1
|
McGlennen M, Dieser M, Foreman CM, Warnat S. Monitoring biofilm growth and dispersal in real-time with impedance biosensors. J Ind Microbiol Biotechnol 2023; 50:kuad022. [PMID: 37653441 PMCID: PMC10485796 DOI: 10.1093/jimb/kuad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Microbial biofilm contamination is a widespread problem that requires precise and prompt detection techniques to effectively control its growth. Microfabricated electrochemical impedance spectroscopy (EIS) biosensors offer promise as a tool for early biofilm detection and monitoring of elimination. This study utilized a custom flow cell system with integrated sensors to make real-time impedance measurements of biofilm growth under flow conditions, which were correlated with confocal laser scanning microscopy (CLSM) imaging. Biofilm growth on EIS biosensors in basic aqueous growth media (tryptic soy broth, TSB) and an oil-water emulsion (metalworking fluid, MWF) attenuated in a sigmoidal decay pattern, which lead to an ∼22-25% decrease in impedance after 24 Hrs. Subsequent treatment of established biofilms increased the impedance by ∼14% and ∼41% in TSB and MWF, respectively. In the presence of furanone C-30, a quorum-sensing inhibitor (QSI), impedance remained unchanged from the initial time point for 18 Hrs in TSB and 72 Hrs in MWF. Biofilm changes enumerated from CLSM imaging corroborated impedance measurements, with treatment significantly reducing biofilm. Overall, these results support the application of microfabricated EIS biosensors for evaluating the growth and dispersal of biofilm in situ and demonstrate potential for use in industrial settings. ONE-SENTENCE SUMMARY This study demonstrates the use of microfabricated electrochemical impedance spectroscopy (EIS) biosensors for real-time monitoring and treatment evaluation of biofilm growth, offering valuable insights for biofilm control in industrial settings.
Collapse
Affiliation(s)
- Matthew McGlennen
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
- Mechanical and Industrial Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Markus Dieser
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
- Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Christine M Foreman
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
- Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Stephan Warnat
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
- Mechanical and Industrial Engineering, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
2
|
Distribution of Pseudomonas fluorescens and Aeromonas hydrophila Bacteria in a Recirculating Aquaculture System during Farming of European Grayling (Thymallus thymallus L.) Broodstock. WATER 2019. [DOI: 10.3390/w11020376] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pseudomonas fluorescens and Aeromonas hydrophila bacteria are opportunistic pathogens that occur naturally in the aquatic environment and in the gut flora of healthy fish. Both species can pose a serious threat for fish that are highly sensitive to water pollution. The aim of this study was to determine the extent to which the amount of administered fish feed and fish biomass affect the distribution and abundance of Ps. fluorescens and A. hydrophila bacteria in a recirculating aquaculture system (RAS) during farming of European grayling (Thymallus thymallus L.) broodstock. A total of 68 water samples from the inflow, two rearing tanks and the outflow as well as 17 feed samples were collected and analyzed separately. Bacterial populations were analyzed by the culture-dependent method and a molecular method (fluorescence in situ hybridization, FISH) to detect culturable strains and viable but non-culturable strains, respectively. Fish biomass, feed and 16 water quality parameters (temperature, pH, concentration of dissolved oxygen, oxygen saturation, five-day biochemical oxygen demand (BOD5), total phosphorus, total organic phosphorus and nitrogen, orthophosphates, total nitrogen, nitrite and nitrate nitrogen, ammonia nitrogen, ammonium nitrogen, total suspended solids, and total organic carbon) were the explanatory factors. Statistically significant differences (RM-ANOVA, p ≤ 0.05) were stated in bacterial abundance in samples from the inflow, rearing tanks and the outflow. Water samples from the RAS were abundantly colonized by non-culturable Ps. fluorescens and A. hydrophila bacteria. Feed was not a source of bacteria, but a redundancy analysis (RDA) revealed that the amount of feed, fish biomass, BOD5, and total suspended solids and total organic carbon were positively correlated in both Ps. fluorescens and A. hydrophila. These parameters also influenced the distribution of both potentially pathogenic bacterial populations and contributed to the bacterial contamination of water in the RAS. Our results are particularly valuable for aquacultures that help to replenish wild stocks and rebuild populations of threatened species in natural aquatic environments.
Collapse
|
3
|
Vanhauteghem D, Audenaert K, Demeyere K, Hoogendoorn F, Janssens GPJ, Meyer E. Flow cytometry, a powerful novel tool to rapidly assess bacterial viability in metal working fluids: Proof-of-principle. PLoS One 2019; 14:e0211583. [PMID: 30707728 PMCID: PMC6358156 DOI: 10.1371/journal.pone.0211583] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/16/2019] [Indexed: 12/16/2022] Open
Abstract
Metalworking fluids (MWF) are water- or oil-based liquids to cool and lubricate tools, work pieces and machines, inhibit corrosion and remove swarf. One of the major problems in the MWF industry is bacterial growth as bacterial enzymes can cause MWF degradation. In addition, bacteria can form biofilms which hamper the functioning of machines. Last but not least, some bacterial by-products are toxic (e.g. endotoxins) and present potential health risks for metalworking machine operators via the formation of aerosols. Therefore, a novel fast yet accurate analytical method to evaluate and predict the antibacterial capacity of MWF would be an important asset. As such a tool is currently lacking, the present study aimed to develop a protocol based on flow cytometry (FCM) to assess the antibacterial potential of newly developed MWF independent of bacterial growth. Results of this novel method were compared to a biochallenge test currently used in MWF industry and also to traditional plate counts. Our results represent a proof-of-principle that FCM can reliably predict the antibacterial capacity of MWF already within one day of incubation with Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Proteus mirabilis, being substantially faster than the current growth-based methods.
Collapse
Affiliation(s)
- Donna Vanhauteghem
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- * E-mail:
| | - Kris Audenaert
- Department of Applied Bioscience Engineering, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, Ghent, Belgium
| | - Kristel Demeyere
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Geert P. J. Janssens
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
4
|
Roberts DC, Fleischer SJ, Sakamoto JM, Rasgon JL. Potential biological control of Erwinia tracheiphila by internal alimentary canal interactions in Acalymma vittatum with Pseudomonas fluorescens. J Appl Microbiol 2018; 125:1137-1146. [PMID: 29890026 DOI: 10.1111/jam.13950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/01/2018] [Accepted: 05/19/2018] [Indexed: 11/27/2022]
Abstract
AIMS We aim to determine if Pseudomonas fluorescens is a viable biological control for Erwinia tracheiphila within the insect vector, Acalymma vittatum. METHODS AND RESULTS Pseudomonas fluorescens secreted fluorescein and inhibited growth of E. tracheiphila in disc diffusion assays. To determine if this antagonism was conserved within the insect vector, we performed in vivo assays by orally injecting beetles with bacterial treatments and fluorescent in situ hybridization to determine bacterial presence within the alimentary canal. CONCLUSIONS Pseudomonas fluorescens inhibited the growth of E. tracheiphila on a nutrient-limiting medium. In situ experiments demonstrated that P. fluorescens is maintained within the alimentary canal of the beetle for at least 4 days, and co-occurred with E. tracheiphila. When beetles were first presented with Pseudomonas and then challenged with E. tracheiphila, E. tracheiphila was not recovered via FISH after 4 days. These data suggest that P. fluorescens has potential as a biological control agent to limit E. tracheiphila within the insect vector. SIGNIFICANCE AND IMPACT OF THE STUDY This is a novel approach for controlling E. tracheiphila that has the potential to decrease reliance on insecticides, providing a safer environment for pollinators and growers.
Collapse
Affiliation(s)
- D C Roberts
- The Pennsylvania State University, University Park, PA, USA
| | - S J Fleischer
- The Pennsylvania State University, University Park, PA, USA
| | - J M Sakamoto
- The Pennsylvania State University, University Park, PA, USA
| | - J L Rasgon
- The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Winkelströter LK, Teixeira FBDR, Silva EP, Alves VF, De Martinis ECP. Unraveling microbial biofilms of importance for food microbiology. MICROBIAL ECOLOGY 2014; 68:35-46. [PMID: 24370864 DOI: 10.1007/s00248-013-0347-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
The presence of biofilms is a relevant risk factors in the food industry due to the potential contamination of food products with pathogenic and spoilage microorganisms. The majority of bacteria are able to adhere and to form biofilms, where they can persist and survive for days to weeks or even longer, depending on the microorganism and the environmental conditions. The biological cycle of biofilms includes several developmental phases such as: initial attachment, maturation, maintenance, and dispersal. Bacteria in biofilms are generally well protected against environmental stress, consequently, extremely difficult to eradicate and detect in food industry. In the present manuscript, some techniques and compounds used to control and to prevent the biofilm formation are presented and discussed. Moreover, a number of novel techniques have been recently employed to detect and evaluate bacteria attached to surfaces, including real-time polymerase chain reaction (PCR), DNA microarray and confocal laser scanning microscopy. Better knowledge on the architecture, physiology and molecular signaling in biofilms can contribute for preventing and controlling food-related spoilage and pathogenic bacteria. The present study highlights basic and applied concepts important for understanding the role of biofilms in bacterial survival, persistence and dissemination in food processing environments.
Collapse
Affiliation(s)
- Lizziane Kretli Winkelströter
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Av. do Café s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
6
|
Microorganisms in metalworking fluids: current issues in research and management. Int J Occup Med Environ Health 2013; 26:4-15. [PMID: 23526197 DOI: 10.2478/s13382-013-0075-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 07/27/2012] [Indexed: 11/20/2022] Open
Abstract
The microbial contamination of water miscible metalworking fluids (MWFs) is a serious problem in metal industry. A good maintenance of MWF re-circulation systems can extend the lifetime of coolants and ensure the quality of the tools produced. In MWFs, as in the other water-based environments, microorganisms usually live in the form of biofilms, the communities of bacteria and fungi attached to the surface of sumps, metal parts and also to each other. Biofilms exhibit very high resistance to biocides. The effect of biocides that are used as additives to MWFs to control the growth of the bacterial and fungal microbiomes (microorganisms characteristic to the individual coolant system) have become the subject of research only in recent years. There are also only sparse reports on the impact of biocides on microorganisms growing in biofilms in MWF installations. Fast growing mycobacteria are important members of these biofilm communities. Their presence has recently been linked with the occurrence of cases of hypersensitivity pneumonitis, a serious respiratory disorder in the metal industry employees. The new, relatively fast and inexpensive techniques to assess the species diversity within MWF microbiomes and their population size should be developed in order to control the microorganisms' proliferation in MWFs and to diminish the occupational exposure to harmful bioaerosols in metal industry.
Collapse
|
7
|
Trafny EA, Lewandowski R, Zawistowska-Marciniak I, Stępińska M. Use of MTT assay for determination of the biofilm formation capacity of microorganisms in metalworking fluids. World J Microbiol Biotechnol 2013; 29:1635-43. [DOI: 10.1007/s11274-013-1326-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 03/15/2013] [Indexed: 11/24/2022]
|
8
|
The microbiology of metalworking fluids. Appl Microbiol Biotechnol 2012; 94:1119-30. [DOI: 10.1007/s00253-012-4055-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 03/20/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
|