1
|
Bu H, Carvalho G, Yuan Z, Bond P, Jiang G. Biotrickling filter for the removal of volatile sulfur compounds from sewers: A review. CHEMOSPHERE 2021; 277:130333. [PMID: 33780683 DOI: 10.1016/j.chemosphere.2021.130333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Volatile sulfur compounds (VSCs) were identified as the dominant priority odorants emitted from sewers, including hydrogen sulfide (H2S), methyl mercaptan (MM), dimethyl disulfide (DMDS) and dimethyl sulfide (DMS). Biotrickling filter (BTF) is a widely-applied technology for odour abatement in sewers because of its relatively low operating cost and efficient H2S removal. The authors review the mechanisms and performance of BTF for the removal of these four VSCs, and discuss the key influencing factors including of empty bed residence time (EBRT), pH, temperature, nutrients, water content, trickling operation and packing materials. Besides, measures to improve the VSCs removal in BTF are proposed in the context of key influencing factors. Finally, the review assesses the new challenges of BTF for sewer emissions treatment, namely with respect to the performance of BTF for greenhouse gases (GHG) treatment.
Collapse
Affiliation(s)
- Hao Bu
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Gilda Carvalho
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Philip Bond
- School of Biomedical Sciences, Queensland University of Technology, QLD, Australia
| | - Guangming Jiang
- School of Civil, Mining & Environmental Engineering, University of Wollongong, NSW, Australia.
| |
Collapse
|
2
|
Tian W, Chen X, Zhou P, Fu X, Zhao H. Removal of H2S by vermicompost biofilter and analysis on bacterial community. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe vermicompost collected from dewatered domestic sludge as packing material in biofilter was investigated for hydrogen sulfide (H2S) removal. No nutrients or microbial inoculation was added throughout the experiment. The corresponding bacterial community characteristics in the vermicompost biofilter of different spatial levels were evaluated by Miseq high-throughput sequencing technique. The results showed that the vermicompost biofilter performed well during operation. The H2S removal efficiency reached nearly 100% under condition of the inlet concentration <350 mg m−3 and 0.25−0.35 m3 h−1 gas flow rate. The maximum elimination capacity of 20.2 g m−3 h−1 was observed at a flow rate of 0.35 m3 h−1. Furthermore, the amounts of biodegraded products and pH varied accordingly. In addition, the results from high-throughput sequencing revealed pronouncedly spatial variation of the vermicompost, and the Rhodanobacter, Halothiobacillus, Mizugakiibacter as well as Thiobacillus, which can play an important role in removing H2S, were predominant in the final vermicompost. These results imply that the vermicompost with diverse microbial communities has a good potential for eliminating H2S.
Collapse
Affiliation(s)
- Weiping Tian
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu Province, P. R. China
| | - Xuemin Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu Province, P. R. China
| | - Peng Zhou
- School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu Province, P. R. China
| | - Xiaoyong Fu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu Province, P. R. China
| | - Honghua Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu Province, P. R. China
| |
Collapse
|
3
|
Zhang Y, Oshita K, Kusakabe T, Takaoka M, Kawasaki Y, Minami D, Tanaka T. Simultaneous removal of siloxanes and H 2S from biogas using an aerobic biotrickling filter. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122187. [PMID: 32062547 DOI: 10.1016/j.jhazmat.2020.122187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/01/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
The feasibility of simultaneous removal of siloxane and H2S from biogas was investigated using an aerobic biotrickling filter (BTF). The biodegradation of H2S in the BTF followed a first-order kinetic model and more than 95 % H2S was eliminated within a residence time of 0.3 min. The removal of decamethylcyclopentasiloxane (D5) increased with longer empty bed residence time (EBRT). The partition test and microbial community analysis further reveals that up to 52 % removal of D5 was reached mainly by the chemical-absorption in acid recycling liquid. Finally, D5 was converted into mixtures of dimethylsilanediol (DMSD) and hexamethyldisiloxane (L2) via ring-opening hydrolysis in acid liquid and ring-shrinking polyreaction using CH4 derived from biogas. These operational characteristics demonstrate that the abiotic removal of D5, in addition to biological removal of H2S in an aerobic BTF can significantly decrease the siloxane loading to the downstream siloxane removing units.
Collapse
Affiliation(s)
- Yuyao Zhang
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, C-cluster, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Kazuyuki Oshita
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, C-cluster, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan.
| | - Taketoshi Kusakabe
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, C-cluster, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Masaki Takaoka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, C-cluster, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Yu Kawasaki
- Ebara Jitsugyo Co., Ltd., Ginza, Chuo-ku, Tokyo, Japan
| | | | | |
Collapse
|
4
|
Abstract
Bacterial communities’ composition, activity and robustness determines the effectiveness of biofiltration units for the desulfurization of biogas. It is therefore important to get a better understanding of the bacterial communities that coexist in biofiltration units under different operational conditions for the removal of H2S, the main reduced sulfur compound to eliminate in biogas. This review presents the main characteristics of sulfur-oxidizing chemotrophic bacteria that are the base of the biological transformation of H2S to innocuous products in biofilters. A survey of the existing biofiltration technologies in relation to H2S elimination is then presented followed by a review of the microbial ecology studies performed to date on biotrickling filter units for the treatment of H2S in biogas under aerobic and anoxic conditions.
Collapse
|
5
|
Chen Y, Xie L, Cai W, Wu J. Pilot-scale study using biotrickling filter to remove H2S from sewage lift station: Experiment and CFD simulation. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Valle A, Fernández M, Ramírez M, Rovira R, Gabriel D, Cantero D. A comparative study of eubacterial communities by PCR-DGGE fingerprints in anoxic and aerobic biotrickling filters used for biogas desulfurization. Bioprocess Biosyst Eng 2018; 41:1165-1175. [DOI: 10.1007/s00449-018-1945-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/22/2018] [Indexed: 12/31/2022]
|
7
|
Tu X, Guo J, Yang Y, Feng R, Sun G, Li J. Biofilms formed within the acidic and the neutral biotrickling filters for treating H2S-containing waste gases. RSC Adv 2017. [DOI: 10.1039/c7ra04053a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microbial cell in the innermost biofilm have higher viability, and produce polysaccharide as the main component of EPS in acidic environment.
Collapse
Affiliation(s)
- Xiang Tu
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou
- PR China
- Guangdong Institute of Microbiology
| | - Jun Guo
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou
- PR China
- Guangdong Institute of Microbiology
| | - Yonggang Yang
- Guangdong Institute of Microbiology
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangzhou
- PR China
| | - Rongfang Feng
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou
- PR China
- Guangdong Institute of Microbiology
| | - Guoping Sun
- Guangdong Institute of Microbiology
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangzhou
- PR China
| | - Jianjun Li
- Guangdong Institute of Microbiology
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangzhou
- PR China
| |
Collapse
|
8
|
Gerrity S, Kennelly C, Clifford E, Collins G. Hydrogen sulfide oxidation in novel Horizontal-Flow Biofilm Reactors dominated by an Acidithiobacillus and a Thiobacillus species. ENVIRONMENTAL TECHNOLOGY 2016; 37:2252-2264. [PMID: 26829048 DOI: 10.1080/09593330.2016.1147609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Hydrogen Sulfide (H2S) is an odourous, highly toxic gas commonly encountered in various commercial and municipal sectors. Three novel, laboratory-scale, Horizontal-Flow Biofilm Reactors (HFBRs) were tested for the removal of H2S gas from air streams over a 178-day trial at 10°C. Removal rates of up to 15.1 g [H2S] m(-3) h(-1) were achieved, demonstrating the HFBRs as a feasible technology for the treatment of H2S-contaminated airstreams at low temperatures. Bio-oxidation of H2S in the reactors led to the production of H(+) and sulfate (SO(2-)4) ions, resulting in the acidification of the liquid phase. Reduced removal efficiency was observed at loading rates of 15.1 g [H2S] m(-3) h(-1). NaHCO3 addition to the liquid nutrient feed (synthetic wastewater (SWW)) resulted in improved H2S removal. Bacterial diversity, which was investigated by sequencing and fingerprinting 16S rRNA genes, was low, likely due to the harsh conditions prevailing in the systems. The HFBRs were dominated by two species from the genus Acidithiobacillus and Thiobacillus. Nonetheless, there were significant differences in microbial community structure between distinct HFBR zones due to the influence of alkalinity, pH and SO4 concentrations. Despite the low temperature, this study indicates HFBRs have an excellent potential to biologically treat H2S-contaminated airstreams.
Collapse
Affiliation(s)
- S Gerrity
- a Microbial Communities Laboratory, School of Natural Sciences , National University of Ireland Galway , Galway , Ireland
| | - C Kennelly
- b Civil Engineering, College of Engineering and Informatics , National University of Ireland Galway , Galway , Ireland
| | - E Clifford
- b Civil Engineering, College of Engineering and Informatics , National University of Ireland Galway , Galway , Ireland
- c Ryan Institute for Environmental, Marine and Energy Research , National University of Ireland Galway , Galway , Ireland
| | - G Collins
- a Microbial Communities Laboratory, School of Natural Sciences , National University of Ireland Galway , Galway , Ireland
- c Ryan Institute for Environmental, Marine and Energy Research , National University of Ireland Galway , Galway , Ireland
- d School of Engineering , University of Glasgow , Glasgow , UK
| |
Collapse
|
9
|
Comparison of Removal Behavior of Two Biotrickling Filters under Transient Condition and Effect of pH on the Bacterial Communities. PLoS One 2016; 11:e0155593. [PMID: 27196300 PMCID: PMC4873206 DOI: 10.1371/journal.pone.0155593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 05/02/2016] [Indexed: 11/22/2022] Open
Abstract
Although biotrickling filters (BTFs) applied under acidic condition to remove H2S from waste gases have been reported, the removal behavior of the acidic BTF under transient condition which was normal in most industry processes, and corresponding bacterial community have not been thoroughly studied. In the present study, two BTFs were run under neutral (BTFn) and acidic (BTFa) conditions, respectively. The results revealed that the removal performance of BTFa under transient condition was superior to that of BTFn; the maximum H2S eliminating capacities (ECs) achieved by BTFa and BTFn were 489.9 g/m3 h and 443.6 g/m3 h, respectively. High-throughput sequencing suggested that pH was the critical factor and several other factors including nutrient and the inlet loadings also had roles in shaping bacterial community structure. Acidithiobacillus was the most abundant bacterial group. The results indicated that BTF acclimation under acidic condition may facilitate generating microbial community with high H2S-degrading capability.
Collapse
|
10
|
Montebello AM, Bezerra T, Rovira R, Rago L, Lafuente J, Gamisans X, Campoy S, Baeza M, Gabriel D. Operational aspects, pH transition and microbial shifts of a H2S desulfurizing biotrickling filter with random packing material. CHEMOSPHERE 2013; 93:2675-2682. [PMID: 24041568 DOI: 10.1016/j.chemosphere.2013.08.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/12/2013] [Accepted: 08/15/2013] [Indexed: 06/02/2023]
Abstract
Pall rings, a common random packing material, were used in the biotrickling filtration of biogas with high H2S. Assessment of 600d of operation covered the reactor start-up, the operation at neutral pH and the transition from neutral to acid pH. During the start-up period, operational parameters such as the aeration rate and the trickling liquid velocity were optimized. During the steady-state operation at neutral pH, the performance of the random packing material was investigated by reducing the gas contact time at both constant and increasing H2S loads. The random packing material showed similar elimination capacities and removal efficiencies in comparison with previous studies with a structured packing material, indicating that Pall rings are suitable for biogas desulfurization in biotrickling filters. The diversity of Eubacteria and the structure of the community were investigated before and after the pH transition using the bacterial tag-encoded FLX amplicon pyrosequencing. The pH transition to acid pH drastically reduced the microbial diversity and produced a progressive specialization of the sulfur-oxidizing bacteria community without any detrimental effect on the overall desulfurizing capacity of the reactor. During acidic pH operation, a persistent accumulation of elemental sulfur was found.
Collapse
Affiliation(s)
- Andrea M Montebello
- Department of Chemical Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|