1
|
The Potential of Surface-Immobilized Antimicrobial Peptides for the Enhancement of Orthopaedic Medical Devices: A Review. Antibiotics (Basel) 2023; 12:antibiotics12020211. [PMID: 36830122 PMCID: PMC9952162 DOI: 10.3390/antibiotics12020211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Due to the well-known phenomenon of antibiotic resistance, there is a constant need for antibiotics with novel mechanisms and different targets respect to those currently in use. In this regard, the antimicrobial peptides (AMPs) seem very promising by virtue of their bactericidal action, based on membrane permeabilization of susceptible microbes. Thanks to this feature, AMPs have a broad activity spectrum, including antibiotic-resistant strains, and microbial biofilms. Additionally, several AMPs display properties that can help tissue regeneration. A possible interesting field of application for AMPs is the development of antimicrobial coatings for implantable medical devices (e.g., orthopaedic prostheses) to prevent device-related infection. In this review, we will take note of the state of the art of AMP-based coatings for orthopaedic prostheses. We will review the most recent studies by focusing on covalently linked AMPs to titanium, their antimicrobial efficacy and plausible mode of action, and cytocompatibility. We will try to extrapolate some general rules for structure-activity (orientation, density) relationships, in order to identify the most suitable physical and chemical features of peptide candidates, and to optimize the coupling strategies to obtain antimicrobial surfaces with improved biological performance.
Collapse
|
2
|
Characterization and Differential Cytotoxicity of Gramicidin Nanoparticles Combined with Cationic Polymer or Lipid Bilayer. Pharmaceutics 2022; 14:pharmaceutics14102053. [PMID: 36297488 PMCID: PMC9610547 DOI: 10.3390/pharmaceutics14102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Gramicidin (Gr) nanoparticles (NPs) and poly (diallyl dimethyl ammonium) chloride (PDDA) water dispersions were characterized and evaluated against Gram-positive and Gram-negative bacteria and fungus. Dynamic light scattering for sizing, zeta potential analysis, polydispersity, and colloidal stability over time characterized Gr NPs/PDDA dispersions, and plating and colony-forming units counting determined their microbicidal activity. Cell viabilities of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans in the presence of the combinations were reduced by 6, 7, and 7 logs, respectively, at 10 μM Gr/10 μg·mL−1 PDDA, 0.5 μM Gr/0. 5μg·mL−1 PDDA, and 0.5 μM Gr/0.5 μg·mL−1 PDDA, respectively. In comparison to individual Gr doses, the combinations reduced doses by half (S. aureus) and a quarter (C. albicans); in comparison to individual PDDA doses, the combinations reduced doses by 6 times (P. aeruginosa) and 10 times (C. albicans). Gr in supported or free cationic lipid bilayers reduced Gr activity against S. aureus due to reduced Gr access to the pathogen. Facile Gr NPs/PDDA disassembly favored access of each agent to the pathogen: PDDA suctioned the pathogen cell wall facilitating Gr insertion in the pathogen cell membrane. Gr NPs/PDDA differential cytotoxicity suggested the possibility of novel systemic uses for the combination.
Collapse
|
3
|
Functionalized Self-Assembled Monolayers: Versatile Strategies to Combat Bacterial Biofilm Formation. Pharmaceutics 2022; 14:pharmaceutics14081613. [PMID: 36015238 PMCID: PMC9415113 DOI: 10.3390/pharmaceutics14081613] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial infections due to biofilms account for up to 80% of bacterial infections in humans. With the increased use of antibiotic treatments, indwelling medical devices, disinfectants, and longer hospital stays, antibiotic resistant infections are sharply increasing. Annual deaths are predicted to outpace cancer and diabetes combined by 2050. In the past two decades, both chemical and physical strategies have arisen to combat biofilm formation on surfaces. One such promising chemical strategy is the formation of a self-assembled monolayer (SAM), due to its small layer thickness, strong covalent bonds, typically facile synthesis, and versatility. With the goal of combating biofilm formation, the SAM could be used to tether an antibacterial agent such as a small-molecule antibiotic, nanoparticle, peptide, or polymer to the surface, and limit the agent’s release into its environment. This review focuses on the use of SAMs to inhibit biofilm formation, both on their own and by covalent grafting of a biocidal agent, with the potential to be used in indwelling medical devices. We conclude with our perspectives on ongoing challenges and future directions for this field.
Collapse
|
4
|
Mullen DC, Wan X, Takala TM, Saris PE, Moreira VM. Precision Design of Antimicrobial Surfaces. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:640929. [PMID: 35047910 PMCID: PMC8757849 DOI: 10.3389/fmedt.2021.640929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
The overall expectation from an antimicrobial surface has been high considering the need for efficiency in preventing the attachment and growth of pathogenic microbes, durability, safety to both humans and environment as well as cost-effectiveness. To date, antimicrobial surface design has been mostly conducted liberally, without rigorous consideration of establishing robust structure-activity relationships for each design strategy or of the use intended for a specific antimicrobial material. However, the variability among the domain bacteria, which is the most diverse of all, alongside the highly dynamic nature of the bacteria-surface interface have taught us that the likelihood of finding universal antimicrobial surfaces is low. In this perspective we discuss some of the current hurdles faced by research in this promising field, emphasizing the relevance and complexity of probing the bacteria-surface interface, and explain why we feel it would greatly benefit from a more streamlined ad-hoc approach.
Collapse
Affiliation(s)
- Declan C Mullen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Xing Wan
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Timo M Takala
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Per E Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - V M Moreira
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Lam M, Migonney V, Falentin-Daudre C. Review of silicone surface modification techniques and coatings for antibacterial/antimicrobial applications to improve breast implant surfaces. Acta Biomater 2021; 121:68-88. [PMID: 33212233 DOI: 10.1016/j.actbio.2020.11.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Silicone implants are widely used in the medical field for plastic or reconstructive surgeries for the purpose of soft tissue issues. However, as with any implanted object, healthcare-associated infections are not completely avoidable. The material suffers from a lack of biocompatibility and is often subject to bacterial/microbial infections characterized by biofilm growth. Numerous strategies have been developed to either prevent, reduce, or fight bacterial adhesion by providing an antibacterial property. The present review summarizes the diverse approaches to deal with bacterial infections on silicone surfaces along with the different methods to activate/oxidize the surface before any surface modifications. It includes antibacterial coatings with antibiotics or nanoparticles, covalent attachment of active bacterial molecules like peptides or polymers. Regarding silicone surfaces, the activation step is essential to render the surface reactive for any further modifications using energy sources (plasma, UV, ozone) or chemicals (acid solutions, sol-gel strategies, chemical vapor deposition). Meanwhile, corresponding work on breast silicone prosthesis is discussed. The latter is currently in the line of sight for causing severe capsular contractures. Specifically, to that end, besides chemical modifications, the antibacterial effect can also be achieved by physical surface modifications by adjusting the surface roughness and topography for instance.
Collapse
|
6
|
Pinto IB, dos Santos Machado L, Meneguetti BT, Nogueira ML, Espínola Carvalho CM, Roel AR, Franco OL. Utilization of antimicrobial peptides, analogues and mimics in creating antimicrobial surfaces and bio-materials. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Oger PC, Piesse C, Ladram A, Humblot V. Engineering of Antimicrobial Surfaces by Using Temporin Analogs to Tune the Biocidal/antiadhesive Effect. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24040814. [PMID: 30813478 PMCID: PMC6412374 DOI: 10.3390/molecules24040814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 11/16/2022]
Abstract
Proliferation of resistant bacteria on biomaterials is a major problem leading to nosocomial infections. Due to their broad-spectrum activity and their ability to disrupt bacterial membranes through a rapid membranolytic mechanism, antimicrobial peptides (AMPs) are less susceptible to the development of bacterial resistance and therefore represent good candidates for surface coating strategies to prevent biofilm formation. In this study, we report on the covalent immobilization of temporin-SHa, a small hydrophobic and low cationic antimicrobial peptide exhibiting broad-spectrum activity, and (SHa) analogs on modified gold surfaces. Several analogs derived from SHa with either a carboxamidated ([K3]SHa, d-[K3]SHa) or a carboxylated C-terminus ([K3]SHa-COOH) were used to achieve peptide grafting on gold surfaces modified by a thiolated self-assembled monolayer (SAM). Surface functionalization was characterized by polarization modulation infrared reflection absorption spectroscopy (PM-RAIRS) and X-ray photoemission spectroscopy (XPS). The antibacterial properties of the temporin-functionalized surfaces were tested against the Gram-positive Listeria ivanovii. Direct visualization of the peptide effects on the bacterial membrane was investigated by scanning electron microscopy equipped with a field emission gun (SEM-FEG). All active temporin analogs were successfully grafted and display significant antibacterial activity (from 80 to 90% killing efficiency) in addition to a 2-fold decrease of bacterial adhesion when all d-SHa analogs were used.
Collapse
Affiliation(s)
- Pierre-Carl Oger
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS UMR CNRS 7197, F-75252 Paris, France.
| | - Christophe Piesse
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, F-75252 Paris, France.
| | - Ali Ladram
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, F-75252 Paris, France.
| | - Vincent Humblot
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS UMR CNRS 7197, F-75252 Paris, France.
| |
Collapse
|
8
|
Wang M, Tang T. Surface treatment strategies to combat implant-related infection from the beginning. J Orthop Translat 2018; 17:42-54. [PMID: 31194031 PMCID: PMC6551355 DOI: 10.1016/j.jot.2018.09.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/13/2018] [Accepted: 09/04/2018] [Indexed: 02/08/2023] Open
Abstract
Orthopaedic implants are recognised as important therapeutic devices in the successful clinical management of a wide range of orthopaedic conditions. However, implant-related infections remain a challenging and not uncommon issue in patients with implanted instrumentation or medical devices. Bacterial adhesion and formation of biofilm on the surface of the implant represent important processes towards progression of infection. Given the intimate association between infection and the implant surface, adequate treatment of the implant surface may help mitigate the risk of infection. This review summarises the current surface treatment technologies and their role in prevention of implant-related infection from the beginning. Translational potential of this article Despite great technological advancements, the prevalence of implant-related infections remains high. Four main challenges can be identified. (i) Insufficient mechanical stability can cause detachment of the implant surface coating, altering the antimicrobial ability of functionalized surfaces. (ii) Regarding drug-loaded coatings, a stable drug release profile is of vital importance for achieving effective bactericidal effect locally; however, burst release of the loaded antibacterial agents remains common. (iii) Although many coatings and modified surfaces provide superior antibacterial action, such functionalisation of surfaces sometimes has a detrimental effect on tissue biocompatibility, impairing the integration of the implants into the surrounding tissue. (iv) Biofilm eradication at the implant surface remains particularly challenging. This review summarised the recent progress made to address the aforementioned problems. By providing a perspective on state-of-the-art surface treatment strategies for medical implants, we hope to support the timely adoption of modern materials and techniques into clinical practice.
Collapse
Affiliation(s)
- Minqi Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Doiron K, Beaulieu L, St-Louis R, Lemarchand K. Reduction of bacterial biofilm formation using marine natural antimicrobial peptides. Colloids Surf B Biointerfaces 2018; 167:524-530. [DOI: 10.1016/j.colsurfb.2018.04.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/21/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022]
|
10
|
Von Borowski RG, Macedo AJ, Gnoatto SCB. Peptides as a strategy against biofilm-forming microorganisms: Structure-activity relationship perspectives. Eur J Pharm Sci 2018; 114:114-137. [DOI: 10.1016/j.ejps.2017.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/20/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
|
11
|
Deb A, Vimala R. Biofilm Formation by Pseudomonas Species Onto Graphene Oxide–TiO 2 Nanocomposite-Coated Catheters: In vitro Analysis. INTERNATIONAL JOURNAL OF NANOSCIENCE 2018. [DOI: 10.1142/s0219581x17600146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present study focuses on the development of an in vitro model system for biofilm growth by Pseudomonas aerouginosa onto small discs of foley catheter. Catheter disc used for the study was coated with graphene oxide–titanium oxide composite (GO–TiO[Formula: see text] and titanium oxide (TiO[Formula: see text] and characterized through XRD, UV–visible spectroscopy. Morphological analysis was done by scanning electron microscopy (SEM). The biofilm formed on the catheter surface was quantified by crystal violet (CV) staining method and a colorimetric assay (MTT assay) which involves the reduction of tetrazolium salt. The catheter coated with GO–TiO2 showed reduced biofilm growth in comparison to the TiO2-coated and uncoated catheter, thus indicating that it could be successfully used in coating biomedical devices to prevent biofilm formation which is a major cause of nosocomial infection.
Collapse
Affiliation(s)
- Ananya Deb
- School of Biosciences and Technology, VIT University, Vellore 632 014, Tamil Nadu, India
| | - R. Vimala
- Center for Nanotechnology Research, VIT University, Vellore 632 014, Tamil Nadu, India
| |
Collapse
|
12
|
Antimicrobial Electrospun Fibers of Polyester Loaded with Engineered Cyclic Gramicidin Analogues. FIBERS 2017. [DOI: 10.3390/fib5030034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Ribes S, Fuentes A, Talens P, Barat JM. Prevention of fungal spoilage in food products using natural compounds: A review. Crit Rev Food Sci Nutr 2017; 58:2002-2016. [PMID: 28394635 DOI: 10.1080/10408398.2017.1295017] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The kingdom Fungi is the most important group of microorganism contaminating food commodities, and chemical additives are commonly used in the food industry to prevent fungal spoilage. However, the increasing consumer concern about synthetic additives has led to their substitution by natural compounds in foods. The current review provides an overview of using natural agents isolated from different sources (plants, animals, and microorganisms) as promising antifungal compounds, including information about their mechanism of action and their use in foods to preserve and prolong shelf life. Compounds derived from plants, chitosan, lactoferrin, and biocontrol agents (lactic acid bacteria, antagonistic yeast, and their metabolites) are able to control the decay caused by fungi in a wide variety of foods. Several strategies are employed to reduce the drawbacks of some antifungal agents, like their incorporation into oil-in-water emulsions and nanoemulsions, edible films and active packaging, and their combination with other natural preservatives. These strategies facilitate the addition of volatile agents into food products and, improve their antifungal effectiveness. Moreover, biological agents have been investigated as one of the most promising options in the control of postharvest decay. Numerous mechanisms of action have been elucidated and different approaches have been studied to enhance their antifungal effectiveness.
Collapse
Affiliation(s)
- Susana Ribes
- a Food Technology Department , Universitat Politècnica de València , Valencia , Spain
| | - Ana Fuentes
- a Food Technology Department , Universitat Politècnica de València , Valencia , Spain
| | - Pau Talens
- a Food Technology Department , Universitat Politècnica de València , Valencia , Spain
| | - Jose Manuel Barat
- a Food Technology Department , Universitat Politècnica de València , Valencia , Spain
| |
Collapse
|
14
|
Antibacterial properties of sophorolipid-modified gold surfaces against Gram positive and Gram negative pathogens. Colloids Surf B Biointerfaces 2017; 157:325-334. [PMID: 28609707 DOI: 10.1016/j.colsurfb.2017.05.072] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/21/2017] [Accepted: 05/29/2017] [Indexed: 11/23/2022]
Abstract
Sophorolipids are bioderived glycolipids displaying interesting antimicrobial properties. We show that they can be used to develop biocidal monolayers against Listeria ivanovii, a Gram-positive bacterium. The present work points out the dependence between the surface density and the antibacterial activity of grafted sophorolipids. It also emphasizes the broad spectrum of activity of these coatings, demonstrating their potential against both Gram-positive strains (Enteroccocus faecalis, Staphylococcus epidermidis, Streptococcus pyogenes) and Gram-negative strains (Escherichia coli, Pseudomonas aeruginosa and Salmonella typhymurium). After exposure to sophorolipids grafted onto gold, all these bacterial strains show a significant reduction in viability resulting from membrane damage as evidenced by fluorescent labelling and SEM-FEG analysis.
Collapse
|
15
|
Chen J, Zhu Y, Song Y, Wang L, Zhan J, He J, Zheng J, Zhong C, Shi X, Liu S, Ren L, Wang Y. Preparation of an antimicrobial surface by direct assembly of antimicrobial peptide with its surface binding activity. J Mater Chem B 2017; 5:2407-2415. [DOI: 10.1039/c6tb03337g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The designed antimicrobial peptide has surface binding activity onto titanium, gold, polymethyl methacrylate and hydroxyapatite substrates.
Collapse
Affiliation(s)
- Junjian Chen
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Yuchen Zhu
- National Engineering Research Centre for Tissue Restoration & Reconstruction
- Guangzhou 510006
- China
| | - Yancheng Song
- The Third Affiliated Hospital of Southern Medical University
- Guangzhou 510630
- China
| | - Lin Wang
- Guangdong Province Key Laboratory of Biomedical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Jiezhao Zhan
- National Engineering Research Centre for Tissue Restoration & Reconstruction
- Guangzhou 510006
- China
| | - Jingcai He
- Guangdong Province Key Laboratory of Biomedical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Jian Zheng
- National Engineering Research Centre for Tissue Restoration & Reconstruction
- Guangzhou 510006
- China
| | - Chunting Zhong
- Guangdong Province Key Laboratory of Biomedical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Xuetao Shi
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Sa Liu
- National Engineering Research Centre for Tissue Restoration & Reconstruction
- Guangzhou 510006
- China
| | - Li Ren
- National Engineering Research Centre for Tissue Restoration & Reconstruction
- Guangzhou 510006
- China
| | - Yingjun Wang
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| |
Collapse
|
16
|
Alves D, Magalhães A, Grzywacz D, Neubauer D, Kamysz W, Pereira MO. Co-immobilization of Palm and DNase I for the development of an effective anti-infective coating for catheter surfaces. Acta Biomater 2016; 44:313-22. [PMID: 27514277 DOI: 10.1016/j.actbio.2016.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/23/2016] [Accepted: 08/07/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED Biomaterial-associated infections, in particular, catheter-associated infections (CAI) are a major problem in clinical practice due to their ability to resist antimicrobial treatment and the host immune system. This study aimed to co-immobilize the antimicrobial lipopeptide Palm and the enzyme DNase I to introduce both antimicrobial and anti-adhesive functionalities to polydimethylsiloxane (PDMS) material, using dopamine chemistry. Surface characterization confirmed the immobilization of both compounds and no leaching of Palm from the surfaces for up to 5days. Co-immobilization of both agents resulted in a bifunctional coating with excellent surface antimicrobial and anti-biofilm properties against both Staphylococcus aureus and Pseudomonas aeruginosa. The modified surfaces demonstrated superior biocompatibility. To better discriminate co-adhesion of both species on modified surfaces, PNA FISH (Fluorescence in situ hybridization using peptide nucleic acid probes) was employed, and results showed that P. aeruginosa was the dominant organism, with S. aureus adhering afterwards on P. aeruginosa agglomerates. Furthermore, Palm immobilization exhibited no propensity to develop bacterial resistance, as opposite to the immobilization of an antibiotic. The overall results highlighted that co-immobilization of Palm and DNase I holds great potential to be applied in the development of catheters. STATEMENT OF SIGNIFICANCE Catheter-associated infections (CAI) are the most common hospital-acquired infections worldwide. Several coating strategies have been proposed to fight these infections but most of them present some important limitations, including the emergence of resistant bacteria and toxicity concerns. The present work describes a two-step polydopamine-based surface modification strategy to successfully co-immobilize an antimicrobial peptide (Palm) and an enzyme targeting an important component of biofilm matrix (DNase I). This immobilization approach imparted polydimethylsiloxane surfaces with both anti-adhesive and antimicrobial properties against the adhesion of relevant bacteria as single and dual-species, with excellent stability and biocompatible and anti-biofilm properties, holding, therefore, great potential in the development of catheters able to prevent CAI.
Collapse
Affiliation(s)
- Diana Alves
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Andreia Magalhães
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | - Damian Neubauer
- Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Wojciech Kamysz
- Peptideweb.com, 80-298 Gdansk, Poland; Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
17
|
Lei WX, Chen XC, Hu M, Chang H, Xu H, Ren KF, Ji J. Dynamic spongy films to immobilize hydrophobic antimicrobial peptides for self-healing bactericidal coating. J Mater Chem B 2016; 4:6358-6365. [PMID: 32263537 DOI: 10.1039/c6tb01967f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A constant increase of nosocomial infections that are caused by adhesion and colonization of pathogenic microorganisms, especially drug-resistant bacteria, on the surfaces of healthcare devices has received considerable attention worldwide. In this study, bioinspired by antimicrobial skins of natural living beings, we developed a self-healing bactericidal coating through the immobilization of hydrophobic antimicrobial peptides (AMPs) into a multilayer film, which was constructed through the enhanced exponential layer-by-layer assembly of polyethylenimine (PEI) and poly(acrylic acid) (PAA). The (PEI/PAA) film shows particular dynamic properties from the as-prepared thin solid film to a spongy microporous structure via acid solution treatment, and then back to the thin solid film by eliminating micropores via the treatment of saturated humidity. Consequently, the loading and integration of hydrophobic AMPs such as gramicidin A (GA) into the (PEI/PAA) film were achieved via simple wicking action with GA solution and subsequent humidity treatment, respectively. The GA loading densities can be precisely controlled by using different concentrations of GA solution. We demonstrated that the GA immobilized (PEI/PAA) film has rapid self-healing properties, and that Gram-positive bacteria S. aureus including the methicillin-resistant type were efficiently killed through the contact-killing mode. Collectively, this self-healing bactericidal coating shows practical potential in a variety of healthcare applications.
Collapse
Affiliation(s)
- Wen-Xi Lei
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Design of an α-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Sci Rep 2016; 6:27394. [PMID: 27271216 PMCID: PMC4897634 DOI: 10.1038/srep27394] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/18/2016] [Indexed: 12/03/2022] Open
Abstract
AR-23 is a melittin-related peptide with 23 residues. Like melittin, its high α-helical amphipathic structure results in strong bactericidal activity and cytotoxicity. In this study, a series of AR-23 analogues with low amphipathicity were designed by substitution of Ala1, Ala8 and Ile17 with positively charged residues (Arg or Lys) to study the effect of positively charged residue distribution on the biological viability of the antimicrobial peptide. Substitution of Ile17 on the nonpolar face with positively charged Lys dramatically altered the hydrophobicity, amphipathicity, helicity and the membrane-penetrating activity against human cells as well as the haemolytic activity of the peptide. However, substitution on the polar face only slightly affected the peptide biophysical properties and biological activity. The results indicate that the position rather than the number of positively charged residue affects the biophysical properties and selectivity of the peptide. Of all the analogues, A(A1R, A8R, I17K), a peptide with Ala1-Arg, Ala8-Arg and Ile17-Lys substitutions, exhibited similar bactericidal activity and anti-biofilm activity to AR-23 but had much lower haemolytic activity and cytotoxicity against mammalian cells compared with AR-23. Therefore, the findings reported here provide a rationalization for peptide design and optimization, which will be useful for the future development of antimicrobial agents.
Collapse
|
19
|
Simmons M, Morales CA, Oakley BB, Seal BS. Recombinant Expression of a Putative Amidase Cloned from the Genome of Listeria monocytogenes that Lyses the Bacterium and its Monolayer in Conjunction with a Protease. Probiotics Antimicrob Proteins 2016; 4:1-10. [PMID: 26781731 DOI: 10.1007/s12602-011-9084-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Listeria monocytogenes is a Gram-positive, non-spore forming, catalase-positive rod that is a major bacterial food-borne disease agent associated with uncooked meats, including poultry, uncooked vegetables, soft cheeses, and unpasteurized milk. The bacterium may be carried by animals without signs of disease, can replicate at refrigeration temperatures, and is frequently associated with biofilms. There is a need to discover innovative pathogen intervention technologies for this bacterium. Consequently, bioinformatic analyses were used to identify genes encoding lytic protein sequences in the genomes of L. monocytogenes isolates. PCR primers were designed that amplified nucleotide sequences of a putative N-acetylmuramoyl-L-alanine amidase gene from L. monocytogenes strain 4b. The resultant amplification product was cloned into an expression vector, propagated in Escherichia coli Rosetta strains, and the recombinant protein was purified to homogeneity. Gene and protein sequencing confirmed that the predicted and chemically determined amino acid sequence of the recombinant protein designated PlyLM was a putative N-acetylmuramoyl-L-alanine amidase. The recombinant lytic protein was capable of lysing both the parental L. monocytogenes strain as well as other strains of the bacterium in spot and MIC/MIB assays, but was not active against other bacteria beyond the genus. A microtiter plate assay was utilized to assay for the ability of the recombinant lysin protein to potentially aid with digestion of a L. monocytogenes biofilm. Protease or lysozyme digestion alone did not significantly reduce the L. monocytogenes biofilm. Although the recombinant protein alone reduced the biofilm by only 20%, complete digestion of the bacterial monolayer was accomplished in conjunction with a protease.
Collapse
Affiliation(s)
- Mustafa Simmons
- Poultry Microbiology Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, USDA, 950 College Station Road, 30605, Athens, GA, USA
| | - Cesar A Morales
- Poultry Microbiology Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, USDA, 950 College Station Road, 30605, Athens, GA, USA
| | - Brian B Oakley
- Poultry Microbiology Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, USDA, 950 College Station Road, 30605, Athens, GA, USA
| | - Bruce S Seal
- Poultry Microbiology Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, USDA, 950 College Station Road, 30605, Athens, GA, USA.
| |
Collapse
|
20
|
Natural Sources as Innovative Solutions Against Fungal Biofilms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 931:105-25. [PMID: 27115410 DOI: 10.1007/5584_2016_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fungal cells are capable of adhering to biotic and abiotic surfaces and form biofilms containing one or more microbial species that are microbial reservoirs. These biofilms may cause chronic and acute infections. Fungal biofilms related to medical devices are particularly responsible for serious infections such as candidemia. Nowadays, only a few therapeutic agents have demonstrated activities against fungal biofilms in vitro and/or in vivo. So the discovery of new anti-biofilm molecules is definitely needed. In this context, biodiversity is a large source of original active compounds including some that have already proven effective in therapies such as antimicrobial compounds (antibacterial or antifungal agents). Bioactive metabolites from natural sources, useful for developing new anti-biofilm drugs, are of interest. In this chapter, the role of molecules isolated from plants, lichens, algae, microorganisms, or from animal or human origin in inhibition and/or dispersion of fungal biofilms (especially Candida and Aspergillus biofilms) is discussed. Some essential oils, phenolic compounds, saponins, peptides and proteins and alkaloids could be of particular interest in fighting fungal biofilms.
Collapse
|
21
|
Maione S, del Valle LJ, Pérez-Madrigal MM, Cativiela C, Puiggalí J, Alemán C. Electrospray loading and release of hydrophobic gramicidin in polyester microparticles. RSC Adv 2016. [DOI: 10.1039/c6ra11056h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gramicidin, a pentadecapeptide with well-known antimicrobial properties and recently identified therapeutic activity against different carcinomas, has been loaded by electrospraying in biodegradable and biocompatible poly(tetramethylene succinate).
Collapse
Affiliation(s)
- Silvana Maione
- Department of Chemical Engineering
- ETSEIB
- Universitat Politècnica de Catalunya
- Barcelona 08028
- Spain
| | - Luis J. del Valle
- Department of Chemical Engineering
- ETSEIB
- Universitat Politècnica de Catalunya
- Barcelona 08028
- Spain
| | - Maria M. Pérez-Madrigal
- Department of Chemical Engineering
- ETSEIB
- Universitat Politècnica de Catalunya
- Barcelona 08028
- Spain
| | - Carlos Cativiela
- Departamento de Química Orgánica
- Instituto de Síntesis Química y Catálisis Homogénea-ISQCH
- CSIC-Universidad de Zaragoza
- 50009 Zaragoza
- Spain
| | - Jordi Puiggalí
- Department of Chemical Engineering
- ETSEIB
- Universitat Politècnica de Catalunya
- Barcelona 08028
- Spain
| | - Carlos Alemán
- Department of Chemical Engineering
- ETSEIB
- Universitat Politècnica de Catalunya
- Barcelona 08028
- Spain
| |
Collapse
|
22
|
Valotteau C, Calers C, Casale S, Berton J, Stevens CV, Babonneau F, Pradier CM, Humblot V, Baccile N. Biocidal Properties of a Glycosylated Surface: Sophorolipids on Au(111). ACS APPLIED MATERIALS & INTERFACES 2015; 7:18086-18095. [PMID: 26247605 DOI: 10.1021/acsami.5b05090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Classical antibacterial surfaces usually involve antiadhesive and/or biocidal strategies. Glycosylated surfaces are usually used to prevent biofilm formation via antiadhesive mechanisms. We report here the first example of a glycosylated surface with biocidal properties created by the covalent grafting of sophorolipids (a sophorose unit linked by a glycosidic bond to an oleic acid) through a self-assembled monolayer (SAM) of short aminothiols on gold (111) surfaces. The biocidal effect of such surfaces on Gram+ bacteria was assessed by a wide combination of techniques including microscopy observations, fluorescent staining, and bacterial growth tests. About 50% of the bacteria are killed via alteration of the cell envelope. In addition, the roles of the sophorose unit and aliphatic chain configuration are highlighted by the lack of activity of substrates modified, respectively, with sophorose-free oleic acid and sophorolipid-derivative having a saturated aliphatic chain. This system demonstrates thus the direct implication of a carbohydrate in the destabilization and disruption of the bacterial cell envelope.
Collapse
Affiliation(s)
- Claire Valotteau
- †Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, UMR 7574, 11 Place Marcelin Berthelot, 75005 Paris, France
- ‡Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Réactivité de Surface, UMR 7197, 4 Place Jussieu, 75005 Paris, France
| | - Christophe Calers
- ‡Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Réactivité de Surface, UMR 7197, 4 Place Jussieu, 75005 Paris, France
| | - Sandra Casale
- ‡Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Réactivité de Surface, UMR 7197, 4 Place Jussieu, 75005 Paris, France
| | - Jan Berton
- §SynBioC Research Group, Departement of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Christian V Stevens
- §SynBioC Research Group, Departement of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Florence Babonneau
- †Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, UMR 7574, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Claire-Marie Pradier
- ‡Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Réactivité de Surface, UMR 7197, 4 Place Jussieu, 75005 Paris, France
| | - Vincent Humblot
- ‡Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Réactivité de Surface, UMR 7197, 4 Place Jussieu, 75005 Paris, France
| | - Niki Baccile
- †Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, UMR 7574, 11 Place Marcelin Berthelot, 75005 Paris, France
| |
Collapse
|
23
|
Soares JW, Kirby R, Doherty LA, Meehan A, Arcidiacono S. Immobilization and orientation-dependent activity of a naturally occurring antimicrobial peptide. J Pept Sci 2015; 21:669-79. [DOI: 10.1002/psc.2787] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/10/2015] [Accepted: 04/27/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Jason W. Soares
- U.S. Army Natick Soldier Research, Development and Engineering Center; Natick MA 01760 USA
| | - Romy Kirby
- U.S. Army Natick Soldier Research, Development and Engineering Center; Natick MA 01760 USA
| | - Laurel A. Doherty
- U.S. Army Natick Soldier Research, Development and Engineering Center; Natick MA 01760 USA
| | - Alexa Meehan
- U.S. Army Natick Soldier Research, Development and Engineering Center; Natick MA 01760 USA
| | - Steven Arcidiacono
- U.S. Army Natick Soldier Research, Development and Engineering Center; Natick MA 01760 USA
| |
Collapse
|
24
|
Gharbi A, Legigan T, Humblot V, Papot S, Berjeaud JM. Surface functionalization by covalent immobilization of an innovative carvacrol derivative to avoid fungal biofilm formation. AMB Express 2015; 5:9. [PMID: 25852986 PMCID: PMC4384722 DOI: 10.1186/s13568-014-0091-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 12/23/2014] [Indexed: 11/17/2022] Open
Abstract
Carvacrol, an aromatic terpenic compound, known to be antimicrobial was grafted onto gold surfaces via two strategies based on newly-synthesized cross-linkers involving either an ester bond which can be cleaved by microbial esterases, or a covalent ether link. Surface functionalizations were characterized at each step by reflection absorption infrared spectroscopy (RAIRS). The two functionalized gold samples both led to a loss of culturability of the yeast Candida albicans, higher than 65%, indicating that the activity of the freshly-designed surfaces was probably due to still covalently immobilized carvacrol. On the contrary, when a phenyl group replaced the terpenic moiety, the yeast culturability increased by about 30%, highlighting the specific activity of carvacrol grafted on the surfaces. Confocal microscopy analyses showed that the mode of action of the functionalized surfaces with the ester or the ether of carvacrol was, in both cases, fungicidal and not anti-adhesive. Finally, this study shows that covalently immobilization of terpenic compounds can be used to design promising antimicrobial surfaces.
Collapse
|
25
|
Schlusselhuber M, Humblot V, Casale S, Méthivier C, Verdon J, Leippe M, Berjeaud JM. Potent antimicrobial peptides against Legionella pneumophila and its environmental host, Acanthamoeba castellanii. Appl Microbiol Biotechnol 2015; 99:4879-91. [PMID: 25592737 DOI: 10.1007/s00253-015-6381-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/20/2014] [Accepted: 12/31/2014] [Indexed: 11/24/2022]
Abstract
Legionella pneumophila, the major causative agent of Legionnaires' disease, is most often found in the environment in close association with free-living amoebae, leading to persistence, spread, biocide resistance, and elevated virulence of the bacterium. In the present study, we evaluated the anti-Legionella and anti-Acanthamoeba activities of three alpha-helical antimicrobial peptides (AMPs), namely, NK-2, Ci-MAM-A24, and Ci-PAP-A22, already known for the extraordinary efficacy against other microbes. Our data represent the first demonstration of the activity of a particular AMP against both the human facultative intracellular pathogen L. pneumophila and its pathogenic host, Acanthamoeba castellanii. Interestingly, the most effective peptide, Ci-MAM-A24, was also found to reduce the Legionella cell number within amoebae. Accordingly, this peptide was immobilized on gold surfaces to assess its antimicrobial activity. Surfaces were characterized, and activity studies revealed that the potent bactericidal activity of the peptide was conserved after its immobilization. In the frame of elaborating anti-Legionella surfaces, Ci-MAM-A24 represents, by its direct and indirect activity against Legionella, a potent peptide template for biological control of the bacterium in plumbings.
Collapse
Affiliation(s)
- Margot Schlusselhuber
- Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267, Equipe Microbiologie de l'Eau, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Lequeux I, Ducasse E, Jouenne T, Thebault P. Design of an antibacterial gelatin based on a covalent protein-protein coupling. J Appl Polym Sci 2014. [DOI: 10.1002/app.41825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Isabelle Lequeux
- Normandie Univ; Rouen France
- Lab Polymères Biopolymères, Surfaces; Univ Rouen, F-76821 Mont St Aignan France
- CNRS; UMR 6270, F-76821 Mont St Aignan France
| | - Emmanuel Ducasse
- Normandie Univ; Rouen France
- Lab Polymères Biopolymères, Surfaces; Univ Rouen, F-76821 Mont St Aignan France
- CNRS; UMR 6270, F-76821 Mont St Aignan France
| | - Thierry Jouenne
- Normandie Univ; Rouen France
- Lab Polymères Biopolymères, Surfaces; Univ Rouen, F-76821 Mont St Aignan France
- CNRS; UMR 6270, F-76821 Mont St Aignan France
| | - Pascal Thebault
- Normandie Univ; Rouen France
- Lab Polymères Biopolymères, Surfaces; Univ Rouen, F-76821 Mont St Aignan France
- CNRS; UMR 6270, F-76821 Mont St Aignan France
| |
Collapse
|
27
|
Lombana A, Raja Z, Casale S, Pradier CM, Foulon T, Ladram A, Humblot V. Temporin-SHa peptides grafted on gold surfaces display antibacterial activity. J Pept Sci 2014; 20:563-9. [PMID: 24919960 DOI: 10.1002/psc.2654] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 01/26/2023]
Abstract
Development of resistant bacteria onto biomaterials is a major problem leading to nosocomial infections. Antimicrobial peptides are good candidates for the generation of antimicrobial surfaces because of their broad-spectrum activity and their original mechanism of action (i.e. rapid lysis of the bacterial membrane) making them less susceptible to the development of bacterial resistance. In this study, we report on the covalent immobilisation of temporin-SHa on a gold surface modified by a thiolated self-assembled monolayer. Temporin-SHa (FLSGIVGMLGKLF amide) is a small hydrophobic and low cationic antimicrobial peptide with potent and very broad-spectrum activity against Gram-positive and Gram-negative bacteria, yeasts and parasites. We have analysed the influence of the binding mode of temporin-SHa on the antibacterial efficiency by using a covalent binding either via the peptide NH2 groups (random grafting of α- and ε-NH2 to the surface) or via its C-terminal end (oriented grafting using the analogue temporin-SHa-COOH). The surface functionalization was characterised by IR spectroscopy (polarisation modulation reflection absorption IR spectroscopy) while antibacterial activity against Listeria ivanovii was assessed by microscopy techniques, such as atomic force microscopy and scanning electron microscopy equipped with a field emission gun. Our results revealed that temporin-SHa retains its antimicrobial activity after covalent grafting. A higher amount of bound temporin-SHa is observed for the C-terminally oriented grafting compared with the random grafting (NH2 groups). Temporin-SHa therefore represents an attractive candidate as antimicrobial coating agent.
Collapse
Affiliation(s)
- Andres Lombana
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7197, Laboratoire de Réactivité de Surface (LRS), F-75005, Paris, France; CNRS, UMR 7197, Laboratoire de Réactivité de Surface, F-75005, Paris, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Lefebvre E, Lequeux I, Vighetto C, Fromantin I, Thebault P, Seyer D, Picard J, Teot L, Meaume S, Freitas M, Neffati S, Guermah LE, Pelissier S, Giraudier S, Jouenne T, Garde V. From a clinical observation of chronic wound microbiology to the elaboration of an anti-biofilm dressing: The PANSaBIO project strategy. Ing Rech Biomed 2014. [DOI: 10.1016/j.irbm.2014.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Alves D, Olívia Pereira M. Mini-review: Antimicrobial peptides and enzymes as promising candidates to functionalize biomaterial surfaces. BIOFOULING 2014; 30:483-499. [PMID: 24666008 DOI: 10.1080/08927014.2014.889120] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biomaterial-associated infections remain a serious concern in modern healthcare. The development of materials that can resist or prevent bacterial attachment constitutes a promising approach to dealing with this problem. Antimicrobial peptides (AMPs) and enzymes have been recognized as promising candidates for the new generation of antimicrobial surfaces. AMPs have been the focus of great interest in recent years owing to a low propensity for developing bacterial resistance, broad-spectrum activity, high efficacy at very low concentrations, target specificity, and synergistic action with classical antibiotics. Biofilm-dispersing enzymes have been shown to inhibit biofilm formation, detach established biofilm, and increase biofilm susceptibility to other antimicrobials. This review critically examines the potential of these protein-like compounds for developing antibacterial coatings by reporting their immobilization into different substrata using different immobilization strategies.
Collapse
Affiliation(s)
- Diana Alves
- a IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering , University of Minho , Campus de Gualtar, 4710-057 Braga , Portugal
| | | |
Collapse
|
30
|
In vitro activities of dermaseptins K4S4 and K4K20S4 against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa planktonic growth and biofilm formation. Antimicrob Agents Chemother 2014; 58:2221-8. [PMID: 24492362 DOI: 10.1128/aac.02142-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The rising number of infections caused by biofilm formation and the difficulties associated with their treatment by conventional antimicrobial therapies have led to an intensive search for novel antibiofilm agents. Dermaseptins are antimicrobial peptides with a number of attractive properties that might offer alternative therapies against resistant microorganisms. In this study, we synthesized a set of dermaseptin-derived peptides and evaluated their activities against Gram-positive and Gram-negative bacterial biofilm formation. All dermaseptin-derived peptides demonstrated concentration-dependent antibiofilm activities at microgram concentrations, and their activities were dependent on the nature of the peptides, with the highest levels of activity being exhibited by highly charged molecules. Fluorescent binding and confocal microscopy demonstrated that dermaseptin K4S4, a substituted derivative of the native molecule S4, significantly decreased the viability of planktonic and surface-attached bacteria and stopped biofilm formation under dynamic flow conditions. Cytotoxicity assays with HeLa cells showed that some of the tested peptides were less cytotoxic than current antibiotics. Overall, these findings indicate that dermaseptin derivatives might constitute new lead structures for the development of potent antibiofilm agents.
Collapse
|
31
|
Antiadhesive activity of ulvan polysaccharides covalently immobilized onto titanium surface. Colloids Surf B Biointerfaces 2013; 112:229-36. [DOI: 10.1016/j.colsurfb.2013.07.061] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/18/2013] [Accepted: 07/30/2013] [Indexed: 11/17/2022]
|
32
|
Andonova M, Urumova V. Immune surveillance mechanisms of the skin against the stealth infection strategy of Pseudomonas aeruginosa—Review. Comp Immunol Microbiol Infect Dis 2013; 36:433-48. [DOI: 10.1016/j.cimid.2013.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 01/21/2013] [Accepted: 03/30/2013] [Indexed: 01/01/2023]
|
33
|
Humblot V, Pradier CM. Chiral Recognition of l-Gramicidine on Chiraly Methionine-Modified Au(111). J Phys Chem Lett 2013; 4:1816-1820. [PMID: 26283114 DOI: 10.1021/jz400608n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A chiral pentadecapeptide, l-gramicidine, has been shown to undergo specific adsorption onto gold surfaces modified by chiral amino acids, d- and l-methionine, upon adsorption in the liquid phase. There is a chiral recognition only between the slightly anionic l-peptide and the l-modified surface exhibiting cationic molecules. However, whatever the probe and target molecule charges, very weak recognition was observed between molecules of opposite chirality.
Collapse
Affiliation(s)
- Vincent Humblot
- Laboratoire de Réactivité de Surface, UMR CNRS 7197, Université Pierre et Marie Curie - UPMC case 178, 4 place Jussieu, 75005 Paris, France
| | - Claire-Marie Pradier
- Laboratoire de Réactivité de Surface, UMR CNRS 7197, Université Pierre et Marie Curie - UPMC case 178, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
34
|
Peyre J, Humblot V, Méthivier C, Berjeaud JM, Pradier CM. Co-Grafting of Amino–Poly(ethylene glycol) and Magainin I on a TiO2 Surface: Tests of Antifouling and Antibacterial Activities. J Phys Chem B 2012; 116:13839-47. [DOI: 10.1021/jp305597y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jessie Peyre
- CNRS UMR 7197, Surface Reactivity
Laboratory, Pierre et Marie Curie University - Paris 6, 3 rue Galilée 94200 Ivry-sur-Seine, France
| | - Vincent Humblot
- CNRS UMR 7197, Surface Reactivity
Laboratory, Pierre et Marie Curie University - Paris 6, 3 rue Galilée 94200 Ivry-sur-Seine, France
| | - Christophe Méthivier
- CNRS UMR 7197, Surface Reactivity
Laboratory, Pierre et Marie Curie University - Paris 6, 3 rue Galilée 94200 Ivry-sur-Seine, France
| | - Jean-Marc Berjeaud
- Ecology & Biology Interactions - UMR 7267 CNRS, Poitiers University, IBMIG, 40 avenue du recteur Pineau, 86022 Poitiers Cedex, France
| | - Claire-Marie Pradier
- CNRS UMR 7197, Surface Reactivity
Laboratory, Pierre et Marie Curie University - Paris 6, 3 rue Galilée 94200 Ivry-sur-Seine, France
| |
Collapse
|
35
|
Grumezescu AM, Chifiriuc MC, Saviuc C, Grumezescu V, Hristu R, Mihaiescu DE, Stanciu GA, Andronescu E. Hybrid nanomaterial for stabilizing the antibiofilm activity of Eugenia carryophyllata essential oil. IEEE Trans Nanobioscience 2012; 11:360-5. [PMID: 22949098 DOI: 10.1109/tnb.2012.2208474] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of the present study was to demonstrate that Fe(3)O(4)/oleic acid core/shell nanostructures could be used as systems for stabilizing the Eugenia carryophyllata essential oil (EO) on catheter surface pellicles, in order to improve their resistance to fungal colonization. EO microwave assisted extraction was performed in a Neo-Clevenger (related) device and its chemical composition was settled by GC-MS analysis. Fe(3)O(4)/oleic acid-core/shell nanoparticles (NP) were obtained by a precipitation method under microwave condition. High resolution transmission electron microscopy (HR-TEM) was used as a primary characterization method. The NPs were processed to achieve a core/shell/EO coated-shell nanosystem further used for coating the inner surface of central venous catheter samples. The tested fungal strains have been recently isolated from different clinical specimens. The biofilm architecture was assessed by confocal laser scanning microscopy (CLSM). Our results claim the usage of hybrid nanomaterial (core/shell/coated-shell) for the stabilization of E. carryophyllata EO, which prevented or inhibited the fungal biofilm development on the functionalized catheter, highlighting the opportunity of using these nanosystems to obtain improved, anti-biofilm coatings for biomedical applications.
Collapse
Affiliation(s)
- Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxidic Materials and Nanomaterials, University Politehnica of Bucharest, Bucharest, 011061, Romania.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gharbi A, Humblot V, Turpin F, Pradier CM, Imbert C, Berjeaud JM. Elaboration of antibiofilm surfaces functionalized with antifungal-cyclodextrin inclusion complexes. ACTA ACUST UNITED AC 2012; 65:257-69. [PMID: 22268719 DOI: 10.1111/j.1574-695x.2012.00932.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/04/2012] [Accepted: 01/19/2012] [Indexed: 11/26/2022]
Abstract
To tackle the loss of activity of surfaces functionalized by coating and covalently bound molecules to materials, an intermediate system implying the noncovalent immobilization of active molecules in the inner cavity of grafted cyclodextrins (CDs) was investigated. The antifungal and antibiofilm activities of the most stable complexes of Anidulafungin (ANF; echinocandin) and thymol (THY; terpen) in various CDs were demonstrated to be almost the same as the free molecules. The selected CD was covalently bond to self-assembled monolayers on gold surfaces. The immobilized antifungal agents reduced the number of culturable Candida albicans ATCC 3153 attached to the surface by 64 ± 8% for ANF and 75 ± 15% for THY. The inhibitory activity was persistent for THY-loaded samples, whereas it was completely lost for ANF-loaded surfaces after one use. However, reloading of the echinocandin restored the activity. Using fluorescent dying and confocal microscopy, it was proposed that the ANF-loaded surfaces inhibited the adherence of the yeasts, whereas the activity of immobilized THY was found fungicidal. This kind of tailored approach for functionalizing surfaces that could allow a progressive release of ANF or THY gave promising results but still needs to be improved to display a full activity.
Collapse
Affiliation(s)
- Aïcha Gharbi
- Laboratoire de Chimie et Microbiologie de l'Eau-UMR 6008 CNRS, UFR Sciences fondamentales et Appliquées, IBMIG, Université de Poitiers, Poitiers Cedex, France
| | | | | | | | | | | |
Collapse
|
37
|
Glinel K, Thebault P, Humblot V, Pradier CM, Jouenne T. Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater 2012; 8:1670-84. [PMID: 22289644 DOI: 10.1016/j.actbio.2012.01.011] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/20/2011] [Accepted: 01/10/2012] [Indexed: 11/16/2022]
Abstract
Prevention of bacterial adhesion and biofilm formation on the surfaces of materials is a topic of major medical and societal importance. Various synthetic approaches based on immobilization or release of bactericidal substances such as metal derivatives, polyammonium salts and antibiotics were extensively explored to produce antibacterial coatings. Although providing encouraging results, these approaches suffer from the use of active agents which may be associated with side-effects such as cytotoxicity, hypersensibility, inflammatory responses or the progressive alarming phenomenon of antibiotic resistance. In addition to these synthetic approaches, living organisms, e.g. animals and plants, have developed fascinating strategies over millions of years to prevent efficiently the colonization of their surfaces by pathogens. These strategies have been recently mimicked to create a new generation of bio-inspired biofilm-resistant surfaces. In this review, we discuss some of these bio-inspired methods devoted to the development of antibiofilm surfaces. We describe the elaboration of antibacterial coatings based on natural bactericidal substances produced by living organisms such as antimicrobial peptides, bacteriolytic enzymes and essential oils. We discuss also the development of layers mimicking algae surfaces and based on anti-quorum-sensing molecules which affect cell-to-cell communication. Finally, we report on very recent strategies directly inspired from marine animal life and based on surface microstructuring.
Collapse
Affiliation(s)
- K Glinel
- Institute of Condensed Matter and Nanosciences (Bio- and Soft Matter), Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | | | | | | | | |
Collapse
|
38
|
Jorge P, Lourenço A, Pereira MO. New trends in peptide-based anti-biofilm strategies: a review of recent achievements and bioinformatic approaches. BIOFOULING 2012; 28:1033-1061. [PMID: 23016989 DOI: 10.1080/08927014.2012.728210] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Antimicrobial peptides (AMPs) have a broad spectrum of activity and unspecific mechanisms of action. Therefore, they are seen as valid alternatives to overcome clinically relevant biofilms and reduce the chance of acquired resistance. This paper reviews AMPs and anti-biofilm AMP-based strategies and discusses ongoing and future work. Recent studies report successful AMP-based prophylactic and therapeutic strategies, several databases catalogue AMP information and analysis tools, and novel bioinformatics tools are supporting AMP discovery and design. However, most AMP studies are performed with planktonic cultures, and most studies on sessile cells test AMPs on growing rather than mature biofilms. Promising preliminary synergistic studies have to be consubstantiated and the study of functionalized coatings with AMPs must be further explored. Standardized operating protocols, to enforce the repeatability and reproducibility of AMP anti-biofilm tests, and automated means of screening and processing the ever-expanding literature are still missing.
Collapse
Affiliation(s)
- Paula Jorge
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | |
Collapse
|
39
|
Paganelli FL, Willems RJ, Leavis HL. Optimizing future treatment of enterococcal infections: attacking the biofilm? Trends Microbiol 2011; 20:40-9. [PMID: 22169461 DOI: 10.1016/j.tim.2011.11.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/19/2011] [Accepted: 11/02/2011] [Indexed: 11/16/2022]
Abstract
Enterococcus faecalis and Enterococcus faecium are among the leading causative agents of nosocomial infections and are infamous for their resistance to many antibiotics. They cause difficult-to-treat infections, often originating from biofilm-mediated infections associated with implanted medical devices or endocarditis. Biofilms protect bacteria against antibiotics and phagocytosis, and physical removal of devices or infected tissue is often needed but is frequently not possible. Currently there are no clinically available compounds that disassemble biofilms. In this review we discuss all known structural and regulatory genes involved in enterococcal biofilm formation, the compounds directed against biofilm formation that have been studied, and potentially useful targets for future drugs to treat enterococcal biofilm-associated infections.
Collapse
Affiliation(s)
- Fernanda L Paganelli
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | | | | |
Collapse
|
40
|
Karunakaran E, Mukherjee J, Ramalingam B, Biggs CA. "Biofilmology": a multidisciplinary review of the study of microbial biofilms. Appl Microbiol Biotechnol 2011; 90:1869-81. [PMID: 21538113 DOI: 10.1007/s00253-011-3293-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/26/2011] [Accepted: 03/27/2011] [Indexed: 11/29/2022]
Abstract
The observation of biofilm formation is not a new phenomenon. The prevalence and significance of biofilm and aggregate formation in various processes have encouraged extensive research in this field for more than 40 years. In this review, we highlight techniques from different disciplines that have been used to successfully describe the extracellular, surface and intracellular elements that are predominant in understanding biofilm formation. To reduce the complexities involved in studying biofilms, researchers in the past have generally taken a parts-based, disciplinary specific approach to understand the different components of biofilms in isolation from one another. Recently, a few studies have looked into combining the different techniques to achieve a more holistic understanding of biofilms, yet this approach is still in its infancy. In order to attain a global understanding of the processes involved in the formation of biofilms and to formulate effective biofilm control strategies, researchers in the next decade should recognise that the study of biofilms, i.e. biofilmology, has evolved into a discipline in its own right and that mutual cooperation between the various disciplines towards a multidisciplinary research vision is vital in this field.
Collapse
Affiliation(s)
- Esther Karunakaran
- Department of Chemical and Biological Engineering, ChELSI Institute, The University of Sheffield, Sheffield, UK
| | | | | | | |
Collapse
|
41
|
Saleh S, Taha MO, Haddadin RN, Marzooqa D, Hodali H. Preparation of Silver- and Zinc-Doped Mullite-Based Ceramics Showing Anti-Bacterial Biofilm Properties. Molecules 2011. [PMCID: PMC6260598 DOI: 10.3390/molecules16042862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Zinc- and silver-doped mullite ceramic discs were prepared and tested as potentially resistant materials against bacterial adhesion and biofilm formation. Elemental analysis and X-ray diffraction studies showed that zinc ions were incorporated in the structural framework of the mullite, while silver ions remained outside the mullite crystal lattice, which allowed their slow (0.02 ppm/24 hours) leaching into the surrounding aqueous environment. In agreement with this behavior, silver-doped mullite showed potent resistance against surface attachment of Pseudomonas aeruginosa, while on the other hand, zinc-doped mullite failed to stop bacterial attachment.
Collapse
Affiliation(s)
- Suhair Saleh
- Department of Pharmaceutical Sciences and Pharmaceutics, Applied Science University, Amman, Jordan
| | - Mutasem O. Taha
- Drug Discovery Unit, Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| | - Randa N. Haddadin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| | - Duá Marzooqa
- Drug Discovery Unit, Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| | - Hamdallah Hodali
- Department of Chemistry, Faculty of Sciences, University of Jordan, Amman, Jordan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +962-776-717-080
| |
Collapse
|
42
|
Optimized grafting of antimicrobial peptides on stainless steel surface and biofilm resistance tests. Colloids Surf B Biointerfaces 2011; 84:301-9. [PMID: 21310597 DOI: 10.1016/j.colsurfb.2011.01.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 01/03/2011] [Accepted: 01/13/2011] [Indexed: 11/22/2022]
Abstract
Antibacterial peptides, magainin I and nisin were covalently bound to stainless steel surfaces. Several procedures of surface functionalisation processes have been investigated and optimized, each step being characterized by polarization modulation reflection absorption infrared spectroscopy (PM-RAIRS) and X-ray photoemission spectroscopy (XPS). Grafting of antibacterial peptides was successfully achieved by a 3 steps functionalisation process on a chitosan polymeric layer. The antibacterial activity of the anchored magainin and nisin was tested against a gram-positive bacteria, Listeria ivanovii, i.e., the possible survival and attachment of this bacteria, was characterized on modified stainless steel surfaces. The results revealed that the adsorbed peptides reduced the adhesion of bacteria on the functionalised stainless steel surface.
Collapse
|