1
|
Zinßmeister D, Leibovitch M, Natan E, Turjeman S, Koren O, Travisano M, Vortman Y, Baselga-Cervera B. Detecting life by behavior, the overlooked sensitivity of behavioral assays. Sci Rep 2024; 14:18904. [PMID: 39143360 PMCID: PMC11324786 DOI: 10.1038/s41598-024-69942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024] Open
Abstract
Detecting life has driven research and exploration for centuries, but recent attempts to compile and generate a framework that summarizes life features, aimed to develop strategies for life detection missions beyond planet Earth, have disregarded a key life feature: behavior. Yet, some behaviors such as biomineralization or motility have occasionally been proposed as biosignatures to detect life. Here, we capitalize on a specific taxis' motility behavior, magnetotaxis, to experimentally provide insights in support of behavior as an unambiguous, sensitive biosignature, and magnetic forces as a prescreening option. Using a magnetotactic bacterial species, Magnetospirillum magneticum, we conducted a lab sensitivity experiment comparing PCR with the hanging drop behavioral assay, using a dilution series. The hanging drop behavioral assay visually shows the motility of MTB toward magnetic poles. Our findings reveal that the behavioral assay exhibits higher sensitivity in the detection of M. magneticum when compared to the established PCR protocol. While both methods present similar detection sensitivities at high concentrations, at ≥ 10-7 fold dilutions, the behavioral method proved more sensitive. The behavioral method can detect bacteria even when samples are diluted at 10-9. Comparable results were obtained with environmental samples from the Hula Valley. We propose behavioral cues as valuable biosignatures in the ongoing efforts of life detection in unexplored aquatic habitats on Earth and to stimulate and support discussions about how to detect extant life beyond Earth. Generic and robust behavioral assays can represent a methodological revolution.
Collapse
Affiliation(s)
- Daniela Zinßmeister
- Hula Research Center, Department of Animal Sciences, Tel-Hai Academic College, Tel Hai, Israel
| | - Moshe Leibovitch
- Hula Research Center, Department of Biotechnology, Tel-Hai Academic College, Tel Hai, Israel
| | | | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, USA
- Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN, USA
- The BioTechnology Institute, University of Minnesota, St Paul, MN, USA
| | - Yoni Vortman
- Hula Research Center, Department of Animal Sciences, Tel-Hai Academic College, Tel Hai, Israel
- MIGAL-Galilee Research Institute, 11016, Kiryat Shmona, Israel
| | - Beatriz Baselga-Cervera
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, USA.
- Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Song SJ, Mayorga-Martinez CC, Vyskočil J, Častorálová M, Ruml T, Pumera M. Precisely Navigated Biobot Swarms of Bacteria Magnetospirillum magneticum for Water Decontamination. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7023-7029. [PMID: 36700926 PMCID: PMC10016748 DOI: 10.1021/acsami.2c16592] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Hybrid biological robots (biobots) prepared from living cells are at the forefront of micro-/nanomotor research due to their biocompatibility and versatility toward multiple applications. However, their precise maneuverability is essential for practical applications. Magnetotactic bacteria are hybrid biobots that produce magnetosome magnetite crystals, which are more stable than synthesized magnetite and can orient along the direction of earth's magnetic field. Herein, we used Magnetospirillum magneticum strain AMB-1 (M. magneticum AMB-1) for the effective removal of chlorpyrifos (an organophosphate pesticide) in various aqueous solutions by naturally binding with organic matter. Precision control of M. magneticum AMB-1 was achieved by applying a magnetic field. Under a programed clockwise magnetic field, M. magneticum AMB-1 exhibit swarm behavior and move in a circular direction. Consequently, we foresee that M. magneticum AMB-1 can be applied in various environments to remove and retrieve pollutants by directional control magnetic actuation.
Collapse
Affiliation(s)
- Su-Jin Song
- Center
for Advanced Functional Nanorobots, Department of Inorganic Chemistry,
Faculty of Chemical Technology, University
of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic
| | - Carmen C. Mayorga-Martinez
- Center
for Advanced Functional Nanorobots, Department of Inorganic Chemistry,
Faculty of Chemical Technology, University
of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic
| | - Jan Vyskočil
- Center
for Advanced Functional Nanorobots, Department of Inorganic Chemistry,
Faculty of Chemical Technology, University
of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic
| | - Markéta Častorálová
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic
| | - Tomáš Ruml
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic
| | - Martin Pumera
- Center
for Advanced Functional Nanorobots, Department of Inorganic Chemistry,
Faculty of Chemical Technology, University
of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic
- Department
of Chemical and Biomolecular Engineering, Yonsei University, 50
Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Faculty
of Electrical Engineering and Computer Science, VSB—Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic
- Department
of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| |
Collapse
|
3
|
Mao X, Egli R, Liu X, Zhao L. Magnetotactic advantage in stable sediment by long-term observations of magnetotactic bacteria in Earth’s field, zero field and alternating field. PLoS One 2022; 17:e0263593. [PMID: 35202421 PMCID: PMC8870540 DOI: 10.1371/journal.pone.0263593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/21/2022] [Indexed: 12/02/2022] Open
Abstract
Magnetotactic bacteria (MTB) rely on magnetotaxis to effectively reach their preferred living habitats, whereas experimental investigation of magnetotactic advantage in stable sediment is currently lacking. We studied two wild type MTB (cocci and rod-shaped M. bavaricum) in sedimentary environment under exposure to geomagnetic field in the laboratory, zero field and an alternating field whose polarity was switched every 24 hours. The mean concentration of M. bavaricum dropped by ~50% during 6 months in zero field, with no clear temporal trend suggesting an extinction. Cell numbers recovered to initial values within ~1.5 months after the Earth’s field was reset. Cocci displayed a larger temporal variability with no evident population changes in zero field. The alternating field experiment produced a moderate decrease of M. bavaricum concentrations and nearby extinction of cocci, confirming the active role of magnetotaxis in sediment and might point to a different magnetotactic mechanism for M. bavaricum which possibly benefited them to survive field reversals in geological periods. Our findings provide a first quantification of magnetotaxis advantage in sedimentary environment.
Collapse
Affiliation(s)
- Xuegang Mao
- College of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Institute of Geography, Fujian Normal University, Fuzhou, China
- * E-mail:
| | - Ramon Egli
- Central institute for Meteorology and Geodynamics, Vienna, Austria
| | - Xiuming Liu
- College of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Institute of Geography, Fujian Normal University, Fuzhou, China
- Department of Earth and Environmental Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Lijuan Zhao
- College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
4
|
Abstract
Magnetotactic bacteria are aquatic or sediment-dwelling microorganisms able to take advantage of the Earth's magnetic field for directed motility. The source of this amazing trait is magnetosomes, unique organelles used to synthesize single nanometer-sized crystals of magnetic iron minerals that are queued up to build an intracellular compass. Most of these microorganisms cannot be cultivated under controlled conditions, much less genetically engineered, with only few exceptions. However, two of the genetically amenable Magnetospirillum species have emerged as tractable model organisms to study magnetosome formation and magnetotaxis. Recently, much has been revealed about the process of magnetosome biogenesis and dedicated structures for magnetosome dynamics and positioning, which suggest an unexpected cellular intricacy of these organisms. In this minireview, we summarize new insights and place the molecular mechanisms of magnetosome formation in the context of the complex cell biology of Magnetospirillum spp. First, we provide an overview on magnetosome vesicle synthesis and magnetite biomineralization, followed by a discussion of the perceptions of dynamic organelle positioning and its biological implications, which highlight that magnetotactic bacteria have evolved sophisticated mechanisms to construct, incorporate, and inherit a unique navigational device. Finally, we discuss the impact of magnetotaxis on motility and its interconnection with chemotaxis, showing that magnetotactic bacteria are outstandingly adapted to lifestyle and habitat.
Collapse
|
5
|
Chen H, Li D, Cai Y, Wu LF, Song T. Bacteriophytochrome from Magnetospirillum magneticum affects phototactic behavior in response to light. FEMS Microbiol Lett 2020; 367:5895327. [PMID: 32821904 DOI: 10.1093/femsle/fnaa142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/19/2020] [Indexed: 01/03/2023] Open
Abstract
Phytochromes are a class of photoreceptors found in plants and in some fungi, cyanobacteria, and photoautotrophic and heterotrophic bacteria. Although phytochromes have been structurally characterized in some bacteria, their biological and ecological roles in magnetotactic bacteria remain unexplored. Here, we describe the biochemical characterization of recombinant bacteriophytochrome (BphP) from magnetotactic bacteria Magnetospirillum magneticum AMB-1 (MmBphP). The recombinant MmBphP displays all the characteristic features, including the property of binding to biliverdin (BV), of a genuine phytochrome. Site-directed mutagenesis identified that cysteine-14 is important for chromophore covalent binding and photoreversibility. Arginine-240 and histidine-246 play key roles in binding to BV. The N-terminal photosensory core domain of MmBphP lacking the C-terminus found in other phytochromes is sufficient to exhibit the characteristic red/far-red-light-induced fast photoreversibility of phytochromes. Moreover, our results showed MmBphP is involved in the phototactic response, suggesting its conservative role as a stress protectant. This finding provided us a better understanding of the physiological function of this group of photoreceptors and photoresponse of magnetotactic bacteria.
Collapse
Affiliation(s)
- Haitao Chen
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
| | - Dandan Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yao Cai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Long-Fei Wu
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS, F-13402 Marseille, France.,LCB, Aix Marseille University, CNRS, F-13402 Marseille, France
| | - Tao Song
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Chen H, Li K, Cai Y, Wang P, Gong W, Wu LF, Song T. Light regulation of resistance to oxidative damage and magnetic crystal biogenesis in Magnetospirillum magneticum mediated by a Cys-less LOV-like protein. Appl Microbiol Biotechnol 2020; 104:7927-7941. [PMID: 32780289 DOI: 10.1007/s00253-020-10807-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/01/2020] [Accepted: 08/02/2020] [Indexed: 12/20/2022]
Abstract
Light-oxygen-voltage (LOV) proteins are ubiquitous photoreceptors that can interact with other regulatory proteins and then mediate their activities, which results in cellular adaptation and subsequent physiological changes. Upon blue-light irradiation, a conserved cysteine (Cys) residue in LOV covalently binds to flavin to form a flavin-Cys adduct, which triggers a subsequent cascade of signal transduction and reactions. We found a group of natural Cys-less LOV-like proteins in magnetotactic bacteria (MTB) and investigated its physiological functions by conducting research on one of these unusual LOV-like proteins, Amb2291, in Magnetospirillum magneticum. In-frame deletion of amb2291 or site-directive substitution of alanine-399 for Cys mutants impaired the protective responses against hydrogen peroxide, thereby causing stress and growth impairment. Consequently, gene expression and magnetosome formation were affected, which led to high sensitivity to oxidative damage and defective phototactic behaviour. The purified wild-type and A399C-mutated LOV-like proteins had similar LOV blue-light response spectra, but Amb2291A399C exhibited a faster reaction to blue light. We especially showed that LOV-like protein Amb2291 plays a role in magnetosome synthesis and resistance to oxidative stress of AMB-1 when this bacterium was exposed to red light and hydrogen peroxide. This finding expands our knowledge of the physiological function of this widely distributed group of photoreceptors and deepens our understanding of the photoresponse of MTB. KEY POINTS: • We found a group of Cys-less light-oxygen-voltage (LOV) photoreceptors in magnetotactic bacteria, which prompted us to study the light-response and biological roles of these proteins in these non-photosynthetic bacteria. • The Cys-less LOV-like protein participates in the light-regulated signalling pathway and improves resistance to oxidative damage and magnetic crystal biogenesis in Magnetospirillum magneticum. • This result will contribute to our understanding of the structural and functional diversity of the LOV-like photoreceptor and help us understand the complexity of light-regulated model organisms.
Collapse
Affiliation(s)
- Haitao Chen
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-CAS, Beijing, 100190, China
| | - Kefeng Li
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,Shandong Sport University, Jinan, 250102, China
| | - Yao Cai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Pingping Wang
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-CAS, Beijing, 100190, China
| | - Weimin Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Long-Fei Wu
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-CAS, Beijing, 100190, China. .,Aix Marseille University, CNRS, LCB, 13402, Marseille, France.
| | - Tao Song
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-CAS, Beijing, 100190, China.
| |
Collapse
|
7
|
Amor M, Mathon FP, Monteil CL, Busigny V, Lefevre CT. Iron-biomineralizing organelle in magnetotactic bacteria: function, synthesis and preservation in ancient rock samples. Environ Microbiol 2020; 22:3611-3632. [PMID: 32452098 DOI: 10.1111/1462-2920.15098] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 12/22/2022]
Abstract
Magnetotactic bacteria (MTB) are ubiquitous aquatic microorganisms that incorporate iron from their environment to synthesize intracellular nanoparticles of magnetite (Fe3 O4 ) or greigite (Fe3 S4 ) in a genetically controlled manner. Magnetite and greigite magnetic phases allow MTB to swim towards redox transition zones where they thrive. MTB may represent some of the oldest microorganisms capable of synthesizing minerals on Earth and have been proposed to significantly impact the iron biogeochemical cycle by immobilizing soluble iron into crystals that subsequently fossilize in sedimentary rocks. In the present article, we describe the distribution of MTB in the environment and discuss the possible function of the magnetite and greigite nanoparticles. We then provide an overview of the chemical mechanisms leading to iron mineralization in MTB. Finally, we update the methods used for the detection of MTB crystals in sedimentary rocks and present their occurrences in the geological record.
Collapse
Affiliation(s)
- Matthieu Amor
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - François P Mathon
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France.,Institut de Physique du Globe de Paris, Université de Paris, CNRS, Paris, F-75005, France
| | - Caroline L Monteil
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Vincent Busigny
- Institut de Physique du Globe de Paris, Université de Paris, CNRS, Paris, F-75005, France.,Institut Universitaire de France, Paris, 75005, France
| | - Christopher T Lefevre
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| |
Collapse
|
8
|
Zhang WJ, Wu LF. Flagella and Swimming Behavior of Marine Magnetotactic Bacteria. Biomolecules 2020; 10:biom10030460. [PMID: 32188162 PMCID: PMC7175107 DOI: 10.3390/biom10030460] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 12/22/2022] Open
Abstract
Marine environments are generally characterized by low bulk concentrations of nutrients that are susceptible to steady or intermittent motion driven by currents and local turbulence. Marine bacteria have therefore developed strategies, such as very fast-swimming and the exploitation of multiple directional sensing–response systems in order to efficiently migrate towards favorable places in nutrient gradients. The magnetotactic bacteria (MTB) even utilize Earth’s magnetic field to facilitate downward swimming into the oxic–anoxic interface, which is the most favorable place for their persistence and proliferation, in chemically stratified sediments or water columns. To ensure the desired flagella-propelled motility, marine MTBs have evolved an exquisite flagellar apparatus, and an extremely high number (tens of thousands) of flagella can be found on a single entity, displaying a complex polar, axial, bounce, and photosensitive magnetotactic behavior. In this review, we describe gene clusters, the flagellar apparatus architecture, and the swimming behavior of marine unicellular and multicellular magnetotactic bacteria. The physiological significance and mechanisms that govern these motions are discussed.
Collapse
Affiliation(s)
- Wei-Jia Zhang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China;
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, F-13402 CNRS-Marseille, France/CAS-Sanya 572000, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, F-13402 CNRS-Marseille, France/CAS-Sanya 572000, China
- Aix Marseille Univ, CNRS, LCB, IMM, IM2B, CENTURI, F-13402 Marseille, France
- Correspondence: ; Tel.: +33-4-9116-4157
| |
Collapse
|
9
|
Pan H, Dong Y, Teng Z, Li J, Zhang W, Xiao T, Wu LF. A species of magnetotactic deltaproteobacterium was detected at the highest abundance during an algal bloom. FEMS Microbiol Lett 2019; 366:5681391. [PMID: 31855240 DOI: 10.1093/femsle/fnz253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022] Open
Abstract
Magnetotactic bacteria (MTB) are a group of microorganisms that have the ability to synthesize intracellular magnetic crystals (magnetosomes). They prefer microaerobic or anaerobic aquatic sediments. Thus, there is growing interest in their ecological roles in various habitats. In this study we found co-occurrence of a large rod-shaped deltaproteobacterial magnetotactic bacterium (tentatively named LR-1) in the sediment of a brackish lagoon with algal bloom. Electron microscopy observations showed that they were ovoid to slightly curved rods having a mean length of 6.3 ± 1.1 μm and a mean width of 4.1 ± 0.4 μm. Each cell had a single polar flagellum. They contained hundreds of bullet-shaped intracellular magnetite magnetosomes. Phylogenetic analysis revealed that they were most closely related to Desulfamplus magnetovallimortis strain BW-1, and belonged to the Deltaproteobacteria. Our findings indicate that LR-1 may be a new species of MTB. We propose that deltaproteobacterial MTB may play an important role in iron cycling and so may represent a reservoir of iron, and be an indicator species for monitoring algal blooms in such eutrophic ecosystems. These observations provide new clues to the cultivation of magnetotactic Deltaproteobacteria and the control of algal blooms, although further studies are needed.
Collapse
Affiliation(s)
- Hongmiao Pan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China
| | - Yi Dong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China
| | - Zhaojie Teng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Jinhua Li
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.,Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 19 Beitucheng Western Road, Beijing, 100029, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China
| | - Wenyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China.,LCB, Aix-Marseille Univ, CNRS, 31 Chemin Joseph Aiguier, Marseille, 13402, France
| |
Collapse
|
10
|
Wang Y, Casaburi G, Lin W, Li Y, Wang F, Pan Y. Genomic evidence of the illumination response mechanism and evolutionary history of magnetotactic bacteria within the Rhodospirillaceae family. BMC Genomics 2019; 20:407. [PMID: 31117953 PMCID: PMC6532209 DOI: 10.1186/s12864-019-5751-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Magnetotactic bacteria (MTB) are ubiquitous in natural aquatic environments. MTB can produce intracellular magnetic particles, navigate along geomagnetic field, and respond to light. However, the potential mechanism by which MTB respond to illumination and their evolutionary relationship with photosynthetic bacteria remain elusive. RESULTS We utilized genomes of the well-sequenced genus Magnetospirillum, including the newly sequenced MTB strain Magnetospirillum sp. XM-1 to perform a comprehensive genomic comparison with phototrophic bacteria within the family Rhodospirillaceae regarding the illumination response mechanism. First, photoreceptor genes were identified in the genomes of both MTB and phototrophic bacteria in the Rhodospirillaceae family, but no photosynthesis genes were found in the MTB genomes. Most of the photoreceptor genes in the MTB genomes from this family encode phytochrome-domain photoreceptors that likely induce red/far-red light phototaxis. Second, illumination also causes damage within the cell, and in Rhodospirillaceae, both MTB and phototrophic bacteria possess complex but similar sets of response and repair genes, such as oxidative stress response, iron homeostasis and DNA repair system genes. Lastly, phylogenomic analysis showed that MTB cluster closely with phototrophic bacteria in this family. One photoheterotrophic genus, Phaeospirillum, clustered within and displays high genomic similarity with Magnetospirillum. Moreover, the phylogenetic tree topologies of magnetosome synthesis genes in MTB and photosynthesis genes in phototrophic bacteria from the Rhodospirillaceae family were reasonably congruent with the phylogenomic tree, suggesting that these two traits were most likely vertically transferred during the evolution of their lineages. CONCLUSION Our new genomic data indicate that MTB and phototrophic bacteria within the family Rhodospirillaceae possess diversified photoreceptors that may be responsible for phototaxis. Their genomes also contain comprehensive stress response genes to mediate the negative effects caused by illumination. Based on phylogenetic studies, most of MTB and phototrophic bacteria in the Rhodospirillaceae family evolved vertically with magnetosome synthesis and photosynthesis genes. The ancestor of Rhodospirillaceae was likely a magnetotactic phototrophic bacteria, however, gain or loss of magnetotaxis and phototrophic abilities might have occurred during the evolution of ancestral Rhodospirillaceae lineages.
Collapse
Affiliation(s)
- Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Giorgio Casaburi
- Departments of Microbiology and Cell Science, Space Life Sciences Laboratory, University of Florida, Merritt Island, FL 32953 USA
| | - Wei Lin
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Ying Li
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yongxin Pan
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
11
|
THE EFFECT OF MAGNETIC FIELD EXPOSURE ON MEDIUM TO PROTEASE PRODUCTION BY Bacillus sp. BIOVALENTIA: BIOLOGICAL RESEARCH JOURNAL 2018. [DOI: 10.24233/biov.4.2.2018.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This research was purposed to understand the effect of 0.2mT magnetic field exposure treatment for 10 minutes toward medium components to the production of protease in Bacillus sp. That magnetic field exposure treatment was given to 8 medium components namely Milk, Yeast, NaCl, KH2PO4, MgSO4, (NH4)2SO4,Agar and Aquadest. Data from Qualitative Proteolytic Activity test on Bacillus sp. indicated that in all treatment, the bacteria were able to produce the enzyme. The highest Proteolytic Index (IP) from all those treatments came from the magnetically exposed KH2PO4 which was 7.17 at the 10th incubation hour. Treatment of exposure to magnetic fields is also given to the liquid medium. Quantitative data of enzyme activity showed that the best incubation time of protease production by Bacillus sp. is the 24th incubation hours with result of 0.031 U/ml. Exposure of 0.2 mT magnetic field for 10 minutes to the NaCl component in Mendel's fluid medium yielded the highest protease activity of 0.067 U/ml.
Collapse
|
12
|
Keim CN, Duarte de Melo R, Almeida FP, Lins de Barros HGP, Farina M, Acosta-Avalos D. Effect of applied magnetic fields on motility and magnetotaxis in the uncultured magnetotactic multicellular prokaryote 'Candidatus Magnetoglobus multicellularis'. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:465-474. [PMID: 29573371 DOI: 10.1111/1758-2229.12640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/27/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Magnetotactic bacteria are found in the chemocline of aquatic environments worldwide. They produce nanoparticles of magnetic minerals arranged in chains in the cytoplasm, which enable these microorganisms to align to magnetic fields while swimming propelled by flagella. Magnetotactic bacteria are diverse phylogenetically and morphologically, including cocci, rods, vibria, spirilla and also multicellular forms, known as magnetotactic multicellular prokaryotes (MMPs). We used video-microscopy to study the motility of the uncultured MMP 'Candidatus Magnetoglobus multicellularis' under applied magnetic fields ranging from 0.9 to 32 Oersted (Oe). The bidimensional projections of the tridimensional trajectories where interpreted as plane projections of cylindrical helices and fitted as sinusoidal curves. The results showed that 'Ca. M. multicellularis' do not orient efficiently to low magnetic fields, reaching an efficiency of about 0.65 at 0.9-1.5 Oe, which are four to six times the local magnetic field. Good efficiency (0.95) is accomplished for magnetic fields ≥10 Oe. For comparison, unicellular magnetotactic microorganisms reach such efficiency at the local magnetic field. Considering that the magnetic moment of 'Ca. M. multicellularis' is sufficient for efficient alignment at the Earth's magnetic field, we suggest that misalignments are due to flagella movements, which could be driven by photo-, chemo- and/or other types of taxis.
Collapse
Affiliation(s)
- Carolina N Keim
- Instituto de Microbiologia Paulo de Góes, CCS, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Roger Duarte de Melo
- Centro Brasileiro de Pesquisas Físicas - CBPF, Rua Xavier Sigaud 150, Urca, Rio de Janeiro, RJ, 22290-180, Brazil
| | - Fernando P Almeida
- Instituto de Microbiologia Paulo de Góes, CCS, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Henrique G P Lins de Barros
- Centro Brasileiro de Pesquisas Físicas - CBPF, Rua Xavier Sigaud 150, Urca, Rio de Janeiro, RJ, 22290-180, Brazil
| | - Marcos Farina
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, 21941-902, Brazil
| | - Daniel Acosta-Avalos
- Centro Brasileiro de Pesquisas Físicas - CBPF, Rua Xavier Sigaud 150, Urca, Rio de Janeiro, RJ, 22290-180, Brazil
| |
Collapse
|
13
|
Li K, Wang P, Chen C, Chen C, Li L, Song T. Light irradiation helps magnetotactic bacteria eliminate intracellular reactive oxygen species. Environ Microbiol 2017; 19:3638-3648. [PMID: 28752909 DOI: 10.1111/1462-2920.13864] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 02/02/2023]
Abstract
Magnetotactic bacteria (MTB) demonstrate photoresponse. However, little is known about the biological significance of this behaviour. Magnetosomes exhibit peroxidase-like activity and can scavenge reactive oxygen species (ROS). Magnetosomes extracted from the Magnetospirillum magneticum strain AMB-1 show enhanced peroxidase-like activity under illumination. The present study investigated the effects of light irradiation on nonmagnetic (without magnetosomes) and magnetic (with magnetosomes) AMB-1 cells. Results showed that light irradiation did not affect the growth of nonmagnetic and magnetic cells but significantly increased magnetosome synthesis and reduced intracellular ROS level in magnetic cells. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to analyse the expression level of magnetosome formation-associated genes (mamA, mms6, mms13 and mmsF) and stress-related genes (recA, oxyR, SOD, amb0664 and amb2684). Results showed that light irradiation upregulated the expression of mms6, mms13 and mmsF. Furthermore, light irradiation upregulated the expression of stress-related genes in nonmagnetic cells but downregulated them in magnetic cells. Additionally, magnetic cells exhibited stronger phototactic behaviour than nonmagnetic ones. These results suggested that light irradiation could heighten the ability of MTB to eliminate intracellular ROS and help them adapt to lighted environments. This phenomenon may be related to the enhanced peroxidase-like activity of magnetosomes under light irradiation.
Collapse
Affiliation(s)
- Kefeng Li
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,Department of Sports and Health, Shandong Sport University, Jinan 250102, China
| | - Pingping Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.,France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing 100190, China
| | - Chuanfang Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.,France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing 100190, China
| | - Changyou Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.,France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing 100190, China
| | - Lulu Li
- Department of Sports and Health, Shandong Sport University, Jinan 250102, China
| | - Tao Song
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing 100190, China
| |
Collapse
|
14
|
Abstract
Magnetotactic bacteria derive their magnetic orientation from magnetosomes, which are unique organelles that contain nanometre-sized crystals of magnetic iron minerals. Although these organelles have evident potential for exciting biotechnological applications, a lack of genetically tractable magnetotactic bacteria had hampered the development of such tools; however, in the past decade, genetic studies using two model Magnetospirillum species have revealed much about the mechanisms of magnetosome biogenesis. In this Review, we highlight these new insights and place the molecular mechanisms of magnetosome biogenesis in the context of the complex cell biology of Magnetospirillum spp. Furthermore, we discuss the diverse properties of magnetosome biogenesis in other species of magnetotactic bacteria and consider the value of genetically 'magnetizing' non-magnetotactic bacteria. Finally, we discuss future prospects for this highly interdisciplinary and rapidly advancing field.
Collapse
|
15
|
The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part III. {[Fe2S2](Cys)3(X)} (X=Asp, Arg, His) and {[Fe2S2](Cys)2(His)2} proteins. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Barber-Zucker S, Keren-Khadmy N, Zarivach R. From invagination to navigation: The story of magnetosome-associated proteins in magnetotactic bacteria. Protein Sci 2015; 25:338-51. [PMID: 26457474 DOI: 10.1002/pro.2827] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/07/2015] [Indexed: 11/11/2022]
Abstract
Magnetotactic bacteria (MTB) are a group of Gram-negative microorganisms that are able to sense and change their orientation in accordance with the geomagnetic field. This unique capability is due to the presence of a special suborganelle called the magnetosome, composed of either a magnetite or gregite crystal surrounded by a lipid membrane. MTB were first detected in 1975 and since then numerous efforts have been made to clarify the special mechanism of magnetosome formation at the molecular level. Magnetosome formation can be divided into several steps, beginning with vesicle invagination from the cell membrane, through protein sorting, followed by the combined steps of iron transportation, biomineralization, and the alignment of magnetosomes into a chain. The magnetosome-chain enables the sensing of the magnetic field, and thus, allows the MTB to navigate. It is known that magnetosome formation is tightly controlled by a distinctive set of magnetosome-associated proteins that are encoded mainly in a genomically conserved region within MTB called the magnetosome island (MAI). Most of these proteins were shown to have an impact on the magnetism of MTB. Here, we describe the process in which the magnetosome is formed with an emphasis on the different proteins that participate in each stage of the magnetosome formation scheme.
Collapse
Affiliation(s)
- Shiran Barber-Zucker
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Noa Keren-Khadmy
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Raz Zarivach
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| |
Collapse
|
17
|
Li K, Chen C, Chen C, Wang Y, Wei Z, Pan W, Song T. Magnetosomes extracted from Magnetospirillum magneticum strain AMB-1 showed enhanced peroxidase-like activity under visible-light irradiation. Enzyme Microb Technol 2015; 72:72-8. [PMID: 25837510 DOI: 10.1016/j.enzmictec.2015.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 11/15/2022]
Abstract
Magnetosomes are intracellular structures produced by magnetotactic bacteria and are magnetic nanoparticles surrounded by a lipid bilayer membrane. Magnetosomes reportedly possess intrinsic enzyme mimetic activity similar to that found in horseradish peroxidase (HRP) and can scavenge reactive oxygen species depending on peroxidase activity. Our previous study has demonstrated the phototaxis characteristics of Magnetospirillum magneticum strain AMB-1 cells, but the mechanism is not well understood. Therefore, we studied the relationship between visible-light irradiation and peroxidase-like activity of magnetosomes extracted from M. magneticum strain AMB-1. We then compared this characteristic with that of HRP, iron ions, and naked magnetosomes using 3,3',5,5'-tetramethylbenzidine as a peroxidase substrate in the presence of H2O2. Results showed that HRP and iron ions had different activities from those of magnetosomes and naked magnetosomes when exposed to visible-light irradiation. Magnetosomes and naked magnetosomes had enhanced peroxidase-like activities under visible-light irradiation, but magnetosomes showed less affinity toward substrates than naked magnetosomes under visible-light irradiation. These results suggested that the peroxidase-like activity of magnetosomes may follow an ordered ternary mechanism rather than a ping-pong mechanism. This finding may provide new insight into the function of magnetosomes in the phototaxis in magnetotactic bacteria.
Collapse
Affiliation(s)
- Kefeng Li
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Sport University, Jinan 250102, China
| | - Chuanfang Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing 100193, China
| | - Changyou Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhan Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhao Wei
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weidong Pan
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing 100193, China
| | - Tao Song
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing 100193, China.
| |
Collapse
|
18
|
Positioning the flagellum at the center of a dividing cell to combine bacterial division with magnetic polarity. mBio 2015; 6:e02286. [PMID: 25714711 PMCID: PMC4358019 DOI: 10.1128/mbio.02286-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Faithful replication of all structural features is a sine qua non condition for the success of bacterial reproduction by binary fission. For some species, a key challenge is to replicate and organize structures with multiple polarities. Polarly flagellated magnetotactic bacteria are the prime example of organisms dealing with such a dichotomy; they have the challenge of bequeathing two types of polarities to their daughter cells: magnetic and flagellar polarities. Indeed, these microorganisms align and move in the Earth’s magnetic field using an intracellular chain of nano-magnets that imparts a magnetic dipole to the cell. The paradox is that, after division occurs in cells, if the new flagellum is positioned opposite to the old pole devoid of a flagellum during cell division, the two daughter cells will have opposite magnetic polarities with respect to the positions of their flagella. Here we show that magnetotactic bacteria of the class Gammaproteobacteria pragmatically solve this problem by synthesizing a new flagellum at the division site. In addition, we model this particular structural inheritance during cell division. This finding opens up new questions regarding the molecular aspects of the new division mechanism, the way other polarly flagellated magnetotactic bacteria control the rotational direction of their flagella, and the positioning of organelles. Magnetotactic bacteria produce chains of magnetic nanoparticles that endow the cells with a magnetic dipole, a “compass” used for navigation. This feature, however, also drastically complicates cellular division in the case of polarly flagellated bacteria. In this case, the bacteria have to pass on to their daughter cells two types of cellular polarities simultaneously, their magnetic polarity and the polarity of their motility apparatus. We show here that magnetotactic bacteria of the Gammaproteobacteria class pragmatically solve this problem by synthesizing the new flagellum at the division site, a division scheme never observed so far in bacteria. Even though the molecular mechanisms behind this scheme cannot be resolved at the moment due to the lack of genetic tools, this discovery provides a new window into the organizational complexity of simple organisms.
Collapse
|
19
|
Abstract
Magnetotactic bacteria (MTB) use passive alignment with the Earth magnetic field as a mean to increase their navigation efficiency in horizontally stratified environments through what is known as magneto-aerotaxis (M-A). Current M-A models have been derived from MTB observations in aqueous environments, where a >80% alignment with inclined magnetic field lines produces a one-dimensional search for optimal living conditions. However, the mean magnetic alignment of MTB in their most widespread living environment, i.e. sediment, has been recently found to be <1%, greatly reducing or even eliminating the magnetotactic advantage deduced for the case of MTB in water. In order to understand the role of magnetotaxis for MTB populations living in sediment, we performed first M-A observations with lake sediment microcosms. Microcosm experiments were based on different combinations of (1) MTB position with respect to their preferred living depth (i.e. above, at, and below), and (2) magnetic field configurations (i.e. correctly and incorrectly polarized vertical fields, horizontal fields, and zero fields). Results suggest that polar magnetotaxis is more complex than implied by previous experiments, and revealed unexpected differences between two types of MTB living in the same sediment. Our main findings are: (1) all investigated MTB benefit of a clear magnetotactic advantage when they need to migrate over macroscopic distances for reaching their optimal living depth, (2) magnetotaxis is not used by all MTB under stationary, undisturbed conditions, (3) some MTB can rely only on chemotaxis for macroscopic vertical displacements in sediment while other cannot, and (4) some MTB use a fixed polar M-A mechanisms, while other can switch their M-A polarity, performing what can be considered as a mixed polar-axial M-A. These observations demonstrate that sedimentary M-A is controlled by complex mechanical, chemical, and temporal factors that are poorly reproduced in aqueous environments.
Collapse
|
20
|
de Azevedo LV, de Barros HL, Keim CN, Acosta-Avalos D. Effect of light wavelength on motility and magnetic sensibility of the magnetotactic multicellular prokaryote 'Candidatus Magnetoglobus multicellularis'. Antonie van Leeuwenhoek 2013; 104:405-12. [PMID: 23828178 DOI: 10.1007/s10482-013-9964-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/27/2013] [Indexed: 11/29/2022]
Abstract
'Candidatus Magnetoglobus multicellularis' is a magnetotactic microorganism composed of several bacterial cells. Presently, it is the best known multicellular magnetotactic prokaryote (MMP). Recently, it has been observed that MMPs present a negative photoresponse to high intensity ultraviolet and violet-blue light. In this work, we studied the movement of 'Candidatus Magnetoglobus multicellularis' under low intensity light of different wavelengths, measuring the average velocity and the time to reorient its trajectory when the external magnetic field changes its direction (U-turn time). Our results show that the mean average velocity is higher for red light (628 nm) and lower for green light (517 nm) as compared to yellow (596 nm) and blue (469 nm) light, and the U-turn time decreased for green light illumination. The light wavelength velocity dependence can be understood as variation in flagella rotation speed, being increased by the red light and decreased by the green light relative to yellow and blue light. It is suggested that the dependence of the U-turn time on light wavelength can be considered a form of light-dependent magnetotaxis, because this time represents the magnetic sensibility of the magnetotactic microorganisms. The cellular and molecular mechanisms for this light-dependent velocity and magnetotaxis are unknown and deserve further studies to understand the biochemical interactions and the ecological roles of the different mechanisms of taxis in MMPs.
Collapse
Affiliation(s)
- Lyvia Vidinho de Azevedo
- Centro Brasileiro de Pesquisas Fisicas-CBPF, Rua Xavier Sigaud 150, Urca, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
21
|
Abstract
Microorganisms and specifically motile bacteria have been recently added to the list of micro-actuators typically considered for the implementation of microsystems and microrobots. Such trend has been motivated by the fact these microorganisms are self-powered actuators with overall sizes at the lower end of the micrometer range and which have proven to be extremely effective in low Reynolds number hydrodynamic regime of usually less than 10(-2). Furthermore, the various sensors or taxes in bacteria influencing their movements can also be exploited to perform tasks that were previously considered only for futuristic artificial microrobots. Bacterial implementations and related issues are not only reviewed, but this paper also proposes many techniques and approaches that can be considered as building blocks for the implementations of more sophisticated microsystems and microrobots.
Collapse
|
22
|
Magnetotactic bacteria: promising biosorbents for heavy metals. Appl Microbiol Biotechnol 2012; 95:1097-104. [DOI: 10.1007/s00253-012-4245-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 11/27/2022]
|
23
|
Komeili A. Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiol Rev 2012; 36:232-55. [PMID: 22092030 DOI: 10.1111/j.1574-6976.2011.00315.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Magnetotactic bacteria (MB) are remarkable organisms with the ability to exploit the earth's magnetic field for navigational purposes. To do this, they build specialized compartments called magnetosomes that consist of a lipid membrane and a crystalline magnetic mineral. These organisms have the potential to serve as models for the study of compartmentalization as well as biomineralization in bacteria. Additionally, they offer the opportunity to design applications that take advantage of the particular properties of magnetosomes. In recent years, a sustained effort to identify the molecular basis of this process has resulted in a clearer understanding of the magnetosome formation and biomineralization. Here, I present an overview of MB and explore the possible molecular mechanisms of membrane remodeling, protein sorting, cytoskeletal organization, iron transport, and biomineralization that lead to the formation of a functional magnetosome organelle.
Collapse
Affiliation(s)
- Arash Komeili
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|