1
|
Zhang X, Wu N, Geng K, Yuan C, Wang B, Shi J, Qiu J, He J. Identification of a chlorosalicylic acid decarboxylase (CsaD) involved in decarboxylation of 3,6-DCSA from an anaerobic dicamba-degrading sludge. Appl Environ Microbiol 2024; 90:e0131924. [PMID: 39248463 PMCID: PMC11497826 DOI: 10.1128/aem.01319-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
3,6-Dichlorosalicylic acid (3,6-DCSA) is the demethylation metabolite of herbicide 3,6-dichloro-2-methoxy benzoic acid (dicamba). Previous studies have shown that anaerobic sludge further transformed 3,6-DCSA through decarboxylation and dechlorination. However, the anaerobe, enzyme, and gene involved in the anaerobic degradation of 3,6-DCSA are still unknown. In this study, an anaerobic sludge that efficiently degraded dicamba was enriched, and a 3,6-DCSA decarboxylase, designated chlorosalicylic acid decarboxylase (CsaD), was partially purified and identified from the anaerobic sludge. Metagenomic analysis showed that the csaD gene was located in a gene cluster of metagenome-assembled genome 8 (MAG8). MAG8 belonged to an uncultured order, OPB41, in the class Coriobacteriia of the phylum Actinobacteria, and its abundance increased approximately once during the enrichment process. CsaD was a non-oxidative decarboxylase in the amidohydrolase 2 family catalyzing the decarboxylation of 3,6-DCSA and 6-chlorosalicylic acid (6-CSA). Its affinity and catalytic efficiency for 3,6-DCSA were significantly higher than those for 6-CSA. This study provides new insights into the anaerobic catabolism of herbicide dicamba.IMPORTANCEDicamba, an important hormone herbicide, easily migrates to anoxic habitats such as sediment, ground water, and deep soil. Thus, the anaerobic catabolism of dicamba is of importance. Anaerobic bacteria or sludge demethylated dicamba to 3,6-DCSA, and in a previous study, based on metabolite identification, it was proposed that 3,6-DCSA be further degraded via two pathways: decarboxylation to 2,5-dichlorophenol, then dechlorination to 3-chlorophenol (3-CP); or dechlorination to 6-CSA, then decarboxylation to 3-CP. However, there was no physiological and genetic validation for the pathway. In this study, CsaD catalyzed the decarboxylation of both 3,6-DCSA and 6-CSA, providing enzyme-level evidence for the anaerobic catabolism of 3,6-DCSA through the two pathways. CsaD was located in MAG8, which belonged to an uncultured anaerobic actinomycetes order, OPB41, indicating that anaerobic actinomycetes in OPB41 was involved in the decarboxylation of 3,6-DCSA. This study provides a basis for understanding the anaerobic catabolism of dicamba and the demethylation product, 3,6-DCSA.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Ningning Wu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Keke Geng
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| | - Cansheng Yuan
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Junyu Shi
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Jiguo Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Jian He
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Agricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu Province, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Odinot E, Bisotto-Mignot A, Frezouls T, Bissaro B, Navarro D, Record E, Cadoret F, Doan A, Chevret D, Fine F, Lomascolo A. A New Phenolic Acid Decarboxylase from the Brown-Rot Fungus Neolentinus lepideus Natively Decarboxylates Biosourced Sinapic Acid into Canolol, a Bioactive Phenolic Compound. Bioengineering (Basel) 2024; 11:181. [PMID: 38391667 PMCID: PMC10886158 DOI: 10.3390/bioengineering11020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Rapeseed meal (RSM) is a cheap, abundant and renewable feedstock, whose biorefinery is a current challenge for the sustainability of the oilseed sector. RSM is rich in sinapic acid (SA), a p-hydroxycinnamic acid that can be decarboxylated into canolol (2,6-dimethoxy-4-vinylphenol), a valuable bioactive compound. Microbial phenolic acid decarboxylases (PADs), mainly described for the non-oxidative decarboxylation of ferulic and p-coumaric acids, remain very poorly documented to date, for SA decarboxylation. The species Neolentinus lepideus has previously been shown to biotransform SA into canolol in vivo, but the enzyme responsible for bioconversion of the acid has never been characterized. In this study, we purified and characterized a new PAD from the canolol-overproducing strain N. lepideus BRFM15. Proteomic analysis highlighted a sole PAD-type protein sequence in the intracellular proteome of the strain. The native enzyme (NlePAD) displayed an unusual outstanding activity for decarboxylating SA (Vmax of 600 U.mg-1, kcat of 6.3 s-1 and kcat/KM of 1.6 s-1.mM-1). We showed that NlePAD (a homodimer of 2 × 22 kDa) is fully active in a pH range of 5.5-7.5 and a temperature range of 30-55 °C, with optima of pH 6-6.5 and 37-45 °C, and is highly stable at 4 °C and pH 6-8. Relative ratios of specific activities on ferulic, sinapic, p-coumaric and caffeic acids, respectively, were 100:24.9:13.4:3.9. The enzyme demonstrated in vitro effectiveness as a biocatalyst for the synthesis of canolol in aqueous medium from commercial SA, with a molar yield of 92%. Then, we developed processes to biotransform naturally-occurring SA from RSM into canolol by combining the complementary potentialities of an Aspergillus niger feruloyl esterase type-A, which is able to release free SA from the raw meal by hydrolyzing its conjugated forms, and NlePAD, in aqueous medium and mild conditions. NlePAD decarboxylation of biobased SA led to an overall yield of 1.6-3.8 mg canolol per gram of initial meal. Besides being the first characterization of a fungal PAD able to decarboxylate SA, this report shows that NlePAD is very promising as new biotechnological tool to generate biobased vinylphenols of industrial interest (especially canolol) as valuable platform chemicals for health, nutrition, cosmetics and green chemistry.
Collapse
Affiliation(s)
- Elise Odinot
- OléoInnov, 19 Rue du Musée, F-13001 Marseille, France
| | - Alexandra Bisotto-Mignot
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Toinou Frezouls
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Bastien Bissaro
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - David Navarro
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Eric Record
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Frédéric Cadoret
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Annick Doan
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Didier Chevret
- INRAE, UMR1319 MICALIS Institute, PAPPSO, Domaine de Vilvert, F-78350 Jouy-en-Josas, France
| | - Frédéric Fine
- TERRES INOVIA, Parc Industriel, 11 Rue Monge, F-33600 Pessac, France
| | - Anne Lomascolo
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| |
Collapse
|
3
|
Lomascolo A, Odinot E, Villeneuve P, Lecomte J. Challenges and advances in biotechnological approaches for the synthesis of canolol and other vinylphenols from biobased p-hydroxycinnamic acids: a review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:173. [PMID: 37964324 PMCID: PMC10644543 DOI: 10.1186/s13068-023-02425-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
p-Hydroxycinnamic acids, such as sinapic, ferulic, p-coumaric and caffeic acids, are among the most abundant phenolic compounds found in plant biomass and agro-industrial by-products (e.g. cereal brans, sugar-beet and coffee pulps, oilseed meals). These p-hydroxycinnamic acids, and their resulting decarboxylation products named vinylphenols (canolol, 4-vinylguaiacol, 4-vinylphenol, 4-vinylcatechol), are bioactive molecules with many properties including antioxidant, anti-inflammatory and antimicrobial activities, and potential applications in food, cosmetic or pharmaceutical industries. They were also shown to be suitable precursors of new sustainable polymers and biobased substitutes for fine chemicals such as bisphenol A diglycidyl ethers. Non-oxidative microbial decarboxylation of p-hydroxycinnamic acids into vinylphenols involves cofactor-free and metal-independent phenolic acid decarboxylases (EC 4.1.1 carboxyl lyase family). Historically purified from bacteria (Bacillus, Lactobacillus, Pseudomonas, Enterobacter genera) and some yeasts (e.g. Brettanomyces or Candida), these enzymes were described for the decarboxylation of ferulic and p-coumaric acids into 4-vinylguaiacol and 4-vinylphenol, respectively. The catalytic mechanism comprised a first step involving p-hydroxycinnamic acid conversion into a semi-quinone that then decarboxylated spontaneously into the corresponding vinyl compound, in a second step. Bioconversion processes for synthesizing 4-vinylguaiacol and 4-vinylphenol by microbial decarboxylation of ferulic and p-coumaric acids historically attracted the most research using bacterial recombinant phenolic acid decarboxylases (especially Bacillus enzymes) and the processes developed to date included mono- or biphasic systems, and the use of free- or immobilized cells. More recently, filamentous fungi of the Neolentinus lepideus species were shown to natively produce a more versatile phenolic acid decarboxylase with high activity on sinapic acid in addition to the others p-hydroxycinnamic acids, opening the way to the production of canolol by biotechnological processes applied to rapeseed meal. Few studies have described the further microbial/enzymatic bioconversion of these vinylphenols into valuable compounds: (i) synthesis of flavours such as vanillin, 4-ethylguaiacol and 4-ethylphenol from 4-vinylguaiacol and 4-vinylphenol, (ii) laccase-mediated polymer synthesis from canolol, 4-vinylguaiacol and 4-vinylphenol.
Collapse
Affiliation(s)
- Anne Lomascolo
- Aix Marseille Univ., INRAE, UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France.
| | - Elise Odinot
- OléoInnov, 19 rue du Musée, 13001, Marseille, France
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, 34398, Montpellier, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR Qualisud, 34398, Montpellier, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
4
|
Tang S, Chen Y, Liao D, Lin Y, Han S, Zheng S. A process for p-hydroxystyrene production from glycerol based on cell-free biosynthesis system. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
5
|
Zhao Y, Wang Y, Li H, Zhou Z, Wu Z, Zhang W. Integrating metabolomics and metatranscriptomics to explore the formation pathway of aroma-active volatile phenolics and metabolic profile during industrial radish paocai fermentation. Food Res Int 2023; 167:112719. [PMID: 37087217 DOI: 10.1016/j.foodres.2023.112719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
The aroma profile of industrial Sichuan paocai is formed and regulated by complex physiological and biochemical reactions and microbial metabolism, but little is known so far. In this study, we comprehensively analyzed the changes of metabolic profile and gene expression profile, mainly explored the formation pathways of two skeleton aroma-active compounds, 4-ethylphenol and 4-ethylguaiacol, and verified the pathways at multiple levels. The results showed that a total of 136 volatile metabolites and 560 non-volatile metabolites were identified in the whole fermentation process. The types and concentrations of metabolites in paocai were higher than those in brine, and gradually converged with fermentation. Differential analysis of metabolism and transcription levels were both enriched in three pathways: amino acid metabolism, phenylpropanoid metabolism and lipid metabolism. Among them, 4-ethylphenol and 4-ethylguaiacol, the products of the phenylpropanoid metabolism, were converted from p-coumaric acid and ferulic acid in plant cell walls, respectively. Under the action of decarboxylase produced by yeast (such as Debaryomyces Hansenii) and lactic acid bacteria (such as Lactobacillus versmoldensis), intermediate metabolites vinylphenols were produced, and the intermediate metabolites further produce the final products under the action of vinylphenol reductase. The key gene copy number, enzyme activity, and metabolite concentration in the pathways were detected to provide stronger evidence for the formation pathways. This study provided meaningful new insights for the development of aroma-producing enzymes and further guidance for the flavor improvement of industrial paocai.
Collapse
|
6
|
Improving the catalytic characteristics of phenolic acid decarboxylase from Bacillus amyloliquefaciens by the engineering of N-terminus and C-terminus. BMC Biotechnol 2021; 21:44. [PMID: 34311732 PMCID: PMC8311932 DOI: 10.1186/s12896-021-00705-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background 4-vinylphenols produced by phenolic acid degradation catalyzed by phenolic acid decarboxylase can be used in food additives as well as flavor and fragrance industry. Improving the catalytic characters of phenolic acid decarboxylase is of great significance to enhance its practical application. Results A phenolic acid decarboxylase (P-WT) was created from Bacillus amyloliquefaciens ZJH-01. Mutants such as P-C, P-N, P-m1, P-m2, P-Nm1, and P-Nm2 were constructed by site-directed mutagenesis of P-WT. P-C showed better substrate affinities and higher turnover rates than P-WT for p-coumaric acid, ferulic acid, and sinapic acid; however, P-N had reduced affinity toward p-coumaric acid. The extension of the C-terminus increased its acid resistance, whereas the extension of the N-terminus contributed to the alkali resistance and heat resistance. The affinity of P-m1 to four substrates and that of P-m2 to p-coumaric acid and ferulic acid were greatly improved. However, the affinity of P-Nm2 to four phenolic acids was greatly reduced. The residual enzyme activities of P-Nm1 and P-Nm2 considerably improved compared with those of P-m1 and P-m2 after incubation at 50 °C for 60 min. Conclusions The extension of the N-terminus may be more conducive to the combination of the binding cavity with the substrate in an alkaline environment and may make its structure more stable. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00705-7.
Collapse
|
7
|
Peng M, Mittmann E, Wenger L, Hubbuch J, Engqvist MKM, Niemeyer CM, Rabe KS. 3D-Printed Phenacrylate Decarboxylase Flow Reactors for the Chemoenzymatic Synthesis of 4-Hydroxystilbene. Chemistry 2019; 25:15998-16001. [PMID: 31618489 PMCID: PMC6972603 DOI: 10.1002/chem.201904206] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/14/2019] [Indexed: 01/24/2023]
Abstract
Continuous flow systems for chemical synthesis are becoming a major focus in organic chemistry and there is a growing interest in the integration of biocatalysts due to their high regio- and stereoselectivity. Methods established for 3D bioprinting enable the fast and simple production of agarose-based modules for biocatalytic reactors if thermally stable enzymes are available. We report here on the characterization of four different cofactor-free phenacrylate decarboxylase enzymes suitable for the production of 4-vinylphenol and test their applicability for the encapsulation and direct 3D printing of disk-shaped agarose-based modules that can be used for compartmentalized flow microreactors. Using the most active and stable phenacrylate decarboxylase from Enterobacter spec. in a setup with four parallel reactors and a subsequent palladium(II) acetate-catalysed Heck reaction, 4-hydroxystilbene was synthesized from p-coumaric acid with a total yield of 14.7 % on a milligram scale. We believe that, due to the convenient direct immobilization of any thermostable enzyme and straightforward tuning of the reaction sequence by stacking of modules with different catalytic activities, this simple process will facilitate the establishment and use of cascade reactions and will therefore be of great advantage for many research approaches.
Collapse
Affiliation(s)
- Martin Peng
- Institute for Biological Interfaces (IBG 1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Esther Mittmann
- Institute for Biological Interfaces (IBG 1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Lukas Wenger
- Institute of Functional InterfacesKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation EngineeringKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Jürgen Hubbuch
- Institute of Functional InterfacesKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation EngineeringKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Martin K. M. Engqvist
- Department of Biology and Biological EngineeringDivision of Systems and Synthetic BiologyChalmers University of TechnologyKemivägen 1041296GothenburgSweden
| | - Christof M. Niemeyer
- Institute for Biological Interfaces (IBG 1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Kersten S. Rabe
- Institute for Biological Interfaces (IBG 1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
8
|
Mittmann E, Gallus S, Bitterwolf P, Oelschlaeger C, Willenbacher N, Niemeyer CM, Rabe KS. A Phenolic Acid Decarboxylase-Based All-Enzyme Hydrogel for Flow Reactor Technology. MICROMACHINES 2019; 10:E795. [PMID: 31757029 PMCID: PMC6953023 DOI: 10.3390/mi10120795] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/22/2023]
Abstract
Carrier-free enzyme immobilization techniques are an important development in the field of efficient and streamlined continuous synthetic processes using microreactors. Here, the use of monolithic, self-assembling all-enzyme hydrogels is expanded to phenolic acid decarboxylases. This provides access to the continuous flow production of p-hydroxystyrene from p-coumaric acid for more than 10 h with conversions ≥98% and space time yields of 57.7 g·(d·L)-1. Furthermore, modulation of the degree of crosslinking in the hydrogels resulted in a defined variation of the rheological behavior in terms of elasticity and mesh size of the corresponding materials. This work is addressing the demand of sustainable strategies for defunctionalization of renewable feedstocks.
Collapse
Affiliation(s)
- Esther Mittmann
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (E.M.); (S.G.); (P.B.); (C.M.N.)
| | - Sabrina Gallus
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (E.M.); (S.G.); (P.B.); (C.M.N.)
| | - Patrick Bitterwolf
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (E.M.); (S.G.); (P.B.); (C.M.N.)
| | - Claude Oelschlaeger
- Institute for Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (C.O.); (N.W.)
| | - Norbert Willenbacher
- Institute for Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (C.O.); (N.W.)
| | - Christof M. Niemeyer
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (E.M.); (S.G.); (P.B.); (C.M.N.)
| | - Kersten S. Rabe
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (E.M.); (S.G.); (P.B.); (C.M.N.)
| |
Collapse
|
9
|
Li L, Long L, Ding S. Bioproduction of High-Concentration 4-Vinylguaiacol Using Whole-Cell Catalysis Harboring an Organic Solvent-Tolerant Phenolic Acid Decarboxylase From Bacillus atrophaeus. Front Microbiol 2019; 10:1798. [PMID: 31447812 PMCID: PMC6691155 DOI: 10.3389/fmicb.2019.01798] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
The compound 4-vinyl guaiacol (4-VG) is highly valued and widely applied in the pharmaceutical, cosmetic, and food industries. The bioproduction of 4-VG from ferulic acid (FA) by non-oxidative decarboxylation using phenolic acid decarboxylases is promising but has been hampered by low conversion yields and final product concentrations due to the toxicities of 4-VG and FA. In the current study, a new phenolic acid decarboxylase (BaPAD) was characterized from Bacillus atrophaeus. The BaPAD possessed excellent catalytic activity and stability in various organic solvents. Whole Escherichia coli cells harboring intracellular BaPAD exhibited greater tolerances to FA and 4-VG than those of free BaPAD. A highly efficient aqueous-organic biphasic system was established using 1-octanol as the optimal organic phase for whole-cell catalysis. In this system, a very high concentration (1580 mM, 237.3 g/L) of 4-VG was achieved in a 2 L working volume bioreactor, and the molar conversion yield and productivity reached 98.9% and 18.3 g/L/h in 13 h, respectively.
Collapse
Affiliation(s)
- Lulu Li
- The Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Liangkun Long
- The Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Shaojun Ding
- The Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
10
|
Yahyaa M, Rachmany D, Shaltiel-Harpaz L, Nawade B, Sadeh A, Ibdah M, Gerchman Y, Holland D, Ibdah M. A Pyrus communis gene for p-hydroxystyrene biosynthesis, has a role in defense against the pear psylla Cacopsylla biden. PHYTOCHEMISTRY 2019; 161:107-116. [PMID: 30825705 DOI: 10.1016/j.phytochem.2019.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Styrene analogs are known to be naturally synthesized in the leaves of pears and in other plant species, including several trees in the Styracaceae family. Styrene analogs are potential contributors to the aroma of wine, perfumes, pharmaceuticals, and other fermented foods and beverages. In addition, styrene analogs perform important ecological functions such as insecticidal and antifeedant activities against insects. We showed here that exogenous applications of styrene and p-hydroxystyrene caused a dramatic reduction the number of eggs laid by psylla and of subsequent nymph survival. Despite their importance specific reactions that lead to the biosynthesis of the styrene analogs in pear are unknown. To identify genes involved in the synthesis of these metabolites, existing genome databases of the Rosaceae were screened for pear genes with significant sequence similarity to bacterial phenolic acid decarboxylase. Herein described are the isolation and characterization of a pear phenolic acid decarboxylase, designated PyPAD1, which catalyzed the decarboxylation of p-coumaric acid and ferulic acid to p-hydroxystyrene and 3-methoxy-4-hydroxystyrene respectively. Its apparent Km values for p-coumaric acid and ferulic acid were 34.42 and 84.64 μM, respectively. The PyPAD1 preferred p-coumaric acid to ferulic acid as a substrate by a factor of 2.4 when comparing catalytic efficiencies in vitro. Expression analysis of PyPAD1 showed that the gene was transcribed in all five pear genotypes examined. However, transcript abundance was increased in correlation with the presence of p-hydroxystyrene in resistant cultivars Py-701 and Py-760 and in the sensitive cultivar Spadona when grafted on these resistant cultivars. Thus, PyPAD1 appears to be responsible for the decarboxylation of the p-coumaric acid, and for the production of metabolites that are active against pear psylla.
Collapse
Affiliation(s)
- Mosaab Yahyaa
- Newe Yaar Research Center, Agricultural Research Organization, P.O.Box 1021, Ramat Yishay, 30095, Israel
| | - Dor Rachmany
- Newe Yaar Research Center, Agricultural Research Organization, P.O.Box 1021, Ramat Yishay, 30095, Israel; Tel Hai College, Upper Galilee, 12210, Israel
| | - Liora Shaltiel-Harpaz
- Tel Hai College, Upper Galilee, 12210, Israel; Migal Galilee Research Institute, P.O. Box 831, Kiryat Shmona, 11016, Israel
| | - Bhagwat Nawade
- Newe Yaar Research Center, Agricultural Research Organization, P.O.Box 1021, Ramat Yishay, 30095, Israel
| | - Asaf Sadeh
- Agroecology Lab, Department of Natural Resources, Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon Letsion, 7528809, Israel
| | - Muhammad Ibdah
- Sakhnin College Academic College for Teacher Education, Sakhnin, Israel
| | - Yoram Gerchman
- University of Haifa in Oranim, Kiryat Tivon, 36006, Israel
| | - Doron Holland
- Newe Yaar Research Center, Agricultural Research Organization, P.O.Box 1021, Ramat Yishay, 30095, Israel
| | - Mwafaq Ibdah
- Newe Yaar Research Center, Agricultural Research Organization, P.O.Box 1021, Ramat Yishay, 30095, Israel.
| |
Collapse
|
11
|
Payer SE, Pollak H, Schmidbauer B, Hamm F, Juričić F, Faber K, Glueck SM. Multienzyme One-Pot Cascade for the Stereoselective Hydroxyethyl Functionalization of Substituted Phenols. Org Lett 2018; 20:5139-5143. [PMID: 30110168 PMCID: PMC6131518 DOI: 10.1021/acs.orglett.8b02058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The operability and
substrate scope of a redesigned vinylphenol
hydratase as a single biocatalyst or as part of multienzyme cascades
using either substituted coumaric acids or phenols as stable, cheap,
and readily available substrates are reported.
Collapse
Affiliation(s)
- Stefan E Payer
- Institute of Chemistry, Organic and Bioorganic Chemistry , University of Graz , Heinrichstrasse 28/2 , 8010 Graz , Austria
| | - Hannah Pollak
- Institute of Chemistry, Organic and Bioorganic Chemistry , University of Graz , Heinrichstrasse 28/2 , 8010 Graz , Austria
| | - Benjamin Schmidbauer
- Institute of Chemistry, Organic and Bioorganic Chemistry , University of Graz , Heinrichstrasse 28/2 , 8010 Graz , Austria
| | - Florian Hamm
- Institute of Chemistry, Organic and Bioorganic Chemistry , University of Graz , Heinrichstrasse 28/2 , 8010 Graz , Austria
| | - Filip Juričić
- Institute of Chemistry, Organic and Bioorganic Chemistry , University of Graz , Heinrichstrasse 28/2 , 8010 Graz , Austria
| | - Kurt Faber
- Institute of Chemistry, Organic and Bioorganic Chemistry , University of Graz , Heinrichstrasse 28/2 , 8010 Graz , Austria
| | - Silvia M Glueck
- Institute of Chemistry, Organic and Bioorganic Chemistry , University of Graz , Heinrichstrasse 28/2 , 8010 Graz , Austria.,Austrian Centre of Industrial Biotechnology (ACIB) , Petersgasse 14 , 8010 Graz , Austria
| |
Collapse
|
12
|
Tian G, Liu Y. Mechanistic insights into the catalytic reaction of ferulic acid decarboxylase from Aspergillus niger: a QM/MM study. Phys Chem Chem Phys 2018; 19:7733-7742. [PMID: 28262890 DOI: 10.1039/c6cp08811b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ubiquinone plays a pivotal role in the aerobic cellular respiratory electron transport chain, whereas ferulic acid decarboxylase (FDC) is involved in the biosynthesis of ubiquinone precursor. Recently, the complete crystal structure of FDC (based on the co-expression of the A. niger fdc1 gene in E. coli with the associated ubix gene from E. coli) at high resolution was reported. Herein, the detailed catalytic non-oxidative decarboxylation mechanism of FDC has been investigated by a combined quantum mechanics/molecular mechanics (QM/MM) approach. Calculation results indicate that, after the 1,3-dipolar cycloaddition of the substrate and cofactor, the carboxylic group can readily split off from the adduct, and the overall energy barrier of the whole catalytic reaction is 23.5 kcal mol-1. According to the energy barrier analysis, the protonation step is rate-limiting. The conserved protonated Glu282 is suggested to be the proton donor through a "water bridge". Besides, two cases, that is, the generated CO2 escapes from the active site or remains in the active site, were considered. It was found that the prolonged leaving of CO2 can facilitate the protonation of the intermediate. In particular, our calculations shed light on the detailed function of both cofactors prFMNiminium and prFMNketamine in the decarboxylation step. The cofactor prFMNiminium is the catalytically relevant species compared with prFMNketamine.
Collapse
Affiliation(s)
- Ge Tian
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
13
|
Linke D, Riemer SJ, Schimanski S, Nieter A, Krings U, Berger RG. Cold generation of smoke flavour by the first phenolic acid decarboxylase from a filamentous ascomycete – Isaria farinosa. Fungal Biol 2017; 121:763-774. [DOI: 10.1016/j.funbio.2017.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/20/2017] [Accepted: 05/23/2017] [Indexed: 12/01/2022]
|
14
|
Gao S, Yu HN, Wu YF, Liu XY, Cheng AX, Lou HX. Cloning and functional characterization of a phenolic acid decarboxylase from the liverwort Conocephalum japonicum. Biochem Biophys Res Commun 2016; 481:239-244. [PMID: 27815071 DOI: 10.1016/j.bbrc.2016.10.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 11/24/2022]
Abstract
Some commercially important vinyl derivatives are produced by the decarboxylation of phenolic acids. Enzymatically, this process can be achieved by phenolic acid decarboxylases (PADs), which are able to act on phenolic acid substrates such as ferulic and p-coumaric acid. Although many microbial PADs have been characterized, little is known regarding their plant homologs. Transcriptome sequencing in the liverworts has identified seven putative PADs, which share a measure of sequence identity with microbial PADs, but are typically much longer proteins. Here, a PAD-encoding gene was isolated from the liverwort species Conocephalum japonicum. The 1197 nt CjPAD cDNA sequence was predicted to be translated into a 398 residue protein. When the gene was heterologously expressed in Escherichia coli, its product exhibited a high level of PAD activity when provided with either p-coumaric or ferulic acid as substrate, along with the conversion of caffeic acid and sinapic acid to their corresponding decarboxylated products. Both N- and C-terminal truncation derivatives were non-functional. The transient expression in tobacco of a GFP/CjPAD fusion gene demonstrated that the CjPAD protein is expressed in the cytoplasm. It is first time a PAD was characterized from plants and the present investigation provided a candidate gene for catalyzing the formation of volatile phenols.
Collapse
Affiliation(s)
- Shuai Gao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Hai-Na Yu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Yi-Feng Wu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Xin-Yan Liu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
15
|
Functional Characterization of a Novel Member of the Amidohydrolase 2 Protein Family, 2-Hydroxy-1-Naphthoic Acid Nonoxidative Decarboxylase from Burkholderia sp. Strain BC1. J Bacteriol 2016; 198:1755-1763. [PMID: 27068590 DOI: 10.1128/jb.00250-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 04/01/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The gene encoding a nonoxidative decarboxylase capable of catalyzing the transformation of 2-hydroxy-1-naphthoic acid (2H1NA) to 2-naphthol was identified, recombinantly expressed, and purified to homogeneity. The putative gene sequence of the decarboxylase (hndA) encodes a 316-amino-acid protein (HndA) with a predicted molecular mass of 34 kDa. HndA exhibited high identity with uncharacterized amidohydrolase 2 proteins of various Burkholderia species, whereas it showed a modest 27% identity with γ-resorcylate decarboxylase, a well-characterized nonoxidative decarboxylase belonging to the amidohydrolase superfamily. Biochemically characterized HndA demonstrated strict substrate specificity toward 2H1NA, whereas inhibition studies with HndA indicated the presence of zinc as the transition metal center, as confirmed by atomic absorption spectroscopy. A three-dimensional structural model of HndA, followed by docking analysis, identified the conserved metal-coordinating and substrate-binding residues, while their importance in catalysis was validated by site-directed mutagenesis. IMPORTANCE Microbial nonoxidative decarboxylases play a crucial role in the metabolism of a large array of carboxy aromatic chemicals released into the environment from a variety of natural and anthropogenic sources. Among these, hydroxynaphthoic acids are usually encountered as pathway intermediates in the bacterial degradation of polycyclic aromatic hydrocarbons. The present study reveals biochemical and molecular characterization of a 2-hydroxy-1-naphthoic acid nonoxidative decarboxylase involved in an alternative metabolic pathway which can be classified as a member of the small repertoire of nonoxidative decarboxylases belonging to the amidohydrolase 2 family of proteins. The strict substrate specificity and sequence uniqueness make it a novel member of the metallo-dependent hydrolase superfamily.
Collapse
|
16
|
Esatbeyoglu T, Ulbrich K, Rehberg C, Rohn S, Rimbach G. Thermal stability, antioxidant, and anti-inflammatory activity of curcumin and its degradation product 4-vinyl guaiacol. Food Funct 2016; 6:887-93. [PMID: 25619943 DOI: 10.1039/c4fo00790e] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curcumin is a secondary plant metabolite present in Curcuma longa L. Since curcumin is widely used as a food colorant in thermally processed food it may undergo substantial chemical changes which in turn could affect its biological activity. In the current study, curcumin was roasted at 180 °C up to 70 minutes and its kinetic of degradation was analyzed by means of HPLC-PDA and LC-MS, respectively. Roasting of curcumin resulted in the formation of the degradation products vanillin, ferulic acid, and 4-vinyl guaiacol. In cultured hepatocytes roasted curcumin as well as 4-vinyl guaiacol enhanced the transactivation of the redox-regulated transcription factor Nrf2, known to be centrally involved in cellular stress response and antioxidant defense mechanisms. The antioxidant enzyme paraoxonase 1 was induced by roasted curcumin and 4-vinyl guaiacol. Furthermore, roasted curcumin and 4-vinyl guaiacol decreased interleukin-6 gene expression in lipopolysaccharide stimulated murine macrophages. Current data suggest that curcumin undergoes degradation due to roasting and its degradation product exhibit significant biological activity in cultured cells.
Collapse
Affiliation(s)
- Tuba Esatbeyoglu
- Institute of Human Nutrition and Food Science, University of Kiel, Germany.
| | | | | | | | | |
Collapse
|
17
|
Identification of Genes Conferring Tolerance to Lignocellulose-Derived Inhibitors by Functional Selections in Soil Metagenomes. Appl Environ Microbiol 2015; 82:528-37. [PMID: 26546427 DOI: 10.1128/aem.02838-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/01/2015] [Indexed: 01/31/2023] Open
Abstract
The production of fuels or chemicals from lignocellulose currently requires thermochemical pretreatment to release fermentable sugars. These harsh conditions also generate numerous small-molecule inhibitors of microbial growth and fermentation, limiting production. We applied small-insert functional metagenomic selections to discover genes that confer microbial tolerance to these inhibitors, identifying both individual genes and general biological processes associated with tolerance to multiple inhibitory compounds. Having screened over 248 Gb of DNA cloned from 16 diverse soil metagenomes, we describe gain-of-function tolerance against acid, alcohol, and aldehyde inhibitors derived from hemicellulose and lignin, demonstrating that uncultured soil microbial communities hold tremendous genetic potential to address the toxicity of pretreated lignocellulose. We recovered genes previously known to confer tolerance to lignocellulosic inhibitors as well as novel genes that confer tolerance via unknown functions. For instance, we implicated galactose metabolism in overcoming the toxicity of lignin monomers and identified a decarboxylase that confers tolerance to ferulic acid; this enzyme has been shown to catalyze the production of 4-vinyl guaiacol, a valuable precursor to vanillin production. These metagenomic tolerance genes can enable the flexible design of hardy microbial catalysts, customized to withstand inhibitors abundant in specific bioprocessing applications.
Collapse
|
18
|
Chen P, Dong J, Yin H, Bao X, Chen L, He Y, Wan X, Chen R, Zhao Y, Hou X. Single nucleotide polymorphisms and transcription analysis of genes involved in ferulic acid decarboxylation among different beer yeasts. JOURNAL OF THE INSTITUTE OF BREWING 2015. [DOI: 10.1002/jib.249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Peng Chen
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewery Co. Ltd; Qingdao 266061 People's Republic of China
| | - Jianjun Dong
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewery Co. Ltd; Qingdao 266061 People's Republic of China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewery Co. Ltd; Qingdao 266061 People's Republic of China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 People's Republic of China
| | - Lu Chen
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewery Co. Ltd; Qingdao 266061 People's Republic of China
| | - Yang He
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewery Co. Ltd; Qingdao 266061 People's Republic of China
| | - Xiujuan Wan
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewery Co. Ltd; Qingdao 266061 People's Republic of China
| | - Rong Chen
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewery Co. Ltd; Qingdao 266061 People's Republic of China
| | - Yuxiang Zhao
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewery Co. Ltd; Qingdao 266061 People's Republic of China
| | - Xiaoping Hou
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewery Co. Ltd; Qingdao 266061 People's Republic of China
| |
Collapse
|
19
|
Busto E, Simon RC, Kroutil W. Vinylation of Unprotected Phenols Using a Biocatalytic System. Angew Chem Int Ed Engl 2015; 54:10899-902. [DOI: 10.1002/anie.201505696] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Indexed: 11/10/2022]
|
20
|
Busto E, Simon RC, Kroutil W. Vinylation of Unprotected Phenols Using a Biocatalytic System. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Lee H, Park J, Jung C, Han D, Seo J, Ahn JH, Chong Y, Hur HG. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis. Appl Microbiol Biotechnol 2015; 99:9473-81. [PMID: 26059194 DOI: 10.1007/s00253-015-6717-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/12/2015] [Accepted: 05/21/2015] [Indexed: 11/29/2022]
Abstract
The enzyme ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4 catalyzes the decarboxylation reaction of lignin monomers and phenolic compounds such as p-coumaric acid, caffeic acid, and ferulic acid into their corresponding 4-vinyl derivatives, that is, 4-vinylphenol, 4-vinylcatechol, and 4-vinylguaiacol, respectively. Among various ferulic acid decarboxylase enzymes, we chose the FADase from Enterobacter sp. Px6-4, whose crystal structure is known, and produced mutants to enhance its catalytic activity by random and site-directed mutagenesis. After three rounds of sequential mutations, FADase(F95L/D112N/V151I) showed approximately 34-fold higher catalytic activity than wild-type for the production of 4-vinylguaiacol from ferulic acid. Docking analyses suggested that the increased activity of FADase(F95L/D112N/V151I) could be due to formation of compact active site compared with that of the wild-type FADase. Considering the amount of phenolic compounds such as lignin monomers in the biomass components, successfully bioengineered FADase(F95L/D112N/V151I) from Enterobacter sp. Px6-4 could provide an ecofriendly biocatalytic tool for producing diverse styrene derivatives from biomass.
Collapse
Affiliation(s)
- Hyunji Lee
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 500-712, South Korea
| | - Jiyoung Park
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 500-712, South Korea
| | - Chaewon Jung
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 500-712, South Korea
| | - Dongfei Han
- Max-Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Street 10, D35043, Marburg, Germany
| | - Jiyoung Seo
- Radiation Research Division of Industry and Environment, Korea Atomic Energy Research Institute, 1266, Jeongup, 580-185, South Korea
| | - Joong-Hoon Ahn
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, South Korea
| | - Youhoon Chong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, South Korea
| | - Hor-Gil Hur
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 500-712, South Korea.
| |
Collapse
|
22
|
Structure and Mechanism of Ferulic Acid Decarboxylase (FDC1) from Saccharomyces cerevisiae. Appl Environ Microbiol 2015; 81:4216-23. [PMID: 25862228 DOI: 10.1128/aem.00762-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/08/2015] [Indexed: 11/20/2022] Open
Abstract
The nonoxidative decarboxylation of aromatic acids occurs in a range of microbes and is of interest for bioprocessing and metabolic engineering. Although phenolic acid decarboxylases provide useful tools for bioindustrial applications, the molecular bases for how these enzymes function are only beginning to be examined. Here we present the 2.35-Å-resolution X-ray crystal structure of the ferulic acid decarboxylase (FDC1; UbiD) from Saccharomyces cerevisiae. FDC1 shares structural similarity with the UbiD family of enzymes that are involved in ubiquinone biosynthesis. The position of 4-vinylphenol, the product of p-coumaric acid decarboxylation, in the structure identifies a large hydrophobic cavity as the active site. Differences in the β2e-α5 loop of chains in the crystal structure suggest that the conformational flexibility of this loop allows access to the active site. The structure also implicates Glu285 as the general base in the nonoxidative decarboxylation reaction catalyzed by FDC1. Biochemical analysis showed a loss of enzymatic activity in the E285A mutant. Modeling of 3-methoxy-4-hydroxy-5-decaprenylbenzoate, a partial structure of the physiological UbiD substrate, in the binding site suggests that an ∼30-Å-long pocket adjacent to the catalytic site may accommodate the isoprenoid tail of the substrate needed for ubiquinone biosynthesis in yeast. The three-dimensional structure of yeast FDC1 provides a template for guiding protein engineering studies aimed at optimizing the efficiency of aromatic acid decarboxylation reactions in bioindustrial applications.
Collapse
|
23
|
Richard P, Viljanen K, Penttilä M. Overexpression of PAD1 and FDC1 results in significant cinnamic acid decarboxylase activity in Saccharomyces cerevisiae. AMB Express 2015; 5:12. [PMID: 25852989 PMCID: PMC4384992 DOI: 10.1186/s13568-015-0103-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/09/2015] [Indexed: 11/10/2022] Open
Abstract
The S. cerevisiae PAD1 gene had been suggested to code for a cinnamic acid decarboxylase, converting trans-cinnamic acid to styrene. This was suggested for the reason that the over-expression of PAD1 resulted in increased tolerance toward cinnamic acid, up to 0.6 mM. We show that by over-expression of the PAD1 together with the FDC1 the cinnamic acid decarboxylase activity can be increased significantly. The strain over-expressing PAD1 and FDC1 tolerated cinnamic acid concentrations up to 10 mM. The cooperation of Pad1p and Fdc1p is surprising since the PAD1 has a mitochondrial targeting sequence and the FDC1 codes for a cytosolic protein. The cinnamic acid decarboxylase activity was also seen in the cell free extract. The activity was 0.019 μmol per minute and mg of extracted protein. The overexpression of PAD1 and FDC1 resulted also in increased activity with the hydroxycinnamic acids ferulic acid, p-coumaric acid and caffeinic acid. This activity was not seen when FDC1 was overexpressed alone. An efficient cinnamic acid decarboxylase is valuable for the genetic engineering of yeast strains producing styrene. Styrene can be produced from endogenously produced L-phenylalanine which is converted by a phenylalanine ammonia lyase to cinnamic acid and then by a decarboxylase to styrene.
Collapse
|
24
|
Furuya T, Miura M, Kino K. A Coenzyme-Independent Decarboxylase/Oxygenase Cascade for the Efficient Synthesis of Vanillin. Chembiochem 2014; 15:2248-54. [DOI: 10.1002/cbic.201402215] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Indexed: 11/07/2022]
|
25
|
Chowdhury PP, Sarkar J, Basu S, Dutta TK. Metabolism of 2-hydroxy-1-naphthoic acid and naphthalene via gentisic acid by distinctly different sets of enzymes in Burkholderia sp. strain BC1. Microbiology (Reading) 2014; 160:892-902. [DOI: 10.1099/mic.0.077495-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Burkholderia sp. strain BC1, a soil bacterium, isolated from a naphthalene balls manufacturing waste disposal site, is capable of utilizing 2-hydroxy-1-naphthoic acid (2H1NA) and naphthalene individually as the sole source of carbon and energy. To deduce the pathway for degradation of 2H1NA, metabolites isolated from resting cell culture were identified by a combination of chromatographic and spectrometric analyses. Characterization of metabolic intermediates, oxygen uptake studies and enzyme activities revealed that strain BC1 degrades 2H1NA via 2-naphthol, 1,2,6-trihydroxy-1,2-dihydronaphthalene and gentisic acid. In addition, naphthalene was found to be degraded via 1,2-dihydroxy-1,2-dihydronaphthalene, salicylic acid and gentisic acid, with the putative involvement of the classical nag pathway. Unlike most other Gram-negative bacteria, metabolism of salicylic acid in strain BC1 involves a dual pathway, via gentisic acid and catechol, with the latter being metabolized by catechol 1,2-dioxygenase. Involvement of a non-oxidative decarboxylase in the enzymic transformation of 2H1NA to 2-naphthol indicates an alternative catabolic pathway for the bacterial degradation of hydroxynaphthoic acid. Furthermore, the biochemical observations on the metabolism of structurally similar compounds, naphthalene and 2-naphthol, by similar but different sets of enzymes in strain BC1 were validated by real-time PCR analyses.
Collapse
Affiliation(s)
- Piyali Pal Chowdhury
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VII M, Kolkata, India
| | - Jayita Sarkar
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VII M, Kolkata, India
| | - Soumik Basu
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VII M, Kolkata, India
| | - Tapan K. Dutta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VII M, Kolkata, India
| |
Collapse
|
26
|
Pushing the equilibrium of regio-complementary carboxylation of phenols and hydroxystyrene derivatives. J Biotechnol 2013; 168:264-70. [PMID: 23880442 DOI: 10.1016/j.jbiotec.2013.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/18/2013] [Accepted: 07/12/2013] [Indexed: 11/22/2022]
Abstract
The enzymatic carboxylation of electron-rich aromatics, which represents a promising 'green' equivalent to the chemical Kolbe-Schmitt reaction, is thermodynamically disfavored and is therefore impeded by incomplete conversions. Optimization of the reaction conditions, such as pH, temperature, substrate concentration and the use of organic co-solvents and/or ionic liquids allowed to push the conversion in favor of carboxylation by a factor of up to 50%. Careful selection of the type of bicarbonate salt used as CO2 source was crucial to ensure optimal activities. Among two types of carboxylases tested with their natural substrates, benzoic acid decarboxylase from Rhizobium sp. proved to be significantly more stable than phenolic acid decarboxylase from Mycobacterium colombiense; it tolerated reaction temperatures of up to 50 °C and substrate concentrations of up to 100mM and allowed efficient biocatalyst recycling.
Collapse
|
27
|
Sensitivity to vinyl phenol derivatives produced by phenolic acid decarboxylase activity in Escherichia coli and several food-borne Gram-negative species. Appl Microbiol Biotechnol 2013; 97:7853-64. [DOI: 10.1007/s00253-013-5072-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/04/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
|
28
|
Biotechnological and molecular approaches for vanillin production: a review. Appl Biochem Biotechnol 2013; 169:1353-72. [PMID: 23306890 DOI: 10.1007/s12010-012-0066-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
Abstract
Vanillin is one of the most widely used flavoring agents in the world. As the annual world market demand of vanillin could not be met by natural extraction, chemical synthesis, or tissue culture technology, thus biotechnological approaches may be replacement routes to make production of bio-vanillin economically viable. This review's main focus is to highlight significant aspects of biotechnology with emphasis on the production of vanillin from eugenol, isoeugenol, lignin, ferulic acid, sugars, phenolic stilbenes, vanillic acid, aromatic amino acids, and waste residues by applying fungi, bacteria, and plant cells. Production of biovanillin using GRAS lactic acid bacteria and metabolically engineered microorganisms, genetic organization of vanillin biosynthesis operons/gene cassettes and finally the stability of biovanillin generated through various biotechnological procedures are also critically reviewed in the later sections of the review.
Collapse
|
29
|
Wuensch C, Glueck SM, Gross J, Koszelewski D, Schober M, Faber K. Regioselective enzymatic carboxylation of phenols and hydroxystyrene derivatives. Org Lett 2012; 14:1974-7. [PMID: 22471935 PMCID: PMC3593611 DOI: 10.1021/ol300385k] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzymatic carboxylation of phenol and styrene derivatives using (de)carboxylases in carbonate buffer proceeded in a highly regioselective fashion: Benzoic acid (de)carboxylases selectively formed o-hydroxybenzoic acid derivatives, phenolic acid (de)carboxylases selectively acted at the β-carbon atom of styrenes forming (E)-cinnamic acids.
Collapse
Affiliation(s)
- Christiane Wuensch
- Austrian Centre of Industrial Biotechnology, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
30
|
Huang HK, Chen LF, Tokashiki M, Ozawa T, Taira T, Ito S. An endogenous factor enhances ferulic acid decarboxylation catalyzed by phenolic acid decarboxylase from Candida guilliermondii. AMB Express 2012; 2:4. [PMID: 22217315 PMCID: PMC3402150 DOI: 10.1186/2191-0855-2-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/04/2012] [Indexed: 12/01/2022] Open
Abstract
The gene for a eukaryotic phenolic acid decarboxylase of Candida guilliermondii was cloned, sequenced, and expressed in Escherichia coli for the first time. The structural gene contained an open reading frame of 504 bp, corresponding to 168 amino acids with a calculated molecular mass of 19,828 Da. The deduced amino sequence exhibited low similarity to those of functional phenolic acid decarboxylases previously reported from bacteria with 25-39% identity and to those of PAD1 and FDC1 proteins from Saccharomyces cerevisiae with less than 14% identity. The C. guilliermondii phenolic acid decarboxylase converted the main substrates ferulic acid and p-coumaric acid to the respective corresponding products. Surprisingly, the ultrafiltrate (Mr 10,000-cut-off) of the cell-free extract of C. guilliermondii remarkably activated the ferulic acid decarboxylation by the purified enzyme, whereas it was almost without effect on the p-coumaric acid decarboxylation. Gel-filtration chromatography of the ultrafiltrate suggested that an endogenous amino thiol-like compound with a molecular weight greater than Mr 1,400 was responsible for the activation.
Collapse
|