1
|
Tian K, Yu Y, Qiu Q, Sun X, Meng F, Bi Y, Gu J, Wang Y, Zhang F, Huo H. Mechanisms of BPA Degradation and Toxicity Resistance in Rhodococcus equi. Microorganisms 2022; 11:microorganisms11010067. [PMID: 36677360 PMCID: PMC9862853 DOI: 10.3390/microorganisms11010067] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Bisphenol A (BPA) pollution poses an increasingly serious problem. BPA has been detected in a variety of environmental media and human tissues. Microbial degradation is an effective method of environmental BPA remediation. However, BPA is also biotoxic to microorganisms. In this study, Rhodococcus equi DSSKP-R-001 (R-001) was used to degrade BPA, and the effects of BPA on the growth metabolism, gene expression patterns, and toxicity-resistance mechanisms of Rhodococcus equi were analyzed. The results showed that R-001 degraded 51.2% of 5 mg/L BPA and that 40 mg/L BPA was the maximum BPA concentration tolerated by strain R-001. Cytochrome P450 monooxygenase and multicopper oxidases played key roles in BPA degradation. However, BPA was toxic to strain R-001, exhibiting nonlinear inhibitory effects on the growth and metabolism of this bacterium. R-001 bacterial biomass, total protein content, and ATP content exhibited V-shaped trends as BPA concentration increased. The toxic effects of BPA included the downregulation of R-001 genes related to glycolysis/gluconeogenesis, pentose phosphate metabolism, and glyoxylate and dicarboxylate metabolism. Genes involved in aspects of the BPA-resistance response, such as base excision repair, osmoprotectant transport, iron-complex transport, and some energy metabolisms, were upregulated to mitigate the loss of energy associated with BPA exposure. This study helped to clarify the bacterial mechanisms involved in BPA biodegradation and toxicity resistance, and our results provide a theoretical basis for the application of strain R-001 in BPA pollution treatments.
Collapse
Affiliation(s)
- Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
| | - Yue Yu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
| | - Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
| | - Fanxing Meng
- Jilin Province Water Resources and Hydropower Consultative Company of P.R. China, Changchun 130021, China
| | - Yuanping Bi
- School of Life Sciences, Northeast Normal University, No. 5268, Renmin Main Street, Changchun 130024, China
| | - Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
| | - Yibing Wang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
- Jilin Province Laboratory of Water Pollution Treatment and Resource Engineering, Changchun 130117, China
- Northeast China Low Carbon Water Pollution Treatment and Green Development Engineering Research Center, Changchun 130117, China
- Correspondence:
| |
Collapse
|
2
|
Ootsuka M, Nishizawa T, Hasegawa M, Kurusu Y, Ohta H. Comparative Analysis of the Genetic Basis of Branched Nonylphenol Degradation by Sphingobium amiense DSM 16289 T and Sphingobium cloacae JCM 10874 T. Microbes Environ 2018; 33:450-454. [PMID: 30518740 PMCID: PMC6308004 DOI: 10.1264/jsme2.me18077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Branched nonylphenol (BNP), a degradation product of nonylphenol polyethoxylates, exerts estrogenic effects on various organisms. The genes underlying BNP degradation by Sphingobium amiense DSM 16289T were analyzed by complete genome sequencing and compared with those of the versatile BNP-degrading Sphingobium cloacae JCM 10874T. An opdA homolog (opdADSM16289) encoding BNP degradation activity was identified in DSM 16289T, in contrast with JCM 10874T, possessing both the opdA homolog and nmoA. The degradation profile of different BNP isomers was examined by Escherichia coli transformants harboring opdADSM16289, opdAJCM10874, and nmoAJCM10874 to characterize and compare the expression activities of these genes.
Collapse
Affiliation(s)
- Mina Ootsuka
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Tomoyasu Nishizawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology.,Ibaraki University College of Agriculture
| | - Morifumi Hasegawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology.,Ibaraki University College of Agriculture
| | - Yasurou Kurusu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology.,Ibaraki University College of Agriculture
| | - Hiroyuki Ohta
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology.,Ibaraki University College of Agriculture
| |
Collapse
|
3
|
Reis AC, Čvančarová M, Liu Y, Lenz M, Hettich T, Kolvenbach BA, Corvini PFX, Nunes OC. Biodegradation of sulfamethoxazole by a bacterial consortium of Achromobacter denitrificans PR1 and Leucobacter sp. GP. Appl Microbiol Biotechnol 2018; 102:10299-10314. [PMID: 30294753 DOI: 10.1007/s00253-018-9411-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 11/26/2022]
Abstract
In the last decade, biological degradation and mineralization of antibiotics have been increasingly reported feats of environmental bacteria. The most extensively described example is that of sulfonamides that can be degraded by several members of Actinobacteria and Proteobacteria. Previously, we reported sulfamethoxazole (SMX) degradation and partial mineralization by Achromobacter denitrificans strain PR1, isolated from activated sludge. However, further studies revealed an apparent instability of this metabolic trait in this strain. Here, we investigated this instability and describe the finding of a low-abundance and slow-growing actinobacterium, thriving only in co-culture with strain PR1. This organism, named GP, shared highest 16S rRNA gene sequence similarity (94.6-96.9%) with the type strains of validly described species of the genus Leucobacter. This microbial consortium was found to harbor a homolog to the sulfonamide monooxygenase gene (sadA) also found in other sulfonamide-degrading bacteria. This gene is overexpressed in the presence of the antibiotic, and evidence suggests that it codes for a group D flavin monooxygenase responsible for the ipso-hydroxylation of SMX. Additional side reactions were also detected comprising an NIH shift and a Baeyer-Villiger rearrangement, which indicate an inefficient biological transformation of these antibiotics in the environment. This work contributes to further our knowledge in the degradation of this ubiquitous micropollutant by environmental bacteria.
Collapse
Affiliation(s)
- Ana C Reis
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Monika Čvančarová
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Ying Liu
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Markus Lenz
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Timm Hettich
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Boris A Kolvenbach
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Philippe F-X Corvini
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Olga C Nunes
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
4
|
Comparative Transcriptome Analysis Reveals the Mechanism Underlying 3,5-Dibromo-4-Hydroxybenzoate Catabolism via a New Oxidative Decarboxylation Pathway. Appl Environ Microbiol 2018; 84:AEM.02467-17. [PMID: 29305508 DOI: 10.1128/aem.02467-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023] Open
Abstract
The compound 3,5-dibromo-4-hydroxybenzoate (DBHB) is both anthropogenically released into and naturally produced in the environment, and its environmental fate is of great concern. Aerobic and anaerobic reductive dehalogenations are the only two reported pathways for DBHB catabolism. In this study, a new oxidative decarboxylation pathway for DBHB catabolism was identified in a DBHB-utilizing strain, Pigmentiphaga sp. strain H8. The genetic determinants underlying this pathway were elucidated based on comparative transcriptome analysis and subsequent experimental validation. A gene cluster comprising orf420 to orf426, with transcripts that were about 33- to 4,400-fold upregulated in DBHB-induced cells compared with those in uninduced cells, was suspected to be involved in DBHB catabolism. The gene odcA (orf420), which is essential for the initial catabolism of DBHB, encodes a novel NAD(P)H-dependent flavin monooxygenase that mediates the oxidative decarboxylation of DBHB to 2,6-dibromohydroquinone (2,6-DBHQ). The substrate specificity of the purified OdcA indicated that the 4-hydroxyl group and its ortho-halogen(s) are important for hydroxylation of the C-1 site carboxyl group by OdcA. 2,6-DBHQ is then ring cleaved by the dioxygenase OdcB (Orf425) to 2-bromomaleylacetate, which is finally transformed to β-ketoadipate by the maleylacetate reductase OdcC (Orf426). These results provide a better understanding of the molecular mechanism underlying the catabolic diversity of halogenated para-hydroxybenzoates.IMPORTANCE Halogenated hydroxybenzoates (HBs), which are widely used synthetic precursors for chemical products and common metabolic intermediates from halogenated aromatics, exert considerable adverse effects on human health and ecological security. Microbial catabolism plays key roles in the dissipation of halogenated HBs in the environment. In this study, the discovery of a new catabolic pathway for 3,5-dibromo-4-hydroxybenzoate (DBHB) and clarification of the genetic determinants underlying the pathway broaden our knowledge of the catabolic diversity of halogenated HBs in microorganisms. Furthermore, the NAD(P)H-dependent flavin monooxygenase OdcA identified in Pigmentiphaga sp. strain H8 represents a novel 1-monooxygenase for halogenated para-HBs found in prokaryotes and enhances our knowledge of the decarboxylative hydroxylation of (halogenated) para-HBs.
Collapse
|
5
|
Wang JP, Zhang WM, Chao HJ, Zhou NY. PnpM, a LysR-Type Transcriptional Regulator Activates the Hydroquinone Pathway in para-Nitrophenol Degradation in Pseudomonas sp. Strain WBC-3. Front Microbiol 2017; 8:1714. [PMID: 28959240 PMCID: PMC5603801 DOI: 10.3389/fmicb.2017.01714] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/24/2017] [Indexed: 11/17/2022] Open
Abstract
A LysR-type transcriptional regulator (LTTR), PnpR, has previously been shown to activate the transcription of operons pnpA, pnpB, and pnpCDEFG for para-nitrophenol (PNP) degradation in Pseudomonas sp. strain WBC-3. Further preliminary evidence suggested the possible presence of an LTTR additional binding site in the promoter region of pnpCDEFG. In this study, an additional LTTR PnpM, which shows 44% homology to PnpR, was determined to activate the expression of pnpCDEFG. Interestingly, a pnpM-deleted WBC-3 strain was unable to grow on PNP but accumulating hydroquinone (HQ), which is the catabolic product from PNP degradation by PnpAB and the substrate for PnpCD. Through electrophoretic mobility shift assays (EMSAs) and promoter activity detection, only PnpR was involved in the activation of pnpA and pnpB, but both PnpR and PnpM were involved in the activation of pnpCDEFG. DNase I footprinting analysis suggested that PnpR and PnpM shared the same DNA-binding regions of 27 bp in the pnpCDEFG promoter. In the presence of PNP, the protection region increased to 39 bp by PnpR and to 38 bp by PnpM. Our data suggested that both PnpR and PnpM were involved in activating pnpCDEFG expression, in which PNP rather than the substrate hydroquinone for PnpCD is the inducer. Thus, during the PNP catabolism in Pseudomonas sp. strain WBC-3, pnpA and pnpB operons for the initial two reactions were controlled by PnpR, while the third operon (pnpCDEFG) for HQ degradation was activated by PnpM and PnpR. This study builds upon our previous findings and shows that two LTTRs PnpR and PnpM are involved in the transcriptional activation of these three catabolic operons. Specifically, our identification that an LTTR, PnpM, regulates pnpCDEFG expression provides new insights in an intriguing regulation system of PNP catabolism that is controlled by two regulators.
Collapse
Affiliation(s)
- Jin-Pei Wang
- Wuhan Institute of Virology, Chinese Academy of SciencesWuhan, China.,University of Chinese Academy of SciencesBeijing, China
| | - Wen-Mao Zhang
- Wuhan Institute of Virology, Chinese Academy of SciencesWuhan, China
| | - Hong-Jun Chao
- Wuhan Institute of Virology, Chinese Academy of SciencesWuhan, China
| | - Ning-Yi Zhou
- Wuhan Institute of Virology, Chinese Academy of SciencesWuhan, China.,State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
6
|
Complete Genome Sequence of the Nonylphenol-Degrading Bacterium Sphingobium cloacae JCM 10874T. GENOME ANNOUNCEMENTS 2016; 4:4/6/e01358-16. [PMID: 27932652 PMCID: PMC5146444 DOI: 10.1128/genomea.01358-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sphingobium cloacae JCM 10874T can degrade phenolic endocrine-disrupting chemicals, nonylphenol, and octylphenol. Here, we report the complete genome sequence of the JCM 10874T strain.
Collapse
|
7
|
Degradation of sulfonamide antibiotics by Microbacterium sp. strain BR1 - elucidating the downstream pathway. N Biotechnol 2015; 32:710-5. [PMID: 25796473 DOI: 10.1016/j.nbt.2015.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 02/09/2015] [Accepted: 03/02/2015] [Indexed: 11/21/2022]
Abstract
Microbacterium sp. strain BR1 is among the first bacterial isolates which were proven to degrade sulfonamide antibiotics. The degradation is initiated by an ipso-substitution, initiating the decay of the molecule into sulfur dioxide, the substrate specific heterocyclic moiety as a stable metabolite and benzoquinone imine. The latter appears to be instantaneously reduced to p-aminophenol, as that in turn was detected as the first stable intermediate. This study investigated the downstream pathway of sulfonamide antibiotics by testing the strain's ability to degrade suspected intermediates of this pathway. While p-aminophenol was degraded, degradation products could not be identified. Benzoquinone was shown to be degraded to hydroquinone and hydroquinone in turn was shown to be degraded to 1,2,4-trihydroxybenzene. The latter is assumed to be the potential substrate for aromatic ring cleavage. However, no products from the degradation of 1,2,4-trihydroxybenzene could be identified. There are no signs of accumulation of intermediates causing oxidative stress, which makes Microbacterium sp. strain BR1 an interesting candidate for industrial waste water treatment.
Collapse
|
8
|
Kolvenbach BA, Helbling DE, Kohler HPE, Corvini PFX. Emerging chemicals and the evolution of biodegradation capacities and pathways in bacteria. Curr Opin Biotechnol 2013; 27:8-14. [PMID: 24863891 DOI: 10.1016/j.copbio.2013.08.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/12/2013] [Accepted: 08/26/2013] [Indexed: 11/24/2022]
Abstract
The number of new chemicals produced is increasing daily by the thousands, and it is inevitable that many of these chemicals will reach the environment. Current research provides an understanding of how the evolution of promiscuous enzymes and the recruitment of enzymes available from the metagenome allows for the assembly of these pathways. Nevertheless, physicochemical constraints including bioavailability, bioaccessibility, and the structural variations of similar chemicals limit the evolution of biodegradation pathways. Similarly, physiological constraints related to kinetics and substrate utilization at low concentrations likewise limit chemical-enzyme interactions and consequently evolution. Considering these new data, the biodegradation decalogue still proves valid while at the same time the underlying mechanisms are better understood.
Collapse
Affiliation(s)
- Boris A Kolvenbach
- University of Applied Sciences and Arts Northwestern Switzerland, School for Life Sciences, Institute for Ecopreneurship, Gruendenstrasse 40, Muttenz 4132, Switzerland
| | - Damian E Helbling
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Microbiology, Ueberlandstrasse 133, P.O. Box 611, Duebendorf 8600, Switzerland
| | - Hans-Peter E Kohler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Microbiology, Ueberlandstrasse 133, P.O. Box 611, Duebendorf 8600, Switzerland
| | - Philippe F-X Corvini
- University of Applied Sciences and Arts Northwestern Switzerland, School for Life Sciences, Institute for Ecopreneurship, Gruendenstrasse 40, Muttenz 4132, Switzerland; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Xianlin Campus, Xianlin Avenue 163, Nanjing 210023, China.
| |
Collapse
|
9
|
Collado N, Buttiglieri G, Kolvenbach BA, Comas J, Corvini PFX, Rodríguez-Roda I. Exploring the potential of applying proteomics for tracking bisphenol A and nonylphenol degradation in activated sludge. CHEMOSPHERE 2013; 90:2309-2314. [PMID: 23121986 DOI: 10.1016/j.chemosphere.2012.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 06/01/2023]
Abstract
A significant percentage of bisphenol A and nonylphenol removal in municipal wastewater treatment plants relies on biodegradation. Nonetheless, incomplete information is available concerning their degradation pathways performed by microbial communities in activated sludge systems. Hydroquinone dioxygenase (HQDO) is a specific degradation marker enzyme, involved in bisphenol A and nonylphenol biodegradation, and it can be produced by axenic cultures of the bacterium Sphingomonas sp. strain TTNP3. Proteomics, a technique based on the analysis of microbial community proteins, was applied to this strain. The bacterium proteome map was obtained and a HQDO subunit was successfully identified. Additionally, the reliability of the applied proteomics protocol was evaluated in activated sludge samples. Proteins belonging to Sphingomonas were searched at decreasing biomass ratios, i.e. serially diluting the bacterium in activated sludge. The protein patterns were compared and Sphingomonas proteins were discriminated against the ones from sludge itself on 2D-gels. The detection limit of the applied protocol was defined as 10(-3) g TTNP3 g(-1) total suspended solids (TSSs). The results proved that proteomics can be a promising methodology to assess the presence of specific enzymes in activated sludge samples, however improvements of its sensitivity are still needed.
Collapse
Affiliation(s)
- Neus Collado
- LEQUIA, Institute of the Environment, University of Girona, Campus Montilivi, E-17071 Girona, Catalonia, Spain; ICRA, Catalan Institute for Water Research, Carrer Emili Grahit, 101, Parc Científic i Tecnològic de la Universitat de Girona, 17003 Girona, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Kolvenbach B, Corvini PX. The degradation of alkylphenols by Sphingomonas sp. strain TTNP3 – a review on seven years of research. N Biotechnol 2012; 30:88-95. [DOI: 10.1016/j.nbt.2012.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/18/2012] [Accepted: 07/21/2012] [Indexed: 11/26/2022]
|