1
|
Hwang S, Lee Y, Kim JH, Kim G, Kim H, Kim W, Cho S, Palsson BO, Cho BK. Streptomyces as Microbial Chassis for Heterologous Protein Expression. Front Bioeng Biotechnol 2022; 9:804295. [PMID: 34993191 PMCID: PMC8724576 DOI: 10.3389/fbioe.2021.804295] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Heterologous production of recombinant proteins is gaining increasing interest in biotechnology with respect to productivity, scalability, and wide applicability. The members of genus Streptomyces have been proposed as remarkable hosts for heterologous production due to their versatile nature of expressing various secondary metabolite biosynthetic gene clusters and secretory enzymes. However, there are several issues that limit their use, including low yield, difficulty in genetic manipulation, and their complex cellular features. In this review, we summarize rational engineering approaches to optimizing the heterologous production of secondary metabolites and recombinant proteins in Streptomyces species in terms of genetic tool development and chassis construction. Further perspectives on the development of optimal Streptomyces chassis by the design-build-test-learn cycle in systems are suggested, which may increase the availability of secondary metabolites and recombinant proteins.
Collapse
Affiliation(s)
- Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Gahyeon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyeseong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Innovative Biomaterials Research Center, KAIST Institutes, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
2
|
Sharma V, Kaur R, Salwan R. Streptomyces: host for refactoring of diverse bioactive secondary metabolites. 3 Biotech 2021; 11:340. [PMID: 34221811 DOI: 10.1007/s13205-021-02872-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Microbial secondary metabolites are intensively explored due to their demands in pharmaceutical, agricultural and food industries. Streptomyces are one of the largest sources of secondary metabolites having diverse applications. In particular, the abundance of secondary metabolites encoding biosynthetic gene clusters and presence of wobble position in Streptomyces strains make it potential candidate as a native or heterologous host for secondary metabolite production including several cryptic gene clusters expression. Here, we have discussed the developments in Streptomyces strains genome mining, its exploration as a suitable host and application of synthetic biology for refactoring genetic systems for developing chassis for enhanced as well as novel secondary metabolites with reduced genome and cleaned background.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Randhir Kaur
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Richa Salwan
- College of Horticulture and Forestry, Dr YS Parmar University of Horticulture and Forestry, Neri, Hamirpur, Himachal Pradesh 177001 India
| |
Collapse
|
3
|
Tao K, Ye T, Cao M, Meng X, Li Y, Wang H, Feng Z. Salumycin, a New Pyrazolequinone from a Streptomyces albus J1074 Mutant Strain. Molecules 2020; 25:molecules25184098. [PMID: 32911655 PMCID: PMC7570766 DOI: 10.3390/molecules25184098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 01/09/2023] Open
Abstract
Heterocyclic natural products with various bioactivities play significant roles in pharmaceuticals. Here, we isolated a heterocyclic compound salumycin (1) from a Streptomyces albus J1074 mutant strain. The structure of (1) was elucidated via single-crystal X-ray diffraction, mass spectrometry (MS), fourier transform infrared spectrometer (FTIR), and nuclear magnetic resonance (NMR) data analysis. Salumycin (1) contained a novel pyrazolequinone ring, which had never been previously reported in a natural product. Salumycin (1) exhibited moderate 2,2'-diphenyl-1-picrylhydrazyl (DPPH)-radical scavenging activity (EC50 = 46.3 ± 2.2 μM) compared with tert-butylhydroquinone (EC50 = 4.7 ± 0.3 μM). This study provides a new example of discovering novel natural products from bacteria.
Collapse
Affiliation(s)
- Kaixiang Tao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (K.T.); (T.Y.); (M.C.); (X.M.)
| | - Taijia Ye
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (K.T.); (T.Y.); (M.C.); (X.M.)
| | - Mingming Cao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (K.T.); (T.Y.); (M.C.); (X.M.)
| | - Xiaolu Meng
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (K.T.); (T.Y.); (M.C.); (X.M.)
| | - Yuqing Li
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China;
| | - Huan Wang
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China;
- Correspondence: (H.W.); (Z.F.); Tel./Fax: +86-025-89682133 (H.W.); +86-025-84399511 (Z.F.)
| | - Zhiyang Feng
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (K.T.); (T.Y.); (M.C.); (X.M.)
- Correspondence: (H.W.); (Z.F.); Tel./Fax: +86-025-89682133 (H.W.); +86-025-84399511 (Z.F.)
| |
Collapse
|
4
|
Myronovskyi M, Luzhetskyy A. Heterologous production of small molecules in the optimized Streptomyces hosts. Nat Prod Rep 2019; 36:1281-1294. [PMID: 31453623 DOI: 10.1039/c9np00023b] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Time span of literature covered: 2010-2018The genome mining of streptomycetes has revealed their great biosynthetic potential to produce novel natural products. One of the most promising exploitation routes of this biosynthetic potential is the refactoring and heterologous expression of corresponding biosynthetic gene clusters in a panel of specifically selected and optimized chassis strains. This article will review selected recent reports on heterologous production of natural products in streptomycetes. In the first part, the importance of heterologous production for drug discovery will be discussed. In the second part, the review will discuss recently developed genetic control elements (such as promoters, ribosome binding sites, terminators) and their application to achieve successful heterologous expression of biosynthetic gene clusters. Finally, the most widely used Streptomyces hosts for heterologous expression of biosynthetic gene clusters will be compared in detail. The article will be of interest to natural product chemists, molecular biologists, pharmacists and all individuals working in the natural products drug discovery field.
Collapse
Affiliation(s)
| | - Andriy Luzhetskyy
- Saarland University, Department Pharmacy, Saarbrücken, Germany and Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany.
| |
Collapse
|
5
|
Teijaro CN, Adhikari A, Shen B. Challenges and opportunities for natural product discovery, production, and engineering in native producers versus heterologous hosts. J Ind Microbiol Biotechnol 2019; 46:433-444. [PMID: 30426283 PMCID: PMC6405299 DOI: 10.1007/s10295-018-2094-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/19/2018] [Indexed: 10/27/2022]
Abstract
Recent advances and emerging technologies for metabolic pathway engineering and synthetic biology have transformed the field of natural product discovery, production, and engineering. Despite these advancements, there remain many challenges in understanding how biosynthetic gene clusters are silenced or activated, including changes in the transcription of key biosynthetic and regulatory genes. This knowledge gap is highlighted by the success and failed attempts of manipulating regulatory genes within biosynthetic gene clusters in both native producers and heterologous hosts. These complexities make the choice of native producers versus heterologous hosts, fermentation medium, and supply of precursors crucial factors in achieving the production of the target natural products and engineering designer analogs. Nature continues to serve as inspiration for filling the knowledge gaps and developing new research strategies. By exploiting the evolutionary power of nature, alternative producers, with the desired genetic amenability and higher titers of the target natural products, and new strains, harboring gene clusters that encode evolutionary optimized congeners of the targeted natural product scaffolds, can be discovered. These newly identified strains can serve as an outstanding biotechnology platform for the engineered production of sufficient quantities of the target natural products and their analogs, enabling biosynthetic studies and potential therapeutic applications. These challenges and opportunities are showcased herein using fredericamycin, iso-migrastatin, platencin and platensimycin, the enediynes of C-1027, tiancimycin, and yangpumicin, and the leinamycin family of natural products.
Collapse
Affiliation(s)
- Christiana N Teijaro
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Ajeeth Adhikari
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA.
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.
- Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
6
|
Albumycin, a new isoindolequinone from Streptomyces albus J1074 harboring the fluostatin biosynthetic gene cluster. J Antibiot (Tokyo) 2019; 72:311-315. [DOI: 10.1038/s41429-019-0161-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 01/20/2023]
|
7
|
Nepal KK, Wang G. Streptomycetes: Surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products. Biotechnol Adv 2019; 37:1-20. [PMID: 30312648 PMCID: PMC6343487 DOI: 10.1016/j.biotechadv.2018.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/04/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022]
Abstract
Due to the worldwide prevalence of multidrug-resistant pathogens and high incidence of diseases such as cancer, there is an urgent need for the discovery and development of new drugs. Nearly half of the FDA-approved drugs are derived from natural products that are produced by living organisms, mainly bacteria, fungi, and plants. Commercial development is often limited by the low yield of the desired compounds expressed by the native producers. In addition, recent advances in whole genome sequencing and bioinformatics have revealed an abundance of cryptic biosynthetic gene clusters within microbial genomes. Genetic manipulation of clusters in the native host is commonly used to awaken poorly expressed or silent gene clusters, however, the lack of feasible genetic manipulation systems in many strains often hinders our ability to engineer the native producers. The transfer of gene clusters into heterologous hosts for expression of partial or entire biosynthetic pathways is an approach that can be used to overcome this limitation. Heterologous expression also facilitates the chimeric fusion of different biosynthetic pathways, leading to the generation of "unnatural" natural products. The genus Streptomyces is especially known to be a prolific source of drugs/antibiotics, its members are often used as heterologous expression hosts. In this review, we summarize recent applications of Streptomyces species, S. coelicolor, S. lividans, S. albus, S. venezuelae and S. avermitilis, as heterologous expression systems.
Collapse
Affiliation(s)
- Keshav K Nepal
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA
| | - Guojun Wang
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA.
| |
Collapse
|
8
|
Strain improvement by combined UV mutagenesis and ribosome engineering and subsequent fermentation optimization for enhanced 6'-deoxy-bleomycin Z production. Appl Microbiol Biotechnol 2017; 102:1651-1661. [PMID: 29279956 DOI: 10.1007/s00253-017-8705-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
The bleomycins (BLMs) are important clinical drugs extensively used in combination chemotherapy for the treatment of various cancers. Dose-dependent lung toxicity and the development of drug resistance have restricted their wide applications. 6'-Deoxy-BLM Z, a recently engineered BLM analogue with improved antitumor activity, has the potential to be developed into the next-generation BLM anticancer drug. However, its low titer in the recombinant strain Streptomyces flavoviridis SB9026 has hampered current efforts, which require sufficient compound, to pursue preclinical studies and subsequent clinical development. Here, we report the strain improvement by combined UV mutagenesis and ribosome engineering, as well as the fermentation optimization, for enhanced 6'-deoxy-BLM production. A high producer, named S. flavoviridis G-4F12, was successfully isolated, producing 6'-deoxy-BLM at above 70 mg/L under the optimized fermentation conditions, representing a sevenfold increase in comparison with that of the original producer. These findings demonstrated the effectiveness of combined empirical breeding methods in strain improvement and set the stage for sustainable production of 6'-deoxy-BLM via pilot-scale microbial fermentation.
Collapse
|
9
|
Zhang B, Xu Z, Teng Q, Pan G, Ma M, Shen B. A Long-Range Acting Dehydratase Domain as the Missing Link for C17-Dehydration in Iso-Migrastatin Biosynthesis. Angew Chem Int Ed Engl 2017; 56:7247-7251. [PMID: 28464455 DOI: 10.1002/anie.201703588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 11/05/2022]
Abstract
The dehydratase domains (DHs) of the iso-migrastatin (iso-MGS) polyketide synthase (PKS) were investigated by systematic inactivation of the DHs in module-6, -9, -10 of MgsF (i.e., DH6, DH9, DH10) and module-11 of MgsG (i.e., DH11) in vivo, followed by structural characterization of the metabolites accumulated by the mutants, and biochemical characterization of DH10 in vitro, using polyketide substrate mimics with varying chain lengths. These studies allowed us to assign the functions for all four DHs, identifying DH10 as the dedicated dehydratase that catalyzes the dehydration of the C17 hydroxy group during iso-MGS biosynthesis. In contrast to canonical DHs that catalyze dehydration of the β-hydroxy groups of the nascent polyketide intermediates, DH10 acts in a long-range manner that is unprecedented for type I PKSs, a novel dehydration mechanism that could be exploited for polyketide structural diversity by combinatorial biosynthesis and synthetic biology.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Zhengren Xu
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Qihui Teng
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Guohui Pan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Ming Ma
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA.,Department of Molecular Medicine, Natural Products Library Initiative, The Scripps Research Institute, Jupiter, FL, 33458, USA
| |
Collapse
|
10
|
Zhang B, Xu Z, Teng Q, Pan G, Ma M, Shen B. A Long-Range Acting Dehydratase Domain as the Missing Link for C17-Dehydration in Iso-Migrastatin Biosynthesis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bo Zhang
- Department of Chemistry; The Scripps Research Institute; Jupiter FL 33458 USA
| | - Zhengren Xu
- Department of Chemistry; The Scripps Research Institute; Jupiter FL 33458 USA
| | - Qihui Teng
- Department of Chemistry; The Scripps Research Institute; Jupiter FL 33458 USA
| | - Guohui Pan
- Department of Chemistry; The Scripps Research Institute; Jupiter FL 33458 USA
| | - Ming Ma
- Department of Chemistry; The Scripps Research Institute; Jupiter FL 33458 USA
| | - Ben Shen
- Department of Chemistry; The Scripps Research Institute; Jupiter FL 33458 USA
- Department of Molecular Medicine, Natural Products Library Initiative; The Scripps Research Institute; Jupiter FL 33458 USA
| |
Collapse
|
11
|
Affiliation(s)
- Oksana Bilyk
- Helmholtz Institute for Pharmaceutical Research; Actinobacteria Metabolic Engineering Group; Universitätscampus E8 66123 Saarbrücken Germany
| | - Andriy Luzhetskyy
- Helmholtz Institute for Pharmaceutical Research; Actinobacteria Metabolic Engineering Group; Universitätscampus E8 66123 Saarbrücken Germany
- University of Saarland; Department of Pharmaceutical Biotechnology; UdS Campus C2.366123 Saarbrücken Germany
| |
Collapse
|
12
|
Helfrich EJN, Piel J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 2016; 33:231-316. [DOI: 10.1039/c5np00125k] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review discusses the biosynthesis of natural products that are generated bytrans-AT polyketide synthases, a family of catalytically versatile enzymes that represents one of the major group of proteins involved in the production of bioactive polyketides.
Collapse
Affiliation(s)
- Eric J. N. Helfrich
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| | - Jörn Piel
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
13
|
Larsen BJ, Sun Z, Lachacz E, Khomutnyk Y, Soellner MB, Nagorny P. Synthesis and Biological Evaluation of Lactimidomycin and Its Analogues. Chemistry 2015; 21:19159-67. [PMID: 26577990 DOI: 10.1002/chem.201503527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 02/06/2023]
Abstract
The studies culminating in the total synthesis of the glutarimide-containing eukaryote translation elongation inhibitor lactimidomycin are described. The optimized synthetic route features a Zn(II)-mediated intramolecular Horner-Wadsworth-Emmons (HWE) reaction resulting in a highly stereoselective formation of the strained 12-membered macrolactone of lactimidomycin on a 423 mg scale. The presence of the E,Z-diene functionality was found to be key for effective macrocyclizations as a complete removal of these unsaturation units resulted in exclusive formation of the dimer rather than monocyclic enoate. The synthetic route features a late-stage installation of the glutarimide functionality via an asymmetric catalytic Mukaiyama aldol reaction, which allows for a quick generation of lactimidomycin homolog 55 containing two additional carbons in the glutarimide side chain. Similar to lactimidomycin, this analog was found to possess cytotoxicity against MDA-MB-231 breast cancer cells (GI50 =1-3 μM) using in vitro 2D and 3D assays. Although lactimidomycin was found to be the most potent compound in terms of anticancer activity, 55 as well as truncated analogues 50-52 lacking the glutarimide side-chain were found to be significantly less toxic against human mammary epithelial cells.
Collapse
Affiliation(s)
- Brian J Larsen
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055 (USA)
| | - Zhankui Sun
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055 (USA)
| | - Eric Lachacz
- Medicinal Chemistry Department, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065 (USA)
| | - Yaroslav Khomutnyk
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055 (USA)
| | - Matthew B Soellner
- Medicinal Chemistry Department, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065 (USA).
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055 (USA).
| |
Collapse
|
14
|
Zhang B, Yang D, Yan Y, Pan G, Xiang W, Shen B. Overproduction of lactimidomycin by cross-overexpression of genes encoding Streptomyces antibiotic regulatory proteins. Appl Microbiol Biotechnol 2015; 100:2267-77. [PMID: 26552797 DOI: 10.1007/s00253-015-7119-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 12/21/2022]
Abstract
The glutarimide-containing polyketides represent a fascinating class of natural products that exhibit a multitude of biological activities. We have recently cloned and sequenced the biosynthetic gene clusters for three members of the glutarimide-containing polyketides-iso-migrastatin (iso-MGS) from Streptomyces platensis NRRL 18993, lactimidomycin (LTM) from Streptomyces amphibiosporus ATCC 53964, and cycloheximide (CHX) from Streptomyces sp. YIM56141. Comparative analysis of the three clusters identified mgsA and chxA, from the mgs and chx gene clusters, respectively, that were predicted to encode the PimR-like Streptomyces antibiotic regulatory proteins (SARPs) but failed to reveal any regulatory gene from the ltm gene cluster. Overexpression of mgsA or chxA in S. platensis NRRL 18993, Streptomyces sp. YIM56141 or SB11024, and a recombinant strain of Streptomyces coelicolor M145 carrying the intact mgs gene cluster has no significant effect on iso-MGS or CHX production, suggesting that MgsA or ChxA regulation may not be rate-limiting for iso-MGS and CHX production in these producers. In contrast, overexpression of mgsA or chxA in S. amphibiosporus ATCC 53964 resulted in a significant increase in LTM production, with LTM titer reaching 106 mg/L, which is five-fold higher than that of the wild-type strain. These results support MgsA and ChxA as members of the SARP family of positive regulators for the iso-MGS and CHX biosynthetic machinery and demonstrate the feasibility to improve glutarimide-containing polyketide production in Streptomyces strains by exploiting common regulators.
Collapse
Affiliation(s)
- Bo Zhang
- School of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Dong Yang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Yijun Yan
- School of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Guohui Pan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Wensheng Xiang
- School of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA.
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, 33458, USA.
- Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
15
|
Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J Ind Microbiol Biotechnol 2015; 43:343-70. [PMID: 26364200 DOI: 10.1007/s10295-015-1682-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/28/2015] [Indexed: 12/18/2022]
Abstract
Actinomycetes continue to be important sources for the discovery of secondary metabolites for applications in human medicine, animal health, and crop protection. With the maturation of actinomycete genome mining as a robust approach to identify new and novel cryptic secondary metabolite gene clusters, it is critical to continue developing methods to activate and enhance secondary metabolite biosynthesis for discovery, development, and large-scale manufacturing. This review covers recent reports on promising new approaches and further validations or technical improvements of existing approaches to strain improvement applicable to a wide range of Streptomyces species and other actinomycetes.
Collapse
|
16
|
Liebl W, Angelov A, Juergensen J, Chow J, Loeschcke A, Drepper T, Classen T, Pietruszka J, Ehrenreich A, Streit WR, Jaeger KE. Alternative hosts for functional (meta)genome analysis. Appl Microbiol Biotechnol 2014; 98:8099-109. [PMID: 25091044 DOI: 10.1007/s00253-014-5961-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 11/25/2022]
Abstract
Microorganisms are ubiquitous on earth, often forming complex microbial communities in numerous different habitats. Most of these organisms cannot be readily cultivated in the laboratory using standard media and growth conditions. However, it is possible to gain access to the vast genetic, enzymatic, and metabolic diversity present in these microbial communities using cultivation-independent approaches such as sequence- or function-based metagenomics. Function-based analysis is dependent on heterologous expression of metagenomic libraries in a genetically amenable cloning and expression host. To date, Escherichia coli is used in most cases; however, this has the drawback that many genes from heterologous genomes and complex metagenomes are expressed in E. coli either at very low levels or not at all. This review emphasizes the importance of establishing alternative microbial expression systems consisting of different genera and species as well as customized strains and vectors optimized for heterologous expression of membrane proteins, multigene clusters encoding protein complexes or entire metabolic pathways. The use of alternative host-vector systems will complement current metagenomic screening efforts and expand the yield of novel biocatalysts, metabolic pathways, and useful metabolites to be identified from environmental samples.
Collapse
Affiliation(s)
- Wolfgang Liebl
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann-Str. 4, 85654, Freising, Germany,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ma M, Kwong T, Lim SK, Ju J, Lohman JR, Shen B. Post-polyketide synthase steps in iso-migrastatin biosynthesis, featuring tailoring enzymes with broad substrate specificity. J Am Chem Soc 2013; 135:2489-92. [PMID: 23394593 PMCID: PMC3582021 DOI: 10.1021/ja4002635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The iso-migrastatin (iso-MGS) biosynthetic gene cluster from Streptomyces platensis NRRL 18993 consists of 11 genes, featuring an acyltransferase (AT)-less type I polyketide synthase (PKS) and three tailoring enzymes MgsIJK. Systematic inactivation of mgsIJK in S. platensis enabled us to (i) identify two nascent products of the iso-MGS AT-less type I PKS, establishing an unprecedented novel feature for AT-less type I PKSs, and (ii) account for the formation of all known post-PKS biosynthetic intermediates generated by the three tailoring enzymes MgsIJK, which possessed significant substrate promiscuities.
Collapse
Affiliation(s)
- Ming Ma
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | | | | | | | | | | |
Collapse
|
18
|
Artificial chromosomes to explore and to exploit biosynthetic capabilities of actinomycetes. J Biomed Biotechnol 2012; 2012:462049. [PMID: 22919271 PMCID: PMC3420335 DOI: 10.1155/2012/462049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/20/2012] [Accepted: 07/04/2012] [Indexed: 12/02/2022] Open
Abstract
Actinomycetes are an important source of biologically active compounds, like antibiotics, antitumor agents, and immunosuppressors. Genome sequencing is revealing that this class of microorganisms has larger genomes relative to other bacteria and uses a considerable fraction of its coding capacity (5–10%) for the production of mostly cryptic secondary metabolites. To access actinomycetes biosynthetic capabilities or to improve the pharmacokinetic properties and production yields of these chemically complex compounds, genetic manipulation of the producer strains can be performed. Heterologous expression in amenable hosts can be useful to exploit and to explore the genetic potential of actinomycetes and not cultivable but interesting bacteria. Artificial chromosomes that can be stably integrated into the Streptomyces genome were constructed and demonstrated to be effective for transferring entire biosynthetic gene clusters from intractable actinomycetes into more suitable hosts. In this paper, the construction of several shuttle Escherichia coli-Streptomyces artificial chromosomes is discussed together with old and new strategies applied to improve heterologous production of secondary metabolites.
Collapse
|
19
|
Huang SX, Feng Z, Wang L, Galm U, Wendt-Pienkowski E, Yang D, Tao M, Coughlin JM, Duan Y, Shen B. A designer bleomycin with significantly improved DNA cleavage activity. J Am Chem Soc 2012; 134:13501-9. [PMID: 22831455 DOI: 10.1021/ja3056535] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bleomycins (BLMs) are used clinically in combination with a number of other agents for the treatment of several types of tumors, and the BLM, etoposide, and cisplatin treatment regimen cures 90-95% of metastatic testicular cancer patients. BLM-induced pneumonitis is the most feared, dose-limiting side effect of BLM in chemotherapy, which can progress into lung fibrosis and affect up to 46% of the total patient population. There have been continued efforts to develop new BLM analogues in the search for anticancer drugs with better clinical efficacy and lower lung toxicity. We have previously cloned and characterized the biosynthetic gene clusters for BLMs from Streptomyces verticillus ATCC15003, tallysomycins from Streptoalloteichus hindustanus E465-94 ATCC31158, and zorbamycin (ZBM) from Streptomyces flavoviridis SB9001. Comparative analysis of the three biosynthetic machineries provided the molecular basis for the formulation of hypotheses to engineer novel analogues. We now report engineered production of three new analogues, 6'-hydroxy-ZBM, BLM Z, and 6'-deoxy-BLM Z and the evaluation of their DNA cleavage activities as a measurement for their potential anticancer activity. Our findings unveiled: (i) the disaccharide moiety plays an important role in the DNA cleavage activity of BLMs and ZBMs, (ii) the ZBM disaccharide significantly enhances the potency of BLM, and (iii) 6'-deoxy-BLM Z represents the most potent BLM analogue known to date. The fact that 6'-deoxy-BLM Z can be produced in reasonable quantities by microbial fermentation should greatly facilitate follow-up mechanistic and preclinical studies to potentially advance this analogue into a clinical drug.
Collapse
Affiliation(s)
- Sheng-Xiong Huang
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dias LC, Monteiro GC, Amarante GW, Conegero LS, Finelli FG. Stereoselective synthesis of analogs of the macrolactone of isomigrastatin. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2011.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Platensimycin and platencin biosynthesis in Streptomyces platensis, showcasing discovery and characterization of novel bacterial diterpene synthases. Methods Enzymol 2012; 515:163-86. [PMID: 22999174 DOI: 10.1016/b978-0-12-394290-6.00008-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Diterpenoid natural products cover a vast chemical diversity and include many medicinally and industrially relevant compounds. All diterpenoids derive from a common substrate, (E,E,E)-geranylgeranyl diphosphate, which is cyclized into one of many scaffolds by a diterpene synthase (DTS). While diterpene biosynthesis has been extensively studied in plants and fungi, bacteria are now recognized for their production of unique diterpenoids and are likely to harbor an underexplored reservoir of new DTSs. Bacterial diterpenoid biosynthesis can be exploited for the discovery of new natural products, a better mechanistic understanding of DTSs, and the rational engineering of whole metabolic pathways. This chapter describes methods and protocols for identification and characterization of bacterial DTSs, based on our recent work with the DTSs involved in platensimycin and platencin biosynthesis.
Collapse
|