1
|
Cao J, Shao B, Lin J, Liu J, Cui Y, Wang J, Fang J. Genomic and physiological properties of Anoxybacterium hadale gen. nov. sp. nov. reveal the important role of dissolved organic sulfur in microbial metabolism in hadal ecosystems. Front Microbiol 2024; 15:1423245. [PMID: 39220043 PMCID: PMC11362086 DOI: 10.3389/fmicb.2024.1423245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Hadal zones account for the deepest 45% of the oceanic depth range and play an important role in ocean biogeochemical cycles. As the least-explored aquatic habitat on earth, hadal ecosystems contain a vast diversity of so far uncultured microorganisms that cannot be grown on conventional laboratory culture media. Therefore, it has been difficult to gain a true understanding of the detailed metabolic characteristics and ecological functions of those difficult-to-culture microorganisms in hadal environments. In this study, a novel anaerobic bacterial strain, MT110T, was isolated from a hadal sediment-water interface sample of the Mariana Trench at 10,890 m. The level of 16S rRNA gene sequence similarity and percentage of conserved proteins between strain MT110T and the closest relatives, Anaerovorax odorimutans DSM 5092T (94.9 and 46.6%) and Aminipila butyrica DSM 103574T (94.4 and 46.7%), indicated that strain MT110T exhibits sufficient molecular differences for genus-level delineation. Phylogenetic analyses based on both 16S rRNA gene and genome sequences showed that strain MT110T formed an independent monophyletic branch within the family Anaerovoracaceae. The combined evidence showed that strain MT110T represents a novel species of a novel genus, proposed as Anoxybacterium hadale gen. nov. sp. nov. (type strain MT110T = KCTC 15922T = MCCC 1K04061T), which represents a previously uncultured lineage of the class Clostridia. Physiologically, no tested organic matter could be used as sole carbon source by strain MT110T. Genomic analysis showed that MT110T had the potential capacity of utilizing various carbon sources, but the pathways of sulfur reduction were largely incomplete. Our experiments further revealed that cysteine is one of the essential nutrients for the survival of strain MT110T, and cannot be replaced by sulfite, leucine, or taurine. This result suggests that organic sulfur compounds might play an important role in metabolism and growth of the family Anaerovoracaceae and could be one of the key factors affecting the cultivation of the uncultured microbes. Our study brings a new perspective to the role of dissolved organic sulfur in hadal ecosystems and also provides valuable information for optimizing the conditions of isolating related microbial taxa from the hadal environment.
Collapse
Affiliation(s)
- Junwei Cao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Baoying Shao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jing Lin
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jie Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Yiran Cui
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jiahua Wang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
2
|
Chen Z, Ding Q, Ning X, Song Z, Gu J, Wang X, Sun W, Qian X, Hu T, Wei S, Xu L, Li Y, Zhou Z, Wei Y. Fe-Mn binary oxides improve the methanogenic performance and reduce the environmental health risks associated with antibiotic resistance genes during anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133921. [PMID: 38452670 DOI: 10.1016/j.jhazmat.2024.133921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Increasing evidence indicates that metal oxides can improve the methanogenic performance during anaerobic digestion (AD) of piggery wastewater. However, the impacts of composite metal oxides on the methanogenic performance and risk of antibiotic resistance gene (ARG) transmission during AD are not fully understood. In this study, different concentrations of Fe-Mn binary oxides (FMBO at 0, 250, 500, and 1000 mg/L) were added to AD to explore the effects of FMBO on the process. The methane yield was 7825.1 mL under FMBO at 250 mg/L, 35.2% higher than that with FMBO at 0 mg/L. PICRUSt2 functional predictions showed that FMBO promoted the oxidation of acetate and propionate, and the production of methane from the substrate, as well as increasing the abundances of most methanogens and genes encoding related enzymes. Furthermore, under FMBO at 250 mg/L, the relative abundances of 14 ARGs (excluding tetC and sul2) and four mobile gene elements (MGEs) decreased by 24.7% and 55.8%, respectively. Most of the changes in the abundances of ARGs were explained by microorganisms, especially Bacteroidetes (51.20%), followed by MGEs (11.98%). Thus, the methanogenic performance of AD improved and the risk of horizontal ARG transfer decreased with FMBO, especially at 250 mg/L.
Collapse
Affiliation(s)
- Zhihui Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing Ning
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shumei Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuexuan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhipeng Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Park S, Cho K, Lee T, Lee E, Bae H. Improved insights into the adaptation and selection of Nitrosomonas spp. for partial nitritation under saline conditions based on specific oxygen uptake rates and next generation sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153644. [PMID: 35122854 DOI: 10.1016/j.scitotenv.2022.153644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/22/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Partial nitritation (PN) is a bioprocess that is essential for developing cost-effective biological nitrogen removal processes. Understanding the abundant bacterial communities responsible for nitrification under salt stress conditions is important to achieve a stable PN system for treating saline wastewater. Therefore, in this study, we identified the core nitrifying communities and investigated their correlations with the process parameters in a nitrifying bioreactor that was used for treating saline high-strength ammonia wastewater. A PN system worked efficiently under saline conditions with varying operational factors, such as temperature, dissolved oxygen (DO), and alkalinity. Interestingly, the specific oxygen uptake rate (SOUR) became similar under salt-free and saline media after the salt adaption. Next generation sequencing results suggested that the inactivation of Nitrobacter winogradskyi was a key factor for the PN reaction under salt stress conditions. We also found that Nitrosomonas europaea, a freshwater type ammonia-oxidizing bacteria (AOB), was predominantly found under both salt-free and saline conditions, whereas other halotolerant or halophilic AOB species, including Nitrosomonas nitrosa and Nitrosomonas mobilis, became selectively abundant under saline conditions. This implies that adaptation (training of N. europaea) and selection (presence of N. nitrosa and N. mobilis) were simultaneously attributed to selective ammonia conversion for the PN reaction. The redundancy analysis showed that the salinity and ammonia loading rates were statistically significant process parameters that determined the nitrifying bacterial community, suggesting that these parameters drive the adaptation and selection of the core AOB species during the PN reaction. Furthermore, the correlation analysis revealed that the abundance of N. nitrosa and N. mobilis was critically correlated with the specific oxygen uptake rates in saline media containing ammonia.
Collapse
Affiliation(s)
- Suin Park
- Department of Civil and Environmental Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| | - Kyungjin Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| | - Eunsu Lee
- R&D Center, POSCO E&C, 241, Incheon tower-daero, Yeonsu-gu, Incheon 22009, Republic of Korea.
| | - Hyokwan Bae
- Department of Civil and Environmental Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
4
|
Santos VHJMD, Engelmann PDM, Marconatto L, Borge LGDA, Palhano PDL, Augustin AH, Rodrigues LF, Ketzer JMM, Giongo A. Exploratory analysis of the microbial community profile of the municipal solid waste leachate treatment system: A case study. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 141:125-135. [PMID: 35114563 DOI: 10.1016/j.wasman.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/11/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Studies on the degradation dynamics of landfill leachate indicate that the microbial community profile is a valuable and sensitive tool for landfill monitoring programs. Although knowledge about the microbial community can improve the efficiency of leachate treatment systems, little is known about the microbial profile changes that occur throughout the leachate attenuation process. In the present work, an exploratory analysis of the microbial community profile of the MSW leachate treatment system in the municipality of Osório (Brazil) was conducted. In this way, a comprehensive analysis of chemical parameters, isotopic signature and microbial profile data were applied to monitor the changes in the structure of the microbial community throughout the leachate attenuation process and to describe the relationship between the microbial community structure and the attenuation of chemical and isotopic parameters. From data analysis, it was possible to assess the microbial community structure and relate it to the attenuation of chemical and isotopic parameters. Based on massive parallel 16S rRNA gene sequencing, it was possible to observe that each leachate treatment unit has a specific microbial consortium, reflecting the adaptation of different microorganisms to changes in leachate characteristics throughout treatment. From our results, we concluded that the structure of the microbial community is sensitive to the leachate composition and can be applied to study the municipal solid waste management system.
Collapse
Affiliation(s)
- Victor Hugo Jacks Mendes Dos Santos
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul, PUCRS, Materials Engineering and Technology Graduate Program, 6681 Ipiranga Avenue, Building 32, 90619-900 Porto Alegre, Brazil.
| | - Pâmela de Medeiros Engelmann
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul, PUCRS, Materials Engineering and Technology Graduate Program, 6681 Ipiranga Avenue, Building 32, 90619-900 Porto Alegre, Brazil.
| | - Letícia Marconatto
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Luiz Gustavo Dos Anjos Borge
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Pâmela de Lara Palhano
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Adolpho Herbert Augustin
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Luiz Frederico Rodrigues
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - João Marcelo Medina Ketzer
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil; Linnaeus University, Department of Biology and Environmental Sciences, 391 82 Kalmar, Sweden
| | - Adriana Giongo
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil; Regional University of Blumenau, Environmental Engineering Graduate Program, Blumenau, Brazil.
| |
Collapse
|
5
|
Saeedi A, Cummings NJ, McLean D, Connerton IF, Connerton PL. Venatorbacter cucullus gen. nov sp. nov a novel bacterial predator. Sci Rep 2021; 11:21393. [PMID: 34725408 PMCID: PMC8560859 DOI: 10.1038/s41598-021-00865-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
A novel Gram-stain negative, aerobic, halotolerant, motile, rod-shaped, predatory bacterium ASxL5T, was isolated from a bovine slurry tank in Nottinghamshire, UK using Campylobacter hyointestinalis as prey. Other Campylobacter species and members of the Enterobacteriaceae were subsequently found to serve as prey. Weak axenic growth on Brain Heart Infusion agar was achieved upon subculture without host cells. The optimal growth conditions were 37 °C, at pH 7. Transmission electron microscopy revealed some highly unusual morphological characteristics related to prey availability. Phylogenetic analyses using 16S rRNA gene sequences showed that the isolate was related to members of the Oceanospirillaceae family but could not be classified clearly as a member of any known genus. Whole genome sequencing of ASxL5T confirmed the relationship to members the Oceanospirillaceae. Database searches revealed that several ASxL5T share 16S rRNA gene sequences with several uncultured bacteria from marine, and terrestrial surface and subsurface water. We propose that strain ASxL5T represents a novel species in a new genus. We propose the name Venatorbacter cucullus gen. nov., sp. nov. with ASxL5T as the type strain.
Collapse
Affiliation(s)
- Ahmed Saeedi
- grid.4563.40000 0004 1936 8868Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Nicola J. Cummings
- grid.4563.40000 0004 1936 8868Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Denise McLean
- grid.4563.40000 0004 1936 8868Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, NG7 2RD UK
| | - Ian F. Connerton
- grid.4563.40000 0004 1936 8868Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Phillippa L. Connerton
- grid.4563.40000 0004 1936 8868Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| |
Collapse
|
6
|
Khomyakova MA, Merkel AY, Slobodkin AI. Perlabentimonas gracilis gen. nov., sp. nov., a gliding aerotolerant anaerobe of the order Bacteroidales, isolated from a terrestrial mud volcano. Syst Appl Microbiol 2021; 44:126245. [PMID: 34392063 DOI: 10.1016/j.syapm.2021.126245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 11/15/2022]
Abstract
A novel anaerobic bacterium (strain M08_MBT) was isolated from a terrestrial mud volcano (Taman Peninsula, Russia). Gram-stain-negative cells were straight and slender rods with gliding motility, occasionally forming long filaments. The isolate was mesophilic, slightly halo- and alkaliphilic chemoorganoheterotroph, growing on carbohydrates (starch, dextrin, pectin, glucose, fructose, mannose, maltose, trehalose, lactose, sucrose) and proteinaceous compounds (peptone, tryptone, gelatin, casein and albumin). Strain M08_MBT tolerated 3% oxygen in the gas phase while catalase negative. The dominant cellular fatty acids of strain M08_MBT were C15:0, C15:1 and C13:0 acids. 16S rRNA gene sequence analysis revealed that strain M08_MBT belongs to the order Bacteroidales and only distantly related to other cultivated members of this order (85.12-90.01% 16S rRNA gene similarity). The genome of strain M08_MBT had a size of 4.37 Mb with a DNA G + C content of 43.5 mol% (WGS). The genes involved in gliding motility, proteolysis, central carbon metabolism, and oxygen tolerance were listed in genome annotation. Based on the phenotypic and genotypic characteristics, strain M08_MBT represents a novel species of a novel genus within family Tenuifilaceae, with proposed name Perlabentimonas gracilis gen. nov., sp. nov. The type strain is M08_ MBT (=DSM 110720 T = VKM B-3471 T). This is the first representative of Bacteroidales isolated in pure culture from a mud volcano.
Collapse
Affiliation(s)
- M A Khomyakova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, 119071 Moscow, Russia.
| | - A Y Merkel
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, 119071 Moscow, Russia
| | - A I Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, 119071 Moscow, Russia
| |
Collapse
|
7
|
Comparative analysis of bacterial community and functional species in oil reservoirs with different in situ temperatures. Int Microbiol 2020; 23:557-563. [PMID: 32337649 DOI: 10.1007/s10123-020-00125-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
Temperature is supposed to be one of the primary drivers for the bacterial diversification as well as hydrocarbon formation process of oil reservoirs. However, the bacterial community compositions are not systematically elucidated in oil reservoirs with different temperatures. Herein, the diversity of indigenous bacteria and the functional species in the water samples from oil reservoirs with different in situ temperatures was investigated by high-throughput sequencing technology. The results showed that samples in the high (65 °C) and super high (80 °C) temperature oil reservoir had significantly high bacterial richness, even more than twice as much as moderate temperature (36 °C) ones, which showed relatively high bacterial diversity. Meanwhile, the bacterial compositions were almost similar in the high temperature oil reservoirs but there were different relative abundances of the bacterial communities. Phylogenetic analysis revealed that indigenous bacteria fell into 20 phylotypes in which Proteobacteria were the principal phylum in all of samples. At the genus level, 10 out of 22 major genera displayed statistically significant differences. Among of them, Pseudomonas was extremely dominant in all of samples, while Halomonas, Caldicoprobacter, Arcobacter, and Marinobacter tended to be enriched in the high temperature oil reservoirs. Moreover, the abundance of bacterial populations exhibited important distinction in oil reservoir such as hydrocarbon-oxidizing, fermentative, nitrate-reducing, sulfate-reducing, and methanogenic bacteria. Those bacteria were strongly correlated to in situ temperature variation.
Collapse
|
8
|
Zhang F, Zhang W, Qian DK, Dai K, van Loosdrecht MCM, Zeng RJ. Synergetic alginate conversion by a microbial consortium of hydrolytic bacteria and methanogens. WATER RESEARCH 2019; 163:114892. [PMID: 31351355 DOI: 10.1016/j.watres.2019.114892] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/30/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Sludge, of which alginate-like biomaterial is a major organic component, is an increasing environmental problem. Thus, efficient anaerobic degradation of alginate provides a new method for sludge utilization. In this study, anaerobic alginate hydrolytic bacteria (AHB) were proposed to enrich with methanogens synergetically to reduce the inhibition of intermediate metabolites. The COD of produced methane reached 80.7 ± 1.9% (n = 4) of initial alginate COD. After considering the microbial growth (8%-18% of COD), a good COD balance indicated that alginate was fully consumed and the main final metabolites were methane and CO2. Methanogenesis could promote alginate conversion by AHB. The enriched bacteria for alginate degradation in this study were different from that of former known AHB. The metabolic pathway of alginate degradation was revealed by metagenomics, in which oligo-alginate lyase was detected in twelve bacteria, and typical carbon metabolic pathways to convert alginate to methane were identified. More studies of bacterial isolation and biofuel production are still needed in the future.
Collapse
Affiliation(s)
- Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wei Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Ding-Kang Qian
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628, BC, Delft, the Netherlands
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
9
|
Costa AM, da Costa E Silva CAM, Alves Daflon SD, Quintaes BR, Ferreira JA, Campos JC. Evaluation of toxic potential of leachate originating from experimental landfill cells containing household waste and healthcare waste. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2019; 37:1003-1011. [PMID: 31023151 DOI: 10.1177/0734242x19843159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two experimental cells with household solid waste and healthcare solid waste were monitored in order to evaluate the pollution potential, and its toxicity effects corresponding to the chemical substances present in the leachates generated, correlating the physico-chemical composition with the ecotoxicity results (organisms Aliivibrio fischeri and Danio rerio). From the statistical evaluation of the physico-chemical analysis results, leachate generated in the household solid waste cell presented greater or equal values than to the healthcare solid waste cell, except for the turbidity parameter. The ecotoxicity results showed the same behaviour as that obtained with the physico-chemical analysis. A significant positive correlation was verified between chemical oxygen demand, alkalinity and ammonia nitrogen parameters with the leachate toxicity. This study concluded that healthcare solid waste presented less or equal polluting potential compared with household solid waste, and the co-disposal can be considered a viable alternative in sanitary landfills.
Collapse
Affiliation(s)
- Alyne Moraes Costa
- Federal University of Rio de Janeiro, School of Chemistry, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Insights into the microbial community structure of anaerobic digestion of municipal solid waste landfill leachate for methane production by adaptive thermophilic granular sludge. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
11
|
Nakahara N, Nobu MK, Takaki Y, Miyazaki M, Tasumi E, Sakai S, Ogawara M, Yoshida N, Tamaki H, Yamanaka Y, Katayama A, Yamaguchi T, Takai K, Imachi H. Aggregatilinea lenta gen. nov., sp. nov., a slow-growing, facultatively anaerobic bacterium isolated from subseafloor sediment, and proposal of the new order Aggregatilineales ord. nov. within the class Anaerolineae of the phylum Chloroflexi. Int J Syst Evol Microbiol 2019; 69:1185-1194. [PMID: 30775966 DOI: 10.1099/ijsem.0.003291] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel slow-growing, facultatively anaerobic, filamentous bacterium, strain MO-CFX2T, was isolated from a methanogenic microbial community in a continuous-flow bioreactor that was established from subseafloor sediment collected off the Shimokita Peninsula of Japan. Cells were multicellular filamentous, non-motile and Gram-stain-negative. The filaments were generally more than 20 µm (up to approximately 200 µm) long and 0.5-0.6 µm wide. Cells possessed pili-like structures on the cell surface and a multilayer structure in the cytoplasm. Growth of the strain was observed at 20-37 °C (optimum, 30 °C), pH 5.5-8.0 (pH 6.5-7.0), and 0-30 g l-1 NaCl (5 g l-1 NaCl). Under optimum growth conditions, doubling time and maximum cell density were estimated to be approximately 19 days and ~105 cells ml-1, respectively. Strain MO-CFX2T grew chemoorganotrophically on a limited range of organic substrates in anaerobic conditions. The major cellular fatty acids were saturated C16 : 0 (47.9 %) and C18 : 0 (36.9 %), and unsaturated C18 : 1ω9c (6.0 %) and C16 : 1ω7 (5.1 %). The G+C content of genomic DNA was 63.2 mol%. 16S rRNA gene-based phylogenetic analysis showed that strain MO-CFX2T shares a notably low sequence identity with its closest relatives, which were Thermanaerothrix daxensis GNS-1T and Thermomarinilinea lacunifontana SW7T (both 85.8 % sequence identity). Based on these phenotypic and genomic properties, we propose the name Aggregatilinea lenta gen. nov., sp. nov. for strain MO-CFX2T (=KCTC 15625T, =JCM 32065T). In addition, we also propose the associated family and order as Aggregatilineaceae fam. nov. and Aggregatilineales ord. nov., respectively.
Collapse
Affiliation(s)
- Nozomi Nakahara
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.,Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan.,Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa 237-0061, Japan
| | - Masayuki Miyazaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Eiji Tasumi
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Sanae Sakai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Miyuki Ogawara
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Naoko Yoshida
- Department of Civil and Environmental Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Yuko Yamanaka
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Arata Katayama
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Takashi Yamaguchi
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Hiroyuki Imachi
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
12
|
Li L, Xue S, Xi J. Anaerobic oxidation of methane coupled to sulfate reduction: Consortium characteristics and application in co-removal of H 2S and methane. J Environ Sci (China) 2019; 76:238-248. [PMID: 30528014 DOI: 10.1016/j.jes.2018.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 06/09/2023]
Abstract
Anaerobic sludge from a sewage treatment plant was used to acclimatize microbial colonies capable of anaerobic oxidation of methane (AOM) coupled to sulfate reduction. Clone libraries and fluorescence in situ hybridization were used to investigate the microbial population. Sulfate-reducing bacteria (SRB) (e.g., Desulfotomaculum arcticum and Desulfobulbus propionicus) and anaerobic methanotrophic archaea (ANME) (e.g., Methanosaeta sp. and Methanolinea sp.) coexisted in the enrichment. The archaeal and bacterial cells were randomly or evenly distributed throughout the consortia. Accompanied by sulfate reduction, methane was oxidized anaerobically by the consortia of methane-oxidizing archaea and SRB. Moreover, CH4 and SO42- were consumed by methanotrophs and sulfate reducers with CO2 and H2S as products. The H3CSH produced by methanotrophy was an intermediate product during the process. The methanotrophic enrichment was inoculated in a down-flow biofilter for the treatment of methane and H2S from a landfill site. On average, 93.33% of H2S and 10.71% of methane was successfully reduced in the biofilter. This study tries to provide effective method for the synergistic treatment of waste gas containing sulfur compounds and CH4.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Song Xue
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jingru Xi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
13
|
Staley BF, de los Reyes FL, Wang L, Barlaz MA. Microbial ecological succession during municipal solid waste decomposition. Appl Microbiol Biotechnol 2018; 102:5731-5740. [DOI: 10.1007/s00253-018-9014-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/26/2018] [Accepted: 04/05/2018] [Indexed: 11/29/2022]
|
14
|
Huang X, Xiong W, Liu W, Guo X. Effect of reclaimed water effluent on bacterial community structure in the Typha angustifolia L. rhizosphere soil of urbanized riverside wetland, China. J Environ Sci (China) 2017; 55:58-68. [PMID: 28477834 DOI: 10.1016/j.jes.2016.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/16/2016] [Accepted: 06/02/2016] [Indexed: 06/07/2023]
Abstract
In order to evaluate the impact of reclaimed water on the ecology of bacterial communities in the Typha angustifolia L. rhizosphere soil, bacterial community structure was investigated using a combination of terminal restriction fragment length polymorphism and 16S rRNA gene clone library. The results revealed significant spatial variation of bacterial communities along the river from upstream and downstream. For example, a higher relative abundance of γ-Proteobacteria, Firmicutes, Chloroflexi and a lower proportion of β-Proteobacteria and ε-Proteobacteria was detected at the downstream site compared to the upstream site. Additionally, with an increase of the reclaimed water interference intensity, the rhizosphere bacterial community showed a decrease in taxon richness, evenness and diversity. The relative abundance of bacteria closely related to the resistant of heavy-metal was markedly increased, while the bacteria related for carbon/nitrogen/phosphorus/sulfur cycling wasn't strikingly changed. Besides that, the pathogenic bacteria markedly increased in the downstream rhizosphere soil since reclaimed water supplement, while the possible plant growth-promoting rhizobacteria obviously reduced in the downstream sediment. Together these data suggest cause and effect between reclaimed water input into the wetland, shift in bacterial communities through habitat change, and alteration of capacity for biogeochemical cycling of contaminants.
Collapse
Affiliation(s)
- Xingru Huang
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China; Beijing Municipal Key Laboratory of Resources Environment and GIS, Beijing 100048, China.
| | - Wei Xiong
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei Liu
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China; Beijing Municipal Key Laboratory of Resources Environment and GIS, Beijing 100048, China
| | - Xiaoyu Guo
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China; Beijing Municipal Key Laboratory of Resources Environment and GIS, Beijing 100048, China; Urban Environmental Processes and Digital Modeling Laboratory, Beijing 100048, China.
| |
Collapse
|
15
|
Westerholm M, Crauwels S, Houtmeyers S, Meerbergen K, Van Geel M, Lievens B, Appels L. Microbial community dynamics linked to enhanced substrate availability and biogas production of electrokinetically pre-treated waste activated sludge. BIORESOURCE TECHNOLOGY 2016; 218:761-770. [PMID: 27423543 DOI: 10.1016/j.biortech.2016.07.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
The restricted hydrolytic degradation rate of complex organic matter presents a considerable challenge in anaerobic digestion of waste activated sludge (WAS). Within this context, application of pre-treatment of digester substrate has potential for improved waste management and enhanced biogas production. Anaerobic degradation of untreated or electrokinetically pre-treated WAS was performed in two pilot-scale digesters for 132days. WAS electrokinetically pre-treated with energy input 0.066kJ/kg sludge was used in a first phase of operation and WAS pre-treated with energy input 0.091kJ/kg sludge was used in a second phase (each phase lasted at least three hydraulic retention times). Substrate characteristics before and after pre-treatment and effects on biogas digester performance were comprehensively analysed. To gain insights into influences of altered substrate characteristics on microbial communities, the dynamics within the bacterial and archaeal communities in the two digesters were investigated using 16S rRNA gene sequencing (pyrosequencing) and quantitative PCR (qPCR). Specific primers targeting dominant operation taxonomic units (OTUs) and members of the candidate phylum Cloacimonetes were designed to further evaluate their abundance and dynamics in the digesters. Electrokinetic pre-treatment significantly improved chemical oxygen demand (COD) and carbohydrate solubility and increased biogas production by 10-11% compared with untreated sludge. Compositional similarity of the bacterial community during initial operation and diversification during later operation indicated gradual adaptation of the community to the higher solubility of organic material in the pre-treated substrate. Further analyses revealed positive correlations between gene abundance of dominant OTUs related to Clostridia and Cloacimonetes and increased substrate availability and biogas production. Among the methanogens, the genus Methanosaeta dominated in both digesters. Overall, the results showed that electrokinetic pre-treatment of WAS increases substrate solubility and biogas production. Changes in bacterial community composition and abundances of dominant bacterial OTUs were observed during anaerobic degradation of pre-treated WAS, whereas the relative abundance of methanogenic community members remained stable.
Collapse
Affiliation(s)
- Maria Westerholm
- KU Leuven, Department of Chemical Engineering, Technology Campus De Nayer, Process and Environmental Technology Lab, J. De Nayerlaan 5, B-2860 Sint-Katelijne Waver, Belgium
| | - Sam Crauwels
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Technology Campus De Nayer, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Fortsesteenweg 30A, B-2860 Sint-Katelijne Waver, Belgium
| | - Sofie Houtmeyers
- KU Leuven, Department of Chemical Engineering, Technology Campus De Nayer, Process and Environmental Technology Lab, J. De Nayerlaan 5, B-2860 Sint-Katelijne Waver, Belgium
| | - Ken Meerbergen
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Technology Campus De Nayer, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Fortsesteenweg 30A, B-2860 Sint-Katelijne Waver, Belgium
| | - Maarten Van Geel
- KU Leuven, Department of Biology, Plant Conservation and Population Biology, Kasteelpark Arenberg 31, B-3001 Heverlee, Belgium
| | - Bart Lievens
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Technology Campus De Nayer, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Fortsesteenweg 30A, B-2860 Sint-Katelijne Waver, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Technology Campus De Nayer, Process and Environmental Technology Lab, J. De Nayerlaan 5, B-2860 Sint-Katelijne Waver, Belgium.
| |
Collapse
|
16
|
16S rRNA gene-based comprehensive analysis of microbial community compositions in a full-scale leachate treatment system. J Biosci Bioeng 2016; 122:708-715. [PMID: 27594512 DOI: 10.1016/j.jbiosc.2016.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/16/2016] [Accepted: 06/07/2016] [Indexed: 11/20/2022]
Abstract
In this study, we performed a comprehensive analysis of microbial community compositions in leachate and leachate treatment system (14 processes) during dry and rainy seasons (from February to September and from October to January, respectively), at Khanh Son landfill site, Danang City, Vietnam. In this study, raw leachate in dry and rainy seasons was predominated by Arcobacter, Clostridia, Thermotogales, Methanobacteriaceae, and Methanosaeta. During the two seasons, the system had different microbial community compositions. Orders Methanobacteriales, Clostridiales, MBA08 (order-level clone cluster), and Thermotogales predominated the influent, anaerobic pond, and anoxic pond during the dry season, while Campylobacterales and Pseudomonadales orders were predominant in the anaerobic/anoxic systems during the rainy season. In the facultative pond, aerated ponds, sediment tanks, and polishing ponds, predominant orders during the dry season included Actinomycetales, "Saprospirales", Flavobacteriales, Rhizobiales, Rhodospirillales, Burkholderiales, and Alteromonadales; during the rainy season: Sphingobacteriales, Rickettsiales, Sphingomonadales, and Pseudomonadales. In the final post treatment (polishing ponds with vegetation), significant removal of organic matter, total nitrogen, and colour occurred, while nitrogen-fixing and root-associated or related organisms predominated. This suggested that the vegetation in the ponds was essential to achieve the sufficient leachate treatment.
Collapse
|
17
|
Regueiro L, Carballa M, Lema JM. Microbiome response to controlled shifts in ammonium and LCFA levels in co-digestion systems. J Biotechnol 2016; 220:35-44. [PMID: 26778540 DOI: 10.1016/j.jbiotec.2016.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/27/2015] [Accepted: 01/11/2016] [Indexed: 02/04/2023]
Abstract
Anaerobic co-digestion using protein-rich and lipid-rich co-substrates is limited by the accumulation of ammonia and long chain fatty acids (LCFAs), which are important inhibitors of the anaerobic microorganisms. This work aimed to study the microbial community dynamics during gradual and abrupt increase in ammonium and LCFAs concentrations by applying several molecular techniques, as well as during gradual decrease. For this purpose, two anaerobic reactors co-digesting three agro-industrial wastes underwent abrupt and gradual changes of ammonium and LCFAs concentrations. Both variations provoked volatile fatty acids (VFAs) accumulation, mainly acetic acid up to 4.5gL(-1). High ammonium levels were correlated to an increase in Pseudomonadaceae, Carnobacteriaceae and Clostridiadaceae families and to a drop in Syntrophomonadaceae. However, high LCFA levels provoked an increase in the Anaerobaculaceae and Peptococcaceae families. Both perturbations resulted in greater variations in the archaeal domain, going from Methanosaeta dominance in steady state to hydrogenotrophic pathway during the disturbance periods. During the abrupt changes, Bacteria domain experienced a minimal change, which indicates the adaptation bacterial populations to high ammonium and LCFAs levels. Species belonging to Porphyromonadaceae and Tissierellaceae families linked to VFAs consumption rose their presence during the recovery period. This study identifies a subset of microbial communities linked to high ammonia and LCFA concentrations, useful for optimizing the high-rate co-digestion processes dealing with lipid and protein-rich co-substrates.
Collapse
Affiliation(s)
- Leticia Regueiro
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, Rúa Lope Gómez de Marzoa s/n, 15782 Santiago de Compostela, Spain.
| | - Marta Carballa
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, Rúa Lope Gómez de Marzoa s/n, 15782 Santiago de Compostela, Spain.
| | - Juan M Lema
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, Rúa Lope Gómez de Marzoa s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
18
|
Mahmoud M, Parameswaran P, Torres CI, Rittmann BE. Relieving the fermentation inhibition enables high electron recovery from landfill leachate in a microbial electrolysis cell. RSC Adv 2016. [DOI: 10.1039/c5ra25918e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The energy value of the organic matter in landfill leachate can be captured with a microbial electrolysis cell (MEC), which oxidizes organic compounds at an anode and generates H2gas at a cathode.
Collapse
Affiliation(s)
- Mohamed Mahmoud
- Swette Center for Environmental Biotechnology
- The Biodesign Institute at Arizona State University
- Tempe
- USA
| | - Prathap Parameswaran
- Swette Center for Environmental Biotechnology
- The Biodesign Institute at Arizona State University
- Tempe
- USA
- Department of Civil Engineering
| | - César I. Torres
- Swette Center for Environmental Biotechnology
- The Biodesign Institute at Arizona State University
- Tempe
- USA
| | - Bruce E. Rittmann
- Swette Center for Environmental Biotechnology
- The Biodesign Institute at Arizona State University
- Tempe
- USA
| |
Collapse
|
19
|
Troshina O, Oshurkova V, Suzina N, Machulin A, Ariskina E, Vinokurova N, Kopitsyn D, Novikov A, Shcherbakova V. Sphaerochaeta associata sp. nov., a spherical spirochaete isolated from cultures of Methanosarcina mazei JL01. Int J Syst Evol Microbiol 2015; 65:4315-4322. [DOI: 10.1099/ijsem.0.000575] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An anaerobic, saccharolytic bacterial strain designated GLS2T was isolated from aggregates of the psychrotolerant archaeon Methanosarcina mazei strain JL01 isolated from arctic permafrost. Bacterial cells were non-motile, spherical, ovoid and annular with diameter 0.2–4 μm. They were chemoorganoheterotrophs using a wide range of mono-, di- and trisaccharides as carbon and energy sources. The novel isolate required yeast extract and vitamins for growth. The bacteria exhibited resistance to a number of β-lactam antibiotics, rifampicin, streptomycin and vancomycin. Optimum growth was observed between 30 and 34 °C, at pH 6.8–7.5 and with 1–2 g NaCl l− 1. Isolate GLS2T was a strict anaerobe but it tolerated oxygen exposure. On the basis of 16S rRNA gene sequence similarity, strain GLS2T was shown to belong to the genus Sphaerochaeta within the family Spirochaetaceae. Its closest relatives were Sphaerochaeta globosa BuddyT (99.3 % 16S rRNA gene sequence similarity) and Sphaerochaeta pleomorpha GrapesT (95.4 % similarity). The G+C content of DNA was 47.2 mol%. The level of DNA–DNA hybridization between strains GLS2T and BuddyT was 34.7 ± 8.8 %. Major polar lipids were phosphoglycolipids, phospholipids and glycolipids; major fatty acids were C14 : 0, C16 : 0, C16 : 0 3-OH, C16 : 0 dimethyl acetal (DMA), C16 : 1n8 and C16 : 1 DMA; respiratory quinones were not detected. The results of DNA–DNA hybridization, physiological and biochemical tests demonstrated genotypic and phenotypic differentiation of strain GLS2T from the four species of the genus Sphaerochaeta with validly published names that allowed its separation into a new lineage at the species level. Strain GLS2T therefore represents a novel species, for which the name Sphaerochaeta associata sp. nov. is proposed, with the type strain GLS2T ( = DSM 26261T = VKM B-2742T).
Collapse
Affiliation(s)
- Olga Troshina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region 142290, Russia
| | - Viktoria Oshurkova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region 142290, Russia
| | - Natalia Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region 142290, Russia
| | - Andrei Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region 142290, Russia
| | - Elena Ariskina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region 142290, Russia
| | - Natalia Vinokurova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region 142290, Russia
| | - Dmitry Kopitsyn
- Gubkin Russian State University of Oil and Gas, Leninskiy Prospect 65-1, 119991 Moscow, Russia
| | - Andrei Novikov
- Gubkin Russian State University of Oil and Gas, Leninskiy Prospect 65-1, 119991 Moscow, Russia
| | - Viktoria Shcherbakova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
20
|
Monophyletic group of unclassified γ- Proteobacteria dominates in mixed culture biofilm of high-performing oxygen reducing biocathode. Bioelectrochemistry 2015; 106:167-76. [DOI: 10.1016/j.bioelechem.2015.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/01/2015] [Accepted: 04/05/2015] [Indexed: 12/31/2022]
|
21
|
Perspective of harnessing energy from landfill leachate via microbial fuel cells: novel biofuels and electrogenic physiologies. Appl Microbiol Biotechnol 2015; 99:7827-36. [DOI: 10.1007/s00253-015-6857-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 10/23/2022]
|
22
|
Phylogeny and physiology of candidate phylum 'Atribacteria' (OP9/JS1) inferred from cultivation-independent genomics. ISME JOURNAL 2015; 10:273-86. [PMID: 26090992 DOI: 10.1038/ismej.2015.97] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/09/2015] [Accepted: 05/08/2015] [Indexed: 12/31/2022]
Abstract
The 'Atribacteria' is a candidate phylum in the Bacteria recently proposed to include members of the OP9 and JS1 lineages. OP9 and JS1 are globally distributed, and in some cases abundant, in anaerobic marine sediments, geothermal environments, anaerobic digesters and reactors and petroleum reservoirs. However, the monophyly of OP9 and JS1 has been questioned and their physiology and ecology remain largely enigmatic due to a lack of cultivated representatives. Here cultivation-independent genomic approaches were used to provide a first comprehensive view of the phylogeny, conserved genomic features and metabolic potential of members of this ubiquitous candidate phylum. Previously available and heretofore unpublished OP9 and JS1 single-cell genomic data sets were used as recruitment platforms for the reconstruction of atribacterial metagenome bins from a terephthalate-degrading reactor biofilm and from the monimolimnion of meromictic Sakinaw Lake. The single-cell genomes and metagenome bins together comprise six species- to genus-level groups that represent most major lineages within OP9 and JS1. Phylogenomic analyses of these combined data sets confirmed the monophyly of the 'Atribacteria' inclusive of OP9 and JS1. Additional conserved features within the 'Atribacteria' were identified, including a gene cluster encoding putative bacterial microcompartments that may be involved in aldehyde and sugar metabolism, energy conservation and carbon storage. Comparative analysis of the metabolic potential inferred from these data sets revealed that members of the 'Atribacteria' are likely to be heterotrophic anaerobes that lack respiratory capacity, with some lineages predicted to specialize in either primary fermentation of carbohydrates or secondary fermentation of organic acids, such as propionate.
Collapse
|
23
|
Analysis of microbial community structure and composition in leachates from a young landfill by 454 pyrosequencing. Appl Microbiol Biotechnol 2015; 99:5657-68. [DOI: 10.1007/s00253-015-6409-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 10/24/2022]
|
24
|
Miyazaki M, Sakai S, Ritalahti KM, Saito Y, Yamanaka Y, Saito Y, Tame A, Uematsu K, Löffler FE, Takai K, Imachi H. Sphaerochaeta multiformis sp. nov., an anaerobic, psychrophilic bacterium isolated from subseafloor sediment, and emended description of the genus Sphaerochaeta. Int J Syst Evol Microbiol 2014; 64:4147-4154. [PMID: 25249566 DOI: 10.1099/ijs.0.068148-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An anaerobic, psychrophilic bacterium, strain MO-SPC2(T), was isolated from a methanogenic microbial community in a continuous-flow bioreactor that was established from subseafloor sediments collected from off the Shimokita Peninsula of Japan in the north-western Pacific Ocean. Cells were pleomorphic: spherical, annular, curved rod, helical and coccoid cell morphologies were observed. Motility only occurred in helical cells. Strain MO-SPC2(T) grew at 0-17 °C (optimally at 9 °C), at pH 6.0-8.0 (optimally at pH 6.8-7.2) and in 20-40 g NaCl l(-1) (optimally at 20-30 NaCl l(-1)). The strain grew chemo-organotrophically with mono-, di- and polysaccharides. The major end products of glucose fermentation were acetate, ethanol, hydrogen and carbon dioxide. The abundant polar lipids of strain MO-SPC2(T) were phosphatidylglycolipids, phospholipids and glycolipids. The major cellular fatty acids were C14 : 0, C16 : 0 and C16 : 1ω9. Isoprenoid quinones were not detected. The G+C content of the DNA was 32.3 mol%. 16S rRNA gene-based phylogenetic analysis showed that strain MO-SPC2(T) was affiliated with the genus Sphaerochaeta within the phylum Spirochaetes, and its closest relatives were Sphaerochaeta pleomorpha Grapes(T) (88.4 % sequence identity), Sphaerochaeta globosa Buddy(T) (86.7 %) and Sphaerochaeta coccoides SPN1(T) (85.4 %). Based on phenotypic characteristics and phylogenetic traits, strain MO-SPC2(T) is considered to represent a novel species of the genus Sphaerochaeta, for which the name Sphaerochaeta multiformis sp. nov. is proposed. The type strain is MO-SPC2(T) ( = JCM 17281(T) = DSM 23952(T)). An emended description of the genus Sphaerochaeta is also proposed.
Collapse
Affiliation(s)
- Masayuki Miyazaki
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Sanae Sakai
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Kirsti M Ritalahti
- Joint Institute for Biological Sciences (JIBS) and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Center for Environmental Biotechnology, Department of Microbiology, Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Yayoi Saito
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.,Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Yuko Yamanaka
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Yumi Saito
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Akihiko Tame
- Section 1 Geochemical Oceanography, Office of Marine Research Department of Marine Science, Marine Works Japan Ltd, Yokosuka, Kanagawa 237-0061, Japan
| | - Katsuyuki Uematsu
- Section 1 Geochemical Oceanography, Office of Marine Research Department of Marine Science, Marine Works Japan Ltd, Yokosuka, Kanagawa 237-0061, Japan
| | - Frank E Löffler
- Joint Institute for Biological Sciences (JIBS) and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Center for Environmental Biotechnology, Department of Microbiology, Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Ken Takai
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Hiroyuki Imachi
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
25
|
Ziganshina EE, Bagmanova AR, Khilyas IV, Ziganshin AM. Assessment of a biogas-generating microbial community in a pilot-scale anaerobic reactor. J Biosci Bioeng 2014; 117:730-6. [DOI: 10.1016/j.jbiosc.2013.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/25/2013] [Accepted: 11/18/2013] [Indexed: 10/25/2022]
|
26
|
Das R, Kazy SK. Microbial diversity, community composition and metabolic potential in hydrocarbon contaminated oily sludge: prospects for in situ bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:7369-89. [PMID: 24682711 DOI: 10.1007/s11356-014-2640-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/10/2014] [Indexed: 05/20/2023]
Abstract
Microbial community composition and metabolic potential have been explored in petroleum-hydrocarbon-contaminated sludge of an oil storage facility. Culture-independent clone library-based 16S rRNA gene analyses revealed that the bacterial community within the sludge was dominated by the members of β-Proteobacteria (35%), followed by Firmicutes (13%), δ-Proteobacteria (11%), Bacteroidetes (10%), Acidobacteria (6%), α-Proteobacteria (3%), Lentisphaerae (2%), Spirochaetes (2%), and unclassified bacteria (5%), whereas the archaeal community was composed of Thermoprotei (54%), Methanocellales (33%), Methanosarcinales/Methanosaeta (8%) and Methanoculleus (1%) members. Methyl coenzyme M reductase A (mcrA) gene (a functional biomarker) analyses also revealed predominance of hydrogenotrophic, methanogenic Archaea (Methanocellales, Methanobacteriales and Methanoculleus members) over acetoclastic methanogens (Methanosarcinales members). In order to explore the cultivable bacterial population, a total of 28 resident strains were identified and characterized in terms of their physiological and metabolic capabilities. Most of these could be taxonomically affiliated to the members of the genera Bacillus, Paenibacillus, Micrococcus, Brachybacterium, Aerococcus, and Zimmermannella, while two strains were identified as Pseudomonas and Pseudoxanthomonas. Metabolic profiling exhibited that majority of these isolates were capable of growing in presence of a variety of petroleum hydrocarbons as sole source of carbon, tolerating different heavy metals at higher concentrations (≥1 mM) and producing biosurfactant during growth. Many strains could grow under a wide range of pH, temperature, or salinity as well as under anaerobic conditions in the presence of different electron acceptors and donors in the growth medium. Correlation between the isolates and their metabolic properties was estimated by the unweighted pair group method with arithmetic mean (UPGMA) analysis. Overall observation indicated the presence of diverse groups of microorganisms including hydrocarbonoclastic, nitrate reducing, sulphate reducing, fermentative, syntrophic, methanogenic and methane-oxidizing bacteria and Archaea within the sludge community, which can be exploited for in situ bioremediation of the oily sludge.
Collapse
Affiliation(s)
- Ranjit Das
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, Durgapur, 713 209, West Bengal, India
| | | |
Collapse
|
27
|
Hao L, Lü F, Wu Q, Shao L, He P. High concentrations of methyl fluoride affect the bacterial community in a thermophilic methanogenic sludge. PLoS One 2014; 9:e92604. [PMID: 24658656 PMCID: PMC3962445 DOI: 10.1371/journal.pone.0092604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/25/2014] [Indexed: 02/01/2023] Open
Abstract
To precisely control the application of methyl fluoride (CH3F) for analysis of methanogenic pathways, the influence of 0–10% CH3F on bacterial and archaeal communities in a thermophilic methanogenic sludge was investigated. The results suggested that CH3F acts specifically on acetoclastic methanogenesis. The inhibitory effect stabilized at an initial concentration of 3–5%, with around 90% of the total methanogenic activity being suppressed, and a characteristic of hydrogenotrophic pathway in isotope fractionation was demonstrated under this condition. However, extended exposure (12 days) to high concentrations of CH3F (>3%) altered the bacterial community structure significantly, resulting in increased diversity and decreased evenness, which can be related to acetate oxidation and CH3F degradation. Bacterial clone library analysis showed that syntrophic acetate oxidizing bacteria Thermacetogenium phaeum were highly enriched under the suppression of 10% CH3F. However, the methanogenic community did not change obviously. Thus, excessive usage of CH3F over the long term can change the composition of the bacterial community. Therefore, data from studies involving the use of CH3F as an acetoclast inhibitor should be interpreted with care. Conversely, CH3F has been suggested as a factor to stimulate the enrichment of syntrophic acetate oxidizing bacteria.
Collapse
Affiliation(s)
- Liping Hao
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, China
- * E-mail: (FL); (PH)
| | - Qing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, China
- Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban-Rural Development of P.R. China (MOHURD), Shanghai, China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, China
- Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban-Rural Development of P.R. China (MOHURD), Shanghai, China
- * E-mail: (FL); (PH)
| |
Collapse
|
28
|
Characterization of microbial communities in heavy crude oil from Saudi Arabia. ANN MICROBIOL 2014; 65:95-104. [PMID: 25705147 PMCID: PMC4331609 DOI: 10.1007/s13213-014-0840-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 02/05/2014] [Indexed: 12/02/2022] Open
Abstract
The complete mineralization of crude oil into carbon dioxide, water, inorganic compounds and cellular constituents can be carried out as part of a bioremediation strategy. This involves the transformation of complex organic contaminants into simpler organic compounds by microbial communities, mainly bacteria. A crude oil sample and an oil sludge sample were obtained from Saudi ARAMCO Oil Company and investigated to identify the microbial communities present using PCR-based culture-independent techniques. In total, analysis of 177 clones yielded 30 distinct bacterial sequences. Clone library analysis of the oil sample was found to contain Bacillus, Clostridia and Gammaproteobacteria species while the sludge sample revealed the presence of members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Clostridia, Spingobacteria and Flavobacteria. The dominant bacterial class identified in oil and sludge samples was found to be Bacilli and Flavobacteria, respectively. Phylogenetic analysis showed that the dominant bacterium in the oil sample has the closest sequence identity to Enterococcus aquimarinus and the dominant bacterium in the sludge sample is most closely related to the uncultured Bacteroidetes bacterium designated AH.KK.
Collapse
|
29
|
Kobayashi T, Tang Y, Urakami T, Morimura S, Kida K. Digestion performance and microbial community in full-scale methane fermentation of stillage from sweet potato-shochu production. J Environ Sci (China) 2014; 26:423-431. [PMID: 25076534 DOI: 10.1016/s1001-0742(13)60423-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Sweet potato shochu is a traditional Japanese spirit produced mainly in the South Kyushu area in Japan. The amount of stillage reaches approximately 8 x 10(5) tons per year. Wastewater mainly containing stillage from the production of sweet potato-shochu was treated thermophilically in a full-scale treatment plant using fixed-bed reactors (8 reactors x 283 m3). Following the addition of Ni2+ and Co2+, the reactors have been stably operated for six years at a high chemical oxygen demand (COD) loading rate of 14 kg/(m3 x day). Analysis of coenzyme content and microbial communities indicated that similar microbial communities were present in the liquid phase and on the fiber carriers installed in reactors. Bacteria in the phyla Firmicutes as well as Bacteroidetes were dominant bacteria, and Methanosarcina thermophila as well as Methanothermobacter crinale were dominant methanogens in the reactors. This study reveals that stillage from sweet potato-shochu production can be treated effectively in a full-scale fixed-bed reactor under thermophilic conditions with the help of Ni2+ and Co2+. The high diversity of bacterial community and the coexistence of both aceticlastic and hydrogenotrophic methanogens contributed to the excellent fermentation performance.
Collapse
|
30
|
Zhu W, Lu H, Hill J, Guo X, Wang H, Wu W. ¹³C pulse-chase labeling comparative assessment of the active methanogenic archaeal community composition in the transgenic and nontransgenic parental rice rhizospheres. FEMS Microbiol Ecol 2013; 87:746-56. [PMID: 24266498 DOI: 10.1111/1574-6941.12261] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/22/2013] [Accepted: 11/17/2013] [Indexed: 11/27/2022] Open
Abstract
More and more investigations indicate that genetic modification has no significant or persistent effects on microbial community composition in the rice rhizosphere. Very few studies, however, have focused on its impact on functional microorganisms. This study completed a ¹³C-CO₂ pulse-chase labeling experiment comparing the potential effects of cry1Ab gene transformation on ¹³C tissue distribution and rhizosphere methanogenic archaeal community composition with its parental rice variety (Ck) and a distant parental rice variety (Dp). Results showed that ¹³C partitioning in aboveground biomass (mainly in stems) and roots of Dp was significantly lower than that of Ck. However, there were no significant differences in ¹³C partitioning between the Bt transgenic rice line (Bt) and Ck. RNA-stable isotope probing combined with clone library analyses inferred that the group Methanosaetaceae was the predominant methanogenic Archaea in all three rice rhizospheres. The active methanogenic archaeal community in the Bt rhizosphere was dominated by Methanosarcinaceae, Methanosaetaceae, and Methanomicrobiaceae, while there were only two main methanogenic clusters (Methanosaetaceae and Methanomicrobiaceae) in the Ck and Dp rhizospheres. These results indicate that the insertion of cry1Ab gene into the rice genome has the potential to result in the modification of methanogenic community composition in its rhizosphere.
Collapse
Affiliation(s)
- Weijing Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
31
|
Wang C, Guo X, Deng H, Dong D, Tu Q, Wu W. New insights into the structure and dynamics of actinomycetal community during manure composting. Appl Microbiol Biotechnol 2013; 98:3327-37. [DOI: 10.1007/s00253-013-5424-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 10/25/2022]
|
32
|
Liu J, Sun F, Wang L, Ju X, Wu W, Chen Y. Molecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions. Microb Biotechnol 2013; 7:64-76. [PMID: 24245852 PMCID: PMC3896940 DOI: 10.1111/1751-7915.12097] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/07/2013] [Indexed: 11/29/2022] Open
Abstract
Methane can be used as an alternative carbon source in biological denitrification because it is nontoxic, widely available and relatively inexpensive. A microbial consortium involved in methane oxidation coupled to denitrification (MOD) was enriched with nitrite and nitrate as electron acceptors under micro-aerobic conditions. The 16S rRNA gene combined with pmoA phylogeny of methanotrophs and nirK phylogeny of denitrifiers were analysed to reveal the dominant microbial populations and functional microorganisms. Real-time quantitative polymerase chain reaction results showed high numbers of methanotrophs and denitrifiers in the enriched consortium. The 16S rRNA gene clone library revealed that Methylococcaceae and Methylophilaceae were the dominant populations in the MOD ecosystem. Phylogenetic analyses of pmoA gene clone libraries indicated that all methanotrophs belonged to Methylococcaceae, a type I methanotroph employing the ribulose monophosphate pathway for methane oxidation. Methylotrophic denitrifiers of the Methylophilaceae that can utilize organic intermediates (i.e. formaldehyde, citrate and acetate) released from the methanotrophs played a vital role in aerobic denitrification. This study is the first report to confirm micro-aerobic denitrification and to make phylogenetic and functional assignments for some members of the microbial assemblages involved in MOD.
Collapse
Affiliation(s)
- Jingjing Liu
- Institute of Environmental Science and Technology, Zhejiang University, Yuhangtang Road 866#, Hangzhou, 310058, China; Department of Architecture and Resources Engineering, Jiangxi University of Science and Technology Nanchang Compus, Shuanggang East Road 1180#, Nanchang, 310013, China
| | | | | | | | | | | |
Collapse
|
33
|
Wang Y, Liu Q, Yan L, Gao Y, Wang Y, Wang W. A novel lignin degradation bacterial consortium for efficient pulping. BIORESOURCE TECHNOLOGY 2013; 139:113-9. [PMID: 23648760 DOI: 10.1016/j.biortech.2013.04.033] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/08/2013] [Accepted: 04/08/2013] [Indexed: 05/11/2023]
Abstract
A lignin degradation bacterial consortium named LDC was screened from the sludge of a reeds pond by a restricted subculture. It could break down 60.9% lignin in reeds at 30°C under conditions of static culture within 15 days. In order to analyze the diversity of LDC, plate isolation, 16S rDNA clone library and ARDRA (Amplified Ribosomal DNA Restriction Analysis) were performed. Six bacterial strains were isolated from LDC and eighteen DNA phylotypes were identified from 230 bacterial analyzed clones. They were classified into Clostridiales(9.1%), Geovibrio thiophilus (5.1%), Desulfomicrobium (10.9%), Pseudomonas sp. (25.2%), Azoarcus sp. (5.1%), Thauera (5.1%), Paenibacillus sp. (5.1%), Cohnella sp. (2.2%), Acinetobacter sp. (3.1%), Microbacterium (7.8%), and uncultured bacterium (21.3%). In addition, physical characteristics of paper hand-sheets between biological pretreatment and chemical pretreatment were compared. The results showed that LDC had the capability of lignin degradation and was efficient for pulping, which would provide a new choice for biopulping.
Collapse
Affiliation(s)
- Yanxia Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | | | | | | | | | | |
Collapse
|
34
|
Sasaki D, Sasaki K, Watanabe A, Morita M, Matsumoto N, Igarashi Y, Ohmura N. Operation of a cylindrical bioelectrochemical reactor containing carbon fiber fabric for efficient methane fermentation from thickened sewage sludge. BIORESOURCE TECHNOLOGY 2013; 129:366-373. [PMID: 23262013 DOI: 10.1016/j.biortech.2012.11.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 06/01/2023]
Abstract
A bioelectrochemical reactor (BER) containing carbon fiber fabric (CFF) (BER+CFF) enabled efficient methane fermentation from thickened sewage sludge. A cylindrical BER+CFF was proposed and scaled-up to a volume of 4.0-L. Thickened sewage sludge was treated using three types of methanogenic reactors. The working electrode potential in the BER+CFF was regulated at -0.8 V (vs. Ag/AgCl). BER+CFF showed gas production of 3.57 L L(-1) day(-1) at a hydraulic retention time (HRT) of 4.0 days; however, non-BER+CFF showed a lower gas production rate (0.83 L L(-1) day(-1)) at this HRT, suggesting positive effects of electrochemical regulation. A stirred tank reactor (without CFF) deteriorated at an HRT of 10 days, suggesting positive effects of CFF. 16S rRNA gene analysis showed that the BER+CFF included 3 kinds of hydrogenotrophic methanogens and 1 aceticlastic methanogen. These results demonstrate the effectiveness of the BER+CFF for scale-up and flexibility of this technology.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Biotechnology Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko-shi, Chiba-ken 270-1194, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Green-Saxena A, Feyzullayev A, Hubert CRJ, Kallmeyer J, Krueger M, Sauer P, Schulz HM, Orphan VJ. Active sulfur cycling by diverse mesophilic and thermophilic microorganisms in terrestrial mud volcanoes of Azerbaijan. Environ Microbiol 2012; 14:3271-86. [DOI: 10.1111/1462-2920.12015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/09/2012] [Accepted: 09/28/2012] [Indexed: 01/26/2023]
Affiliation(s)
- A. Green-Saxena
- Division of Biology; California Institute of Technology; 1200 East California Boulevard; Pasadena; CA; 91125; USA
| | - A. Feyzullayev
- Petroleum Geology and Geochemistry Department; Geology Institute of ANAS; H. Cavid avenue 29a; Baku; AZ1143; Azerbaijan
| | - C. R. J. Hubert
- School of Civil Engineering & Geosciences; Newcastle University; Devonshire Building; Newcastle upon Tyne; NE1 7RU; UK
| | - J. Kallmeyer
- Institute of Earth and Environmental Sciences; University of Potsdam; Haus 27, Zi. 0.34, Karl-Liebknecht-Str.; 24 14476; Golm; Germany
| | - M. Krueger
- Fields of Geomicrobiology and Resource Geochemistry; Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR; Federal Institute for Geosciences and Natural Resources); Stilleweg 2; D-30655; Hannover; Germany
| | - P. Sauer
- Institute of Earth and Environmental Sciences; University of Potsdam; Haus 27, Zi. 0.34, Karl-Liebknecht-Str.; 24 14476; Golm; Germany
| | - H.-M. Schulz
- GeoForschungsZentrum Potsdam, Section 4.3; Telegrafenberg, B 424; D-14473; Potsdam; Germany
| | - V. J. Orphan
- Division of Geological and Planetary Sciences; California Institute of Technology; 1200 East California Boulevard; Pasadena; CA; 91125; USA
| |
Collapse
|