon Equipe Valmis Institut Jules Guyot, 1 Rue Claude Ladrey, BP27877, 21078 Dijon, France.
| |
Collapse
|
9
|
Hilario E, Martin FJM, Bertolini MC, Fan L. Crystal structures of Xanthomonas small heat shock protein provide a structural basis for an active molecular chaperone oligomer. J Mol Biol 2011; 408:74-86. [PMID: 21315085 DOI: 10.1016/j.jmb.2011.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/27/2011] [Accepted: 02/02/2011] [Indexed: 10/18/2022]
Abstract
Small heat shock proteins (sHsps) are ubiquitous low-molecular-weight chaperones that prevent protein aggregation under cellular stresses. sHsps contain a structurally conserved α-crystallin domain (ACD) of about 100 amino acid residues flanked by varied N- and C-terminal extensions and usually exist as oligomers. Oligomerization is important for the biological functions of most sHsps. However, the active oligomeric states of sHsps are not defined yet. We present here crystal structures (up to 1.65 Å resolution) of the sHspA from the plant pathogen Xanthomonas (XaHspA). XaHspA forms closed or open trimers of dimers (hexamers) in crystals but exists predominantly as 36mers in solution as estimated by size-exclusion chromatography. The XaHspA monomer structures mainly consist of α-crystallin domain with disordered N- and C-terminal extensions, indicating that the extensions are flexible and not essential for the formation of dimers and 36mers. Under reducing conditions where α-lactalbumin (LA) unfolds and aggregates, XaHspA 36mers formed complexes with one LA per XaHspA dimer. Based on XaHspA dimer-dimer interactions observed in crystals, we propose that XaHspA 36mers have four possible conformations, but only XaHspA 36merB, which is formed by open hexamers in 12mer-6mer-6mer-12mer with protruding dimers accessible for substrate (unfolding protein) binding, can bind to 18 reduced LA molecules. Together, our results unravel the structural basis of an active sHsp oligomer.
Collapse
Affiliation(s)
- Eduardo Hilario
- Department of Biochemistry, University of California, Riverside, 2482B Boyce Hall, Riverside, CA 92521-0123, USA
| | | | | | | |
Collapse
|