1
|
Expanding the promoter toolbox for metabolic engineering of methylotrophic yeasts. Appl Microbiol Biotechnol 2022; 106:3449-3464. [PMID: 35538374 DOI: 10.1007/s00253-022-11948-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/31/2023]
Abstract
Methylotrophic yeasts have been widely recognized as a promising host for production of recombinant proteins and value-added chemicals. Promoters for controlled gene expression are critical for construction of efficient methylotrophic yeasts cell factories. Here, we summarized recent advances in characterizing and engineering promoters in methylotrophic yeasts, such as Komagataella phaffii and Ogataea polymorpha. Constitutive and inducible promoters controlled by methanol or other inducers/repressors were introduced to demonstrate their applications in production of proteins and chemicals. Furthermore, efforts of promoter engineering, including site-directed mutagenesis, hybrid promoter, and transcription factor regulation to expand the promoter toolbox were also summarized. This mini-review also provides useful information on promoters for the application of metabolic engineering in methylotrophic yeasts. KEY POINTS: • The characteristics of six methylotrophic yeasts and their promoters are described. • The applications of Komagataella phaffii and Ogataea polymorpha in metabolic engineeringare expounded. • Three promoter engineering strategies are introduced in order to expand the promoter toolbox.
Collapse
|
2
|
Singh RV, Sambyal K. An overview of β-carotene production: Current status and future prospects. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
Milne N, Tramontin LRR, Borodina I. A teaching protocol demonstrating the use of EasyClone and CRISPR/Cas9 for metabolic engineering of Saccharomyces cerevisiae and Yarrowia lipolytica. FEMS Yeast Res 2021; 20:5574399. [PMID: 31556952 PMCID: PMC8260333 DOI: 10.1093/femsyr/foz062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/19/2019] [Indexed: 11/14/2022] Open
Abstract
We present a teaching protocol suitable for demonstrating the use of EasyClone and CRISPR/Cas9 for metabolic engineering of industrially relevant yeasts Saccharomyces cerevisiae and Yarrowia lipolytica, using β-carotene production as a case study. The protocol details all steps required to generate DNA parts, transform and genotype yeast, and perform a phenotypic screen to determine β-carotene production. The protocol is intended to be used as an instruction manual for a two-week practical course aimed at M.Sc. and Ph.D. students. The protocol details all necessary steps for students to engineer yeast to produce β-carotene and serves as a practical introduction to the principles of metabolic engineering including the concepts of boosting native precursor supply and alleviating rate-limiting steps. It also highlights key differences in the metabolism and heterologous production capacity of two industrially relevant yeast species. The protocol is divided into daily experiments covering a two-week period and provides detailed instructions for every step meaning this protocol can be used 'as is' for a teaching course or as a case study for how yeast can be engineered to produce value-added molecules.
Collapse
Affiliation(s)
- N Milne
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - L R R Tramontin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - I Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
López J, Cataldo VF, Peña M, Saa PA, Saitua F, Ibaceta M, Agosin E. Build Your Bioprocess on a Solid Strain-β-Carotene Production in Recombinant Saccharomyces cerevisiae. Front Bioeng Biotechnol 2019; 7:171. [PMID: 31380362 PMCID: PMC6656860 DOI: 10.3389/fbioe.2019.00171] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/03/2019] [Indexed: 11/19/2022] Open
Abstract
Robust fermentation performance of microbial cell factories is critical for successful scaling of a biotechnological process. From shake flask cultivations to industrial-scale bioreactors, consistent strain behavior is fundamental to achieve the production targets. To assert the importance of this feature, we evaluated the impact of the yeast strain design and construction method on process scalability -from shake flasks to bench-scale fed-batch fermentations- using two recombinant Saccharomyces cerevisiae strains capable of producing β-carotene; SM14 and βcar1.2 strains. SM14 strain, obtained previously from adaptive evolution experiments, was capable to accumulate up to 21 mg/gDCW of β-carotene in 72 h shake flask cultures; while the βcar1.2, constructed by overexpression of carotenogenic genes, only accumulated 5.8 mg/gDCW of carotene. Surprisingly, fed-batch cultivation of these strains in 1L bioreactors resulted in opposite performances. βcar1.2 strain reached much higher biomass and β-carotene productivities (1.57 g/L/h and 10.9 mg/L/h, respectively) than SM14 strain (0.48 g/L/h and 3.1 mg/L/h, respectively). Final β-carotene titers were 210 and 750 mg/L after 80 h cultivation for SM14 and βcar1.2 strains, respectively. Our results indicate that these substantial differences in fermentation parameters are mainly a consequence of the exacerbated Crabtree effect of the SM14 strain. We also found that the strategy used to integrate the carotenogenic genes into the chromosomes affected the genetic stability of strains, although the impact was significantly minor. Overall, our results indicate that shake flasks fermentation parameters are poor predictors of the fermentation performance under industrial-like conditions, and that appropriate construction designs and performance tests must be conducted to properly assess the scalability of the strain and the bioprocess.
Collapse
Affiliation(s)
- Javiera López
- Centro de Aromas and Sabores, DICTUC S.A., Santiago, Chile.,Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vicente F Cataldo
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel Peña
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro A Saa
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Maximiliano Ibaceta
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo Agosin
- Centro de Aromas and Sabores, DICTUC S.A., Santiago, Chile.,Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Wu T, Li S, Ye L, Zhao D, Fan F, Li Q, Zhang B, Bi C, Zhang X. Engineering an Artificial Membrane Vesicle Trafficking System (AMVTS) for the Excretion of β-Carotene in Escherichia coli. ACS Synth Biol 2019; 8:1037-1046. [PMID: 30990999 DOI: 10.1021/acssynbio.8b00472] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Large hydrophobic molecules, such as carotenoids, cannot be effectively excreted from cells by natural transportation systems. These products accumulate inside the cells and affect normal cellular physiological functions, which hinders further improvement of carotenoid production by microbial cell factories. In this study, we proposed to construct a novel artificial transport system utilizing membrane lipids to carry and transport hydrophobic molecules. Membrane lipids allow the physiological mechanism of membrane dispersion to be reconstructed and amplified to establish a novel artificial membrane vesicle transport system (AMVTS). Specifically, a few proteins in E. coli were reported or proposed to be related to the formation mechanism of outer membrane vesicles, and were individually knocked out or overexpressed to test their physiological functions. The effects on tolR and nlpI were the most significant. Knocking out both tolR and nlpI resulted in a 13.7% increase of secreted β-carotene with a 35.6% increase of specific production. To supplement the loss of membrane components of the cells due to the increased membrane vesicle dispersion, the synthesis pathway of phosphatidylethanolamine was engineered. While overexpression of AccABCD and PlsBC in TW-013 led to 15% and 17% increases of secreted β-carotene, respectively, the overexpression of both had a synergistic effect and caused a 53-fold increase of secreted β-carotene, from 0.2 to 10.7 mg/g dry cell weight (DCW). At the same time, the specific production of β-carotene increased from 6.9 to 21.9 mg/g DCW, a 3.2-fold increase. The AMVTS was also applied to a β-carotene hyperproducing strain, CAR025, which led to a 24-fold increase of secreted β-carotene, from 0.5 to 12.7 mg/g DCW, and a 61% increase of the specific production, from 27.7 to 44.8 mg/g DCW in shake flask fermentation. The AMVTS built in this study establishes a novel artificial transport mechanism different from natural protein-based cellular transport systems, which has great potential to be applied to various cell factories for the excretion of a wide range of hydrophobic compounds.
Collapse
Affiliation(s)
- Tao Wu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300314, PR China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Lijun Ye
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Feiyu Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Qinyan Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Bolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| |
Collapse
|
6
|
Microbial conversion of xylose into useful bioproducts. Appl Microbiol Biotechnol 2018; 102:9015-9036. [PMID: 30141085 DOI: 10.1007/s00253-018-9294-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
Microorganisms can produce a number of different bioproducts from the sugars in plant biomass. One challenge is devising processes that utilize all of the sugars in lignocellulosic hydrolysates. D-xylose is the second most abundant sugar in these hydrolysates. The microbial conversion of D-xylose to ethanol has been studied extensively; only recently, however, has conversion to bioproducts other than ethanol been explored. Moreover, in the case of yeast, D-xylose may provide a better feedstock for the production of bioproducts other than ethanol, because the relevant pathways are not subject to glucose-dependent repression. In this review, we discuss how different microorganisms are being used to produce novel bioproducts from D-xylose. We also discuss how D-xylose could be potentially used instead of glucose for the production of value-added bioproducts.
Collapse
|
7
|
Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metab Eng 2017; 41:192-201. [PMID: 28414174 DOI: 10.1016/j.ymben.2017.04.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 11/24/2022]
Abstract
β-Carotene is a terpenoid molecule with high hydrophobicity that is often used as an additive in foods and feed. Previous work has demonstrated the heterologous biosynthesis of β-carotene from an intrinsic high flux of acetyl-CoA in 12 steps through 11 genes in Yarrowia lipolytica. Here, an efficient biosynthetic pathway capable of producing 100-fold more β-carotene than the baseline construct was generated using strong promoters and multiple gene copies for each of the 12 steps. Using fed-batch fermentation with an optimized medium, the engineered pathway could produce 4g/L β-carotene, which was stored in lipid droplets within engineered Y. lipolytica cells. Expansion of these cells for squalene production also demonstrated that Y. lipolytica could be an industrially relevant platform for hydrophobic terpenoid production.
Collapse
|
8
|
Enhanced production of β-carotene in recombinant Saccharomyces cerevisiae by inverse metabolic engineering with supplementation of unsaturated fatty acids. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnol Adv 2015; 33:1455-66. [DOI: 10.1016/j.biotechadv.2014.11.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/23/2014] [Accepted: 11/09/2014] [Indexed: 11/22/2022]
|
10
|
Mitchell LA, Chuang J, Agmon N, Khunsriraksakul C, Phillips NA, Cai Y, Truong DM, Veerakumar A, Wang Y, Mayorga M, Blomquist P, Sadda P, Trueheart J, Boeke JD. Versatile genetic assembly system (VEGAS) to assemble pathways for expression in S. cerevisiae. Nucleic Acids Res 2015; 43:6620-30. [PMID: 25956652 PMCID: PMC4513848 DOI: 10.1093/nar/gkv466] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/27/2015] [Indexed: 11/14/2022] Open
Abstract
We have developed a method for assembling genetic pathways for expression in Saccharomyces cerevisiae. Our pathway assembly method, called VEGAS (Versatile genetic assembly system), exploits the native capacity of S. cerevisiae to perform homologous recombination and efficiently join sequences with terminal homology. In the VEGAS workflow, terminal homology between adjacent pathway genes and the assembly vector is encoded by 'VEGAS adapter' (VA) sequences, which are orthogonal in sequence with respect to the yeast genome. Prior to pathway assembly by VEGAS in S. cerevisiae, each gene is assigned an appropriate pair of VAs and assembled using a previously described technique called yeast Golden Gate (yGG). Here we describe the application of yGG specifically to building transcription units for VEGAS assembly as well as the VEGAS methodology. We demonstrate the assembly of four-, five- and six-gene pathways by VEGAS to generate S. cerevisiae cells synthesizing β-carotene and violacein. Moreover, we demonstrate the capacity of yGG coupled to VEGAS for combinatorial assembly.
Collapse
Affiliation(s)
- Leslie A Mitchell
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York City, NY 10016, USA Institute for Systems Genetics, New York University Langone School of Medicine, New York City, NY 10016, USA High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James Chuang
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Neta Agmon
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York City, NY 10016, USA Institute for Systems Genetics, New York University Langone School of Medicine, New York City, NY 10016, USA High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chachrit Khunsriraksakul
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nick A Phillips
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yizhi Cai
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David M Truong
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York City, NY 10016, USA Institute for Systems Genetics, New York University Langone School of Medicine, New York City, NY 10016, USA
| | - Ashan Veerakumar
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yuxuan Wang
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | - Praneeth Sadda
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Jef D Boeke
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York City, NY 10016, USA Institute for Systems Genetics, New York University Langone School of Medicine, New York City, NY 10016, USA High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Becker J, Wittmann C. Advanced Biotechnology: Metabolically Engineered Cells for the Bio-Based Production of Chemicals and Fuels, Materials, and Health-Care Products. Angew Chem Int Ed Engl 2015; 54:3328-50. [DOI: 10.1002/anie.201409033] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Indexed: 12/16/2022]
|
12
|
Biotechnologie von Morgen: metabolisch optimierte Zellen für die bio-basierte Produktion von Chemikalien und Treibstoffen, Materialien und Gesundheitsprodukten. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Polycistronic expression of a β-carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to β-ionone production. J Biotechnol 2014; 192 Pt B:383-92. [DOI: 10.1016/j.jbiotec.2013.12.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 11/18/2022]
|
14
|
Yang J, Guo L. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways. Microb Cell Fact 2014; 13:160. [PMID: 25403509 PMCID: PMC4239400 DOI: 10.1186/s12934-014-0160-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/31/2014] [Indexed: 01/28/2023] Open
Abstract
Background β-carotene is a carotenoid compound that has been widely used not only in the industrial production of pharmaceuticals but also as nutraceuticals, animal feed additives, functional cosmetics, and food colorants. Currently, more than 90% of commercial β-carotene is produced by chemical synthesis. Due to the growing public concern over food safety, the use of chemically synthesized β-carotene as food additives or functional cosmetic agents has been severely controlled in recent years. This has reignited the enthusiasm for seeking natural β-carotene in large-scale fermentative production by microorganisms. Results To increase β-carotene production by improving the isopentenyl pyrophosphate (IPP) and geranyl diphospate (GPP) concentration in the cell, the optimized MEP (methylerythritol 4-phosphate) pathway containing 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and isopentenyl pyrophosphate isomerase (FNI) from Bacillus subtilis, geranyl diphosphate synthase (GPPS2) from Abies grandis have been co-expressed in an engineered E. coli strain. To further enhance the production of β-carotene, the hybrid MVA (mevalonate) pathway has been introduced into an engineered E. coli strain, co-expressed with the optimized MEP pathway and GPPS2. The final genetically modified strain, YJM49, can accumulate 122.4±6.2 mg/L β-carotene in flask culture, approximately 113-fold and 1.7 times greater than strain YJM39, which carries the native MEP pathway, and YJM45, which harbors the MVA pathway and the native MEP pathway, respectively. Subsequently, the fermentation process was optimized to enhance β-carotene production with a maximum titer of 256.8±10.4 mg/L. Finally, the fed-batch fermentation of β-carotene was evaluated using the optimized culture conditions. After induction for 56 h, the final engineered strain YJM49 accumulated 3.2 g/L β-carotene with a volumetric productivity of 0.37 mg/(L · h · OD600) in aerobic fed-batch fermentation, and the conversion efficiency of glycerol to β-carotene (gram to gram) reached 2.76%. Conclusions In this paper, by using metabolic engineering techniques, the more efficient biosynthetic pathway of β-carotene was successfully assembled in E. coli BL21(DE3) with the optimized MEP (methylerythritol 4-phosphate) pathway, the gene for GPPS2 from Abies grandis, the hybrid MVA (mevalonate) pathway and β-carotene synthesis genes from Erwinia herbicola. Electronic supplementary material The online version of this article (doi:10.1186/s12934-014-0160-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianming Yang
- Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No.700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
| | - Lizhong Guo
- Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No.700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
| |
Collapse
|
15
|
Heider SAE, Peters-Wendisch P, Wendisch VF, Beekwilder J, Brautaset T. Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Appl Microbiol Biotechnol 2014; 98:4355-68. [DOI: 10.1007/s00253-014-5693-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 12/31/2022]
|
16
|
Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN. Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Fact 2014; 13:12. [PMID: 24443802 PMCID: PMC3922794 DOI: 10.1186/1475-2859-13-12] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 12/19/2013] [Indexed: 11/10/2022] Open
Abstract
Nowadays, carotenoids are valuable molecules in different industries such as chemical, pharmaceutical, poultry, food and cosmetics. These pigments not only can act as vitamin A precursors, but also they have coloring and antioxidant properties, which have attracted the attention of the industries and researchers. The carotenoid production through chemical synthesis or extraction from plants is limited by low yields that results in high production costs. This leads to research of microbial production of carotenoids, as an alternative that has shown better yields than other aforementioned. In addition, the microbial production of carotenoids could be a better option about costs, looking for alternatives like the use of low-cost substrates as agro-industrials wastes. Yeasts have demonstrated to be carotenoid producer showing an important growing capacity in several agro-industrial wastes producing high levels of carotenoids. Agro-industrial wastes provide carbon and nitrogen source necessary, and others elements to carry out the microbial metabolism diminishing the production costs and avoiding pollution from these agro-industrial wastes to the environmental. Herein, we discuss the general and applied concepts regarding yeasts carotenoid production and the factors influencing carotenogenesis using agro-industrial wastes as low-cost substrates.
Collapse
Affiliation(s)
| | - Julio César Montañez
- Chemical Engineering Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo, Mexico.
| | | | | |
Collapse
|
17
|
Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica. Appl Environ Microbiol 2013; 80:1660-9. [PMID: 24375130 DOI: 10.1128/aem.03167-13] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The codon-optimized genes crtB and crtI of Pantoea ananatis were expressed in Yarrowia lipolytica under the control of the TEF1 promoter of Y. lipolytica. Additionally, the rate-limiting genes for isoprenoid biosynthesis in Y. lipolytica, GGS1 and HMG1, were overexpressed to increase the production of lycopene. All of the genes were also expressed in a Y. lipolytica strain with POX1 to POX6 and GUT2 deleted, which led to an increase in the size of lipid bodies and a further increase in lycopene production. Lycopene is located mainly within lipid bodies, and increased lipid body formation leads to an increase in the lycopene storage capacity of Y. lipolytica. Growth-limiting conditions increase the specific lycopene content. Finally, a yield of 16 mg g(-1) (dry cell weight) was reached in fed-batch cultures, which is the highest value reported so far for a eukaryotic host.
Collapse
|
18
|
Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces. Curr Opin Biotechnol 2013; 24:1023-30. [DOI: 10.1016/j.copbio.2013.03.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 01/09/2023]
|
19
|
Xie W, Liu M, Lv X, Lu W, Gu J, Yu H. Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy inSaccharomyces cerevisiae. Biotechnol Bioeng 2013; 111:125-33. [DOI: 10.1002/bit.25002] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/23/2013] [Accepted: 07/10/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Wenping Xie
- Institute of Bioengineering, Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 PR China
| | - Min Liu
- Institute of Bioengineering, Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 PR China
| | - Xiaomei Lv
- Institute of Bioengineering, Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 PR China
| | - Wenqiang Lu
- Institute of Bioengineering, Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 PR China
| | - Jiali Gu
- Institute of Bioengineering, Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 PR China
| | - Hongwei Yu
- Institute of Bioengineering, Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 PR China
| |
Collapse
|
20
|
Johnson EA. Biotechnology of non-Saccharomyces yeasts—the basidiomycetes. Appl Microbiol Biotechnol 2013; 97:7563-77. [DOI: 10.1007/s00253-013-5046-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/05/2013] [Accepted: 06/07/2013] [Indexed: 12/24/2022]
|
21
|
Li Q, Sun Z, Li J, Zhang Y. Enhancing beta-carotene production inSaccharomyces cerevisiaeby metabolic engineering. FEMS Microbiol Lett 2013; 345:94-101. [DOI: 10.1111/1574-6968.12187] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 12/28/2022] Open
Affiliation(s)
| | | | | | - Yansheng Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture; Wuhan Botanical Garden; Chinese Academy of Sciences; Wuhan; China
| |
Collapse
|
22
|
Cheng Y, Zhou Y, Yang L, Zhang C, Xu Q, Xie X, Chen N. Modification of histidine biosynthesis pathway genes and the impact on production of l-histidine in Corynebacterium glutamicum. Biotechnol Lett 2013; 35:735-41. [DOI: 10.1007/s10529-013-1138-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/03/2013] [Indexed: 11/29/2022]
|
23
|
Araya-Garay JM, Ageitos JM, Vallejo JA, Veiga-Crespo P, Sánchez-Pérez A, Villa TG. Construction of a novel Pichia pastoris strain for production of xanthophylls. AMB Express 2012; 2:24. [PMID: 22534340 PMCID: PMC3485114 DOI: 10.1186/2191-0855-2-24] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 02/11/2012] [Indexed: 11/25/2022] Open
Abstract
In this study, we used the yeast carotenogenic producer Pichia pastoris Pp-EBIL strain, which has been metabolically engineered, by heterologously expressing β-carotene-pathway enzymes to produce β-carotene, as a vessel for recombinant astaxanthin expression. For this purpose, we designed new P. pastoris recombinant-strains harboring astaxanthin-encoding genes from carotenogenic microorganism, and thus capable of producing xanthophyllic compounds. We designed and constructed a plasmid (pGAPZA-WZ) containing both the β-carotene ketolase (crtW) and β-carotene hydroxylase (crtZ) genes from Agrobacterium aurantiacum, under the control of the GAP promoter and containing an AOX-1 terminator. The plasmid was then integrated into the P. pastoris Pp-EBIL strain genomic DNA, producing clone Pp-EBILWZ. The recombinant P. pastoris (Pp-EBILWZ) cells exhibited a strong reddish carotenoid coloration and were confirmed, by HPLC, to produce not only the previous described carotenoids lycopene and β-carotene, but also de novo synthesized astaxanthin.
Collapse
|
24
|
Construction of new Pichia pastoris X-33 strains for production of lycopene and β-carotene. Appl Microbiol Biotechnol 2011; 93:2483-92. [DOI: 10.1007/s00253-011-3764-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 11/12/2011] [Accepted: 11/14/2011] [Indexed: 10/14/2022]
|