1
|
Acciarri G, Taborra ME, Gizzi FO, Blancato VS, Magni C. Insertion sequence IS6770 modulates potassium symporter kup transcription in Enterococcus faecalis JH2-2 under low pH conditions. Int J Food Microbiol 2024; 419:110736. [PMID: 38772216 DOI: 10.1016/j.ijfoodmicro.2024.110736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/05/2024] [Accepted: 05/05/2024] [Indexed: 05/23/2024]
Abstract
Enterococcus faecalis is a phylogenetically and industrially relevant microorganism associated with Lactic Acid Bacteria. Some strains of this bacterium are employed as probiotics in commercial applications, while others serve as the principal component in starter cultures for artisanal regional cheese production. However, over the last decade, this species has emerged as an opportunistic multiresistant pathogen, raising concerns about its impact on human health. Recently, we identified multiple potassium transporter systems in E. faecalis, including the Ktr systems (KtrAB and KtrAD), Kup, KimA and Kdp complex (KdpFABC). Nevertheless, the physiological significance of these proteins remains not fully understood. In this study, we observed that the kup gene promoter region in the JH2-2 strain was modified due to the insertion of a complete copy of the IS6770 insertion sequence. Consequently, we investigated the influence of IS6770 on the expression of the kup gene. To achieve this, we conducted a mapping of the promoter region of this gene in the E. faecalis JH2-2 strain, employing fluorescence gene reporters. In addition, a transcriptional analysis of the kup gene was executed in a strain derived from E. faecalis V583 that lacks the IS30-related insertion element, facilitating the identification of the transcriptional start site. Next, the expression of the kup gene was evaluated via RT-qPCR under different pH stressful conditions. A strong upregulation of the kup gene was observed at an initial pH of 5.0 in the strain derived from E. faecalis V583. However, the activation of transcription was not observed in the E. faecalis JH2-2 strain due to the hindrance caused by the presence of IS6770. Besides that, our computational analysis of E. faecalis genomes elucidates a plausible association between transposition and the regulation of the kup gene. Remarkably, the ubiquitous presence of IS6770 throughout the phylogenetic tree implies its ancient existence within E. faecalis. Moreover, the recurrent co-occurrence of IS6770 with the kup gene, observed in 30 % of IS6770-positive strains, alludes to the potential involvement of this genomic arrangement in the adaptive strategies of E. faecalis across diverse niches.
Collapse
Affiliation(s)
- Giuliana Acciarri
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Suipacha 590, Rosario, Argentina; Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los Alimentos (FBioyF, UNR- Municipalidad de Granadero Baigorria), Sede Suipacha 590, Rosario, Argentina
| | - Maria Eugenia Taborra
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Suipacha 590, Rosario, Argentina; Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los Alimentos (FBioyF, UNR- Municipalidad de Granadero Baigorria), Sede Suipacha 590, Rosario, Argentina
| | - Fernan O Gizzi
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Suipacha 590, Rosario, Argentina; Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los Alimentos (FBioyF, UNR- Municipalidad de Granadero Baigorria), Sede Suipacha 590, Rosario, Argentina
| | - Victor S Blancato
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Suipacha 590, Rosario, Argentina; Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los Alimentos (FBioyF, UNR- Municipalidad de Granadero Baigorria), Sede Suipacha 590, Rosario, Argentina
| | - Christian Magni
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Suipacha 590, Rosario, Argentina; Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los Alimentos (FBioyF, UNR- Municipalidad de Granadero Baigorria), Sede Suipacha 590, Rosario, Argentina.
| |
Collapse
|
2
|
Hubert T, Madec M, Schalk IJ. Experimental and computational methods to highlight behavioural variations in TonB-dependent transporter expression in Pseudomonas aeruginosa versus siderophore concentration. Sci Rep 2023; 13:20015. [PMID: 37974013 PMCID: PMC10654771 DOI: 10.1038/s41598-023-46585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Iron is a key nutrient for bacterial growth. The source can be either heme or siderophore-Fe complexes. Siderophores are small molecules synthesized by bacteria to scavenge iron from the bacterial environment. The pathogen Pseudomonas aeruginosa can express at least 15 different iron uptake pathways and all but one involve a TonB-dependent transporter (TBDT) for the uptake of iron across the outer membrane. Little is known about how bacteria modulate and adapt the expression of their different iron import pathways according to their environment. Here, we have developed fluorescent reporters between the promoter region of genes encoding a TBDT and the fluorescent reporter mCherry. With these constructs, we can follow the expression of TBDTs under different growth conditions. Mathematical modelling of the data obtained showed the transcription and expression of the gene encoding the TBDT PfeA to have a sigmoidal shape, whereas it was logarithmic for the TBDT gene foxA. Maximum transcription for pfeA was reached in the presence of 3 µM enterobactin, the siderophore recognized by PfeA, whereas the maximum was not reached for foxA with 100 µM nocardamine, the siderophore of FoxA.
Collapse
Affiliation(s)
- Thibaut Hubert
- CNRS, UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
- ICube Laboratory, CNRS, UMR 7357, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
| | - Morgan Madec
- ICube Laboratory, CNRS, UMR 7357, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France.
| | - Isabelle J Schalk
- CNRS, UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France.
| |
Collapse
|
3
|
Merritt J, Kreth J. Illuminating the oral microbiome and its host interactions: tools and approaches for molecular microbiology studies. FEMS Microbiol Rev 2023; 47:fuac050. [PMID: 36549660 PMCID: PMC10719069 DOI: 10.1093/femsre/fuac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Advancements in DNA sequencing technologies within the last decade have stimulated an unprecedented interest in the human microbiome, largely due the broad diversity of human diseases found to correlate with microbiome dysbiosis. As a direct consequence of these studies, a vast number of understudied and uncharacterized microbes have been identified as potential drivers of mucosal health and disease. The looming challenge in the field is to transition these observations into defined molecular mechanistic studies of symbiosis and dysbiosis. In order to meet this challenge, many of these newly identified microbes will need to be adapted for use in experimental models. Consequently, this review presents a comprehensive overview of the molecular microbiology tools and techniques that have played crucial roles in genetic studies of the bacteria found within the human oral microbiota. Here, we will use specific examples from the oral microbiome literature to illustrate the biology supporting these techniques, why they are needed in the field, and how such technologies have been implemented. It is hoped that this information can serve as a useful reference guide to help catalyze molecular microbiology studies of the many new understudied and uncharacterized species identified at different mucosal sites in the body.
Collapse
Affiliation(s)
- Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| |
Collapse
|
4
|
Duboux S, Muller JA, De Franceschi F, Mercenier A, Kleerebezem M. Using fluorescent promoter-reporters to study sugar utilization control in Bifidobacterium longum NCC 2705. Sci Rep 2022; 12:10477. [PMID: 35729224 PMCID: PMC9213400 DOI: 10.1038/s41598-022-14638-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023] Open
Abstract
Bifidobacteria are amongst the first bacteria to colonize the human gastro-intestinal system and have been proposed to play a crucial role in the development of the infant gut since their absence is correlated to the development of diseases later in life. Bifidobacteria have the capacity to metabolize a diverse range of (complex) carbohydrates, reflecting their adaptation to the lower gastro-intestinal tract. Detailed understanding of carbohydrate metabolism regulation in this genus is of prime importance and availability of additional genetic tools easing such studies would be beneficial. To develop a fluorescent protein-based reporter system that can be used in B. longum NCC 2705, we first selected the most promising fluorescent protein out of the seven we tested (i.e., mCherry). This reporter protein was then used to study the carbohydrate mediated activation of PBl1518 and PBl1694, two promoters respectively predicted to be controlled by the transcriptional factors AraQ and AraU, previously suggested to regulate arabinose utilization and proposed to also act as global transcriptional regulators in bifidobacteria. We confirmed that in B. longum NCC 2705 the AraQ controlled promoter (PBl1518) is induced strongly by arabinose and established that the AraU controlled promoter (PBl1694) was mostly induced by the hexoses galactose and fructose. Combining the mCherry reporter system with flow cytometry, we established that NCC 2705 is able to co-metabolize arabinose and glucose while galactose was only consumed after glucose exhaustion, thus illustrating the complexity of different carbohydrate consumption patterns and their specific regulation in this strain.
Collapse
Affiliation(s)
- S Duboux
- Nestlé Research, Lausanne, Switzerland. .,Host-Microbe Interactomics Group, Wageningen University and Research, De Elst 1, 6708WD, Wageningen, The Netherlands.
| | | | | | - A Mercenier
- Host-Microbe Interactomics Group, Wageningen University and Research, De Elst 1, 6708WD, Wageningen, The Netherlands
| | - M Kleerebezem
- Host-Microbe Interactomics Group, Wageningen University and Research, De Elst 1, 6708WD, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Wang P, Wang T, Ismael M, Wang X, Yi Y, Lü X. Development of an electroporation method and expression patterns of bacteriocin-encoding genes in Companilactobacillus crustorum MN047. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Arias-Orozco P, Inklaar M, Lanooij J, Cebrián R, Kuipers OP. Functional Expression and Characterization of the Highly Promiscuous Lanthipeptide Synthetase SyncM, Enabling the Production of Lanthipeptides with a Broad Range of Ring Topologies. ACS Synth Biol 2021; 10:2579-2591. [PMID: 34554737 PMCID: PMC8524650 DOI: 10.1021/acssynbio.1c00224] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Lanthipeptides are
ribosomally synthesized and post-translationally
modified peptides characterized by the presence of lanthionine rings
that provide stability and functionality. Genome mining techniques
have shown their huge diversity and potential for the discovery of
novel active molecules. However, in many cases, they are not easily
produced under laboratory conditions. The heterologous expression
of these molecules using well-characterized lanthipeptide biosynthetic
enzymes is rising as an alternative system for the design and production
of new lanthipeptides with biotechnological or clinical properties.
Nevertheless, the substrate-enzyme specificity limits the complete
modification of the desired peptides and hence, their full stability
and/or biological activity. New low substrate-selective biosynthetic
enzymes are therefore necessary for the heterologous production of
new-to-nature peptides. Here, we have identified, cloned, and heterologously
expressed in Lactococcus lactis the
most promiscuous lanthipeptide synthetase described to date, i.e.,
SyncM from the marine cyanobacteria Synechococcus MITS9509. We have characterized the functionality of SyncM by the
successful expression of 15 out of 18 different SyncA substrates,
subsequently determining the dehydration and cyclization processes
in six representatives of them. This characterization highlights the
very relaxed substrate specificity of SyncM toward its precursors
and the ability to catalyze the formation of exceptionally large rings
in a variety of topologies. Our results suggest that SyncM could be
an attractive enzyme to design and produce a wide variety of new-to-nature
lanthipeptides with a broad range of ring topologies.
Collapse
Affiliation(s)
- Patricia Arias-Orozco
- Department of Molecular Genetics, University of Groningen, Groningen 9747AG, The Netherlands
| | - Maartje Inklaar
- Department of Molecular Genetics, University of Groningen, Groningen 9747AG, The Netherlands
| | - Judith Lanooij
- Department of Molecular Genetics, University of Groningen, Groningen 9747AG, The Netherlands
| | - Rubén Cebrián
- Department of Molecular Genetics, University of Groningen, Groningen 9747AG, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen 9747AG, The Netherlands
| |
Collapse
|
7
|
SorTn-seq: a high-throughput functional genomics approach to discovering regulators of bacterial gene expression. Nat Protoc 2021; 16:4382-4418. [PMID: 34349283 DOI: 10.1038/s41596-021-00582-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/03/2021] [Indexed: 11/08/2022]
Abstract
We recently developed a high-throughput functional genomics approach, named 'SorTn-seq', to identify factors affecting expression of any gene of interest in bacteria. Our approach facilitates high-throughput screening of complex mutant pools, a task previously hindered by a lack of suitable techniques. SorTn-seq combines high-density, Tn5-like transposon mutagenesis with fluorescence-activated cell sorting of a strain harboring a promoter-fluorescent reporter fusion, to isolate mutants with altered gene expression. The transposon mutant pool is sorted into different bins on the basis of fluorescence, and mutants are deep-sequenced to identify transposon insertions. DNA is prepared for sequencing by using commercial kits augmented with custom primers, enhancing ease of use and reproducibility. Putative regulators are identified by comparing the number of insertions per genomic feature in the different sort bins, by using existing bioinformatic pipelines and software packages. SorTn-seq can be completed in 1-2 weeks and requires general microbiology skills and basic flow cytometry experience.
Collapse
|
8
|
Coll-Marqués JM, Bäuerl C, Zúñiga M, Pérez-Martínez G. Differences in the expression of cell envelope proteinases (CEP) in two Lactobacillus paracasei probiotic strains. FEMS Microbiol Lett 2021; 367:5861318. [PMID: 32573688 DOI: 10.1093/femsle/fnaa102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022] Open
Abstract
Proteinase PrtP (EC:3.4.21.96) is a cell envelope proteinase (CEP) highly expressed in the probiotic strain Lactobacillus paracasei BL312(VSL#3) that accounts for its anti-inflammatory properties. The main aim of this work is to understand differences in CEP expression between this strain and L. paracasei BL23. Hence, differences in the regulation by amino acid sources of four proteinase related genes (prtP, prsA, prtR1 and prtR2) were determined by RT-qPCR in BL312(VSL#3) and BL23 using as a reference BL368, a BL23 derepressed mutant lacking the response regulator (RR) PrcR. BL312(VSL#3) showed greater expression of prtP (2- to 3-fold) than BL23, and prtP was highly repressed by peptone in both strains. Two other putative CEP genes, prtR1 and prtR2, showed a low expression profile. Interestingly, when the prsA-prtP promoter region from both strains, and deleted mutants, were cloned in vector pT1GR, expression of the gfp and mrfp fluorescent reporters was always repressed in BL23 (high or low peptone) and derepressed in BL368, revealing an interesting mechanism of regulation affecting specifically to this promoter. In conclusion, BL312(VSL#3) has higher expression of prtP and other CEP related genes than BL23, that could respond to a natural deregulation in this strain, possibly independent from the RR PrcR.
Collapse
Affiliation(s)
- José María Coll-Marqués
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Spanish National Research Council (CSIC), Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain
| | - Christine Bäuerl
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Spanish National Research Council (CSIC), Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain
| | - Manuel Zúñiga
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Spanish National Research Council (CSIC), Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain
| | - Gaspar Pérez-Martínez
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Spanish National Research Council (CSIC), Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain
| |
Collapse
|
9
|
Monitoring Gene Expression during a Galleria mellonella Bacterial Infection. Microorganisms 2020; 8:microorganisms8111798. [PMID: 33207842 PMCID: PMC7697238 DOI: 10.3390/microorganisms8111798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/05/2022] Open
Abstract
Galleria mellonella larvae are an alternative in vivo model that has been extensively used to study the virulence and pathogenicity of different bacteria due to its practicality and lack of ethical constraints. However, the larvae possess intrinsic autofluorescence that obstructs the use of fluorescent proteins to study bacterial infections, hence better methodologies are needed. Here, we report the construction of a promoter probe vector with bioluminescence expression as well as the optimization of a total bacterial RNA extraction protocol to enhance the monitoring of in vivo infections. By employing the vector to construct different gene promoter fusions, variable gene expression levels were efficiently measured in G. mellonella larvae at various time points during the course of infection and without much manipulation of the larvae. Additionally, our optimized RNA extraction protocol facilitates the study of transcriptional gene levels during an in vivo infection. The proposed methodologies will greatly benefit bacterial infection studies as they can contribute to a better understanding of the in vivo infection processes and pathogen–mammalian host interactions.
Collapse
|
10
|
Hallinen KM, Guardiola-Flores KA, Wood KB. Fluorescent reporter plasmids for single-cell and bulk-level composition assays in E. faecalis. PLoS One 2020; 15:e0232539. [PMID: 32369497 PMCID: PMC7199960 DOI: 10.1371/journal.pone.0232539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/16/2020] [Indexed: 01/04/2023] Open
Abstract
Fluorescent reporters are an important tool for monitoring dynamics of bacterial populations at the single cell and community level. While there are a large range of reporter constructs available–particularly for common model organisms like E. coli–fewer options exist for other species, including E. faecalis, a gram-positive opportunistic pathogen. To expand the potential toolkit available for E. faecalis, we exchanged the original fluorescent reporter in a previously developed plasmid (pBSU101) with one of eight fluorescent reporters and confirmed that all constructs exhibited detectable fluorescence in single E. faecalis cells and mixed biofilm communities. To identify promising constructs for bulk-level experiments, we then measured the fluorescence spectra from E. faecalis populations in microwell plate (liquid) cultures during different phases of aerobic growth. Cultures showed density- and reporter-specific variations in fluorescent signal, though spectral signatures of all reporters become clear in late-exponential and stationary-phase populations. Based on these results, we identified six pairs of reporters that can be combined with simple spectral unmixing to accurately estimate population composition in 2-strain mixtures at or near stationary phase. This approach offers a simple and scalable method for selection and competition experiments in simple two-species populations under aerobic growth conditions. Finally, we incorporated codon-optimized variants of blue (BFP) and red (RFP) reporters and show that they lead to increased fluorescence in exponentially growing cells. As a whole, the results inform the scope of application of different reporters and identify both single reporters and reporter pairs that are promising for fluorescence-based assays at bulk and single-cell levels in E. faecalis.
Collapse
Affiliation(s)
- Kelsey M. Hallinen
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Kevin B. Wood
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Physics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
11
|
Landete JM, Langa S, Escudero C, Peirotén Á, Arqués JL. Fluorescent detection of nisin by genetically modified Lactococcus lactis strains in milk and a colonic model: Application of whole-cell nisin biosensors. J Biosci Bioeng 2020; 129:435-440. [PMID: 31757606 DOI: 10.1016/j.jbiosc.2019.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 11/30/2022]
Abstract
Detection of bioactive peptides in complex ecosystems like intestinal environment is a difficult task. In this study, we developed two new bioreporters for nisin based on Lactococcus lactis NZ9000 transformed with the vector pNZ:Nis-aFP or pNZ:Nis-mCherry, that encoded for the anaerobic fluorescent protein evoglow-Pp1 (aFP) or the fluorescent protein mCherry, respectively. The biosensors were used to study nisin A production by L. lactis INIA 650 in milk and in a colonic model. The use of L. lactis NZ9000 pNZ:Nis-aFP as a biosensor allowed the detection of nisin produced by L. lactis INIA 650 in milk, but not in the in vitro colonic model. In milk, this reporter was induced by direct addition of 10 ng/ml nisin while, in the colonic model, nisin concentrations of 50 ng/ml were necessary. However, the reporter system based on pNZ:Nis-mCherry showed a higher sensibility, detecting nisin concentrations of 1 ng/ml produced by L. lactis INIA 650 in colonic media using agar diffusion or cross streak bioassays.
Collapse
Affiliation(s)
- José M Landete
- Departamento de Tecnología de Alimentos, INIA, Carretera de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Susana Langa
- Departamento de Tecnología de Alimentos, INIA, Carretera de la Coruña Km 7.5, 28040 Madrid, Spain.
| | - Carlos Escudero
- Departamento de Tecnología de Alimentos, INIA, Carretera de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Ángela Peirotén
- Departamento de Tecnología de Alimentos, INIA, Carretera de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Juan L Arqués
- Departamento de Tecnología de Alimentos, INIA, Carretera de la Coruña Km 7.5, 28040 Madrid, Spain
| |
Collapse
|
12
|
Zhao N, Liu JM, Liu S, Ji XM, Lv H, Hu YZ, Wang ZH, Lv SW, Li CY, Wang S. A novel universal nano-luciferase-involved reporter system for long-term probing food-borne probiotics and pathogenic bacteria in mice by in situ bioluminescence imaging. RSC Adv 2020; 10:13029-13036. [PMID: 35492135 PMCID: PMC9051406 DOI: 10.1039/d0ra01283a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/23/2020] [Indexed: 01/18/2023] Open
Abstract
Food-borne bacteria have received increasing attention due to their great impact on human health. Bioimaging makes it possible to monitor bacteria inside the living body in real time and in situ. Nano-luciferase (NLuc) as a new member of the luciferase family exhibits superior properties than the commonly used luciferases, including small size, high stability and improved luminescence. Herein, NLuc, CBRLuc and FLuc were well expressed in varied food-borne bacteria. Results showed that the signal intensity of E. coli-NLuc was about 41 times higher than E. coli-CBRLuc, L. plantarum-NLuc was nearly 227 times that of L. plantarum-FLuc in vitro. Moreover, NLuc was applied to trace L. plantarum and E. coli in vivo through the whole body and separated digestive tract imaging, as well as the feces bacterium counting and probing. The persistence of bioluminescent strains was predominantly localized in colon and cecum of mice after oral administration. The NLuc system showed its incomparable superiority, especially in the application of intestinal imaging and the universality for food-borne bacteria. We demonstrated that the NLuc system was a brilliant alternative for specific application of food-borne bacteria in vivo, aiming to collect more accurate and real-time information of food-borne bacteria from the living body for further investigation of their damage mechanism and nutrition effect. Schematic illustration of the preparation of bioluminescent bacteria and the experimental design of tracing of the foodborne bacteria in vivo.![]()
Collapse
|
13
|
Mohedano ML, Hernández-Recio S, Yépez A, Requena T, Martínez-Cuesta MC, Peláez C, Russo P, LeBlanc JG, Spano G, Aznar R, López P. Real-Time Detection of Riboflavin Production by Lactobacillus plantarum Strains and Tracking of Their Gastrointestinal Survival and Functionality in vitro and in vivo Using mCherry Labeling. Front Microbiol 2019; 10:1748. [PMID: 31417534 PMCID: PMC6684964 DOI: 10.3389/fmicb.2019.01748] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/15/2019] [Indexed: 01/12/2023] Open
Abstract
Some strains of lactic acid bacteria (LAB) produce riboflavin, a water-soluble vitamin of the B complex, essential for human beings. Here, we have evaluated riboflavin (B2 vitamin) production by five Lactobacillus plantarum strains isolated from chicha, a traditional maize-based fermented alcoholic beverage from north-western Argentina and their isogenic riboflavin-overproducing derivatives previously selected using roseoflavin. A direct fluorescence spectroscopic detection method to quantify riboflavin production in bacterial culture supernatants has been tested. Comparison of the efficiency for riboflavin fluorescence quantification with and without prior HPLC fractionation showed that the developed method is a rapid and easy test for selection of B2 vitamin-producing strains. In addition, it can be used for quantitative detection of the vitamin production in real time during bacterial growth. On the basis of this and previous analyses, the L. plantarum M5MA1-B2 riboflavin overproducer was selected for in vitro and in vivo studies after being fluorescently labeled by transfer of the pRCR12 plasmid, which encodes the mCherry protein. The labeling did not affect negatively the growth, the riboflavin production nor the adhesion of the strain to Caco-2 cells. Thus, L. plantarum M5MA1-B2[pRCR12] was evaluated for its survival under digestive tract stresses in the presence of microbiota in the dynamic multistage BFBL gut model and in a murine model. After exposure to both models, M5MA1-B2[pRCR12] could be recovered and detected by the pink color of the colonies. The results indicated a satisfactory resistance of the strain to gastric and intestinal stress conditions but a low colonization capability observed both in vitro and in vivo. Overall, L. plantarum M5MA1-B2 could be proposed as a probiotic strain for the development of functional foods.
Collapse
Affiliation(s)
- Mari Luz Mohedano
- Department of Microorganisms and Plant Biotechnology, Biological Research Center (CIB-CSIC), Madrid, Spain
| | - Sara Hernández-Recio
- Department of Microorganisms and Plant Biotechnology, Biological Research Center (CIB-CSIC), Madrid, Spain
| | - Alba Yépez
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Teresa Requena
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL-CSIC), Madrid, Spain
| | - M. Carmen Martínez-Cuesta
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL-CSIC), Madrid, Spain
| | - Carmen Peláez
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL-CSIC), Madrid, Spain
| | - Pasquale Russo
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Jean Guy LeBlanc
- Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Giuseppe Spano
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Rosa Aznar
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Spain
| | - Paloma López
- Department of Microorganisms and Plant Biotechnology, Biological Research Center (CIB-CSIC), Madrid, Spain
| |
Collapse
|
14
|
Garay-Novillo JN, García-Morena D, Ruiz-Masó JÁ, Barra JL, Del Solar G. Combining Modules for Versatile and Optimal Labeling of Lactic Acid Bacteria: Two pMV158-Family Promiscuous Replicons, a Pneumococcal System for Constitutive or Inducible Gene Expression, and Two Fluorescent Proteins. Front Microbiol 2019; 10:1431. [PMID: 31297101 PMCID: PMC6607859 DOI: 10.3389/fmicb.2019.01431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/06/2019] [Indexed: 11/24/2022] Open
Abstract
Labeling of bacterial cells with fluorescent proteins allows tracking the bacteria in competition and interactomic in vivo and in vitro studies. During the last years, a few plasmid vectors have been developed aimed at the fluorescent labeling of specific members of the lactic acid bacteria (LAB), a heterogeneous group that includes microorganisms used in the food industry, as probiotics, or as live vectors for mucosal vaccines. Successful and versatile labeling of a broad range of LAB not only requires a vector containing a promiscuous replicon and a widely recognized expression system for the constitutive or regulated expression of the fluorescence determinant, but also the knowledge of the main features of the entire plasmid/host/fluorescent protein ensemble. By using the LAB model species Lactococcus lactis, we have compared the utility properties of a set of labeling vectors constructed by combining a promiscuous replicon (pMV158 or pSH71) of the pMV158 plasmid family with the gene encoding either the EGFP or the mCherry fluorescent protein placed under control of promoter PX or PM from the pneumococcal mal gene cluster for maltosaccharide uptake and utilization, respectively. Some vectors carrying PM also harbor the malR gene, whose product represses transcription from this promoter, thus enabling maltose-inducible synthesis of the fluorescent proteins. We have determined the plasmid copy number (PCN) and segregational stability of the different constructs, as well as the effect of these features on the fitness and fluorescence intensity of the lactococcal host. Constructs based on the pSH71 replicon had a high copy number (∼115) and were segregationally stable. The copy number of vectors based on the pMV158 replicon was lower (∼8–45) and varied substantially depending on the genetic context of the plasmid and on the bacterial growth conditions; as a consequence, inheritance of these vectors was less stable. Synthesis of the fluorescent proteins encoded by these plasmids did not significantly decrease the host fitness. By employing inducible expression vectors, the fluorescent proteins were shown to be very stable in this bacterium. Importantly, conditions for accurate quantification of the emitted fluorescence were established based on the maturation times of the fluorescent proteins.
Collapse
Affiliation(s)
- Javier Nicolás Garay-Novillo
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Córdoba, Argentina
| | - Diego García-Morena
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José Ángel Ruiz-Masó
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José Luis Barra
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Córdoba, Argentina
| | - Gloria Del Solar
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
15
|
Engineering of lactic acid bacteria for delivery of therapeutic proteins and peptides. Appl Microbiol Biotechnol 2019; 103:2053-2066. [DOI: 10.1007/s00253-019-09628-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
|
16
|
Liu JM, Zhao N, Wang ZH, Lv SW, Li CY, Wang S. In-Taken Labeling and in Vivo Tracing Foodborne Probiotics via DNA-Encapsulated Persistent Luminescence Nanoprobe Assisted Autofluorescence-Free Bioimaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:514-519. [PMID: 30563334 DOI: 10.1021/acs.jafc.8b05937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
An in vivo probing strategy that can real-time and in situ trace target probiotics inside the living body is herein proposed by employing plasmid-like DNA as in-taken assistance, persistent luminescence nanophosphors (PLNPs) as optical labeling, and background-free fluorescence bioimaging as signal readout. PLNPs with superlong afterglow and excellent biocompatibility and stability were surface-modified by DNA molecules with a specific sequence, which greatly promoted the nanoparticle penetration into the bacteria and facilitated the in vivo bioimaging with high sensitivity and signal-to-noise ratio. Compared with the previous surface-labeling strategy by antibody recognition, the in-taken optical labeling demonstrated improved stability, and reached ideal results of real-time and in situ monitoring the in vivo behaviors of target probiotics, supporting the further development of in vivo investigation methodology for foodborne probiotics. Moreover, such a strategy offers a promising platform that leverage nanoscience to food nutrition as well as food-safety research, aiming to collect more accurate and fresh information from the living body.
Collapse
Affiliation(s)
- Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , No.94 Weijin Road , Tianjin 300071 , China
| | - Ning Zhao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , No.94 Weijin Road , Tianjin 300071 , China
| | - Zhi-Hao Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , No.94 Weijin Road , Tianjin 300071 , China
| | - Shi-Wen Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , No.94 Weijin Road , Tianjin 300071 , China
| | - Chun-Yang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , No.94 Weijin Road , Tianjin 300071 , China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , No.94 Weijin Road , Tianjin 300071 , China
| |
Collapse
|
17
|
Implications of the expression of Enterococcus faecalis citrate fermentation genes during infection. PLoS One 2018; 13:e0205787. [PMID: 30335810 PMCID: PMC6193673 DOI: 10.1371/journal.pone.0205787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/02/2018] [Indexed: 12/05/2022] Open
Abstract
Citrate is an ubiquitous compound in nature. However, citrate fermentation is present only in a few pathogenic or nonpathogenic microorganisms. The citrate fermentation pathway includes a citrate transporter, a citrate lyase complex, an oxaloacetate decarboxylase and a regulatory system. Enterococcus faecalis is commonly present in the gastro-intestinal microbiota of warm-blooded animals and insect guts. These bacteria can also cause infection and disease in immunocompromised individuals. In the present study, we performed whole genome analysis in Enterococcus strains finding that the complete citrate pathway is present in all of the E. faecalis strains isolated from such diverse habitats as animals, hospitals, water, milk, plants, insects, cheese, etc. These results indicate the importance of this metabolic preservation for persistence and growth of E. faecalis in different niches. We also analyzed the role of citrate metabolism in the E. faecalis pathogenicity. We found that an E. faecalis citrate fermentation-deficient strain was less pathogenic for Galleria mellonella larvae than the wild type. Furthermore, strains with deletions in the oxaloacetate decarboxylase subunits or in the α-acetolactate synthase resulted also less virulent than the wild type strain. We also observed that citrate promoters are induced in blood, urine and also in the hemolymph of G. mellonella. In addition, we showed that citrate fermentation allows E. faecalis to grow better in blood, urine and G. mellonella. The results presented here clearly indicate that citrate fermentation plays an important role in E. faecalis opportunistic pathogenic behavior.
Collapse
|
18
|
Pérez-Ramos A, Mohedano ML, Pardo MÁ, López P. β-Glucan-Producing Pediococcus parvulus 2.6: Test of Probiotic and Immunomodulatory Properties in Zebrafish Models. Front Microbiol 2018; 9:1684. [PMID: 30090096 PMCID: PMC6068264 DOI: 10.3389/fmicb.2018.01684] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022] Open
Abstract
Lactic acid bacteria synthesize exopolysaccharides (EPS), which could benefit the host's health as immunomodulators. Furthermore, EPS could protect bacteria against gastrointestinal stress, favoring gut colonization, thus protecting the host against pathogenic infections. Pediococcus parvulus 2.6, produces a 2-substituted (1,3)-β-D-glucan and, in this work, its probiotic properties as well as the immunomodulatory capability of its EPS have been investigated using Danio rerio (zebrafish). To this end and for a comparative analysis, P. parvulus 2.6 and its isogenic β-glucan-non-producing 2.6NR strain were fluorescently labeled by transfer of the pRCR12 plasmid, which encodes the mCherry protein. For the in vivo studies, there were used: (i) a gnotobiotic larvae zebrafish model for bacterial colonization, pathogen competition, and evaluation of the β-glucan immunomodulation capability and (ii) a transgenic (mpx:GFP) zebrafish model to determine the EPS influence in the recruitment of neutrophils under an induced inflammation. The results revealed a positive effect of the β-glucan on colonization of the zebrafish gut by P. parvulus, as well as in competition of the bacterium with the pathogen Vibrio anguillarum in this environment. The larvae treatment with the purified β-glucan resulted in a decrease of expression of genes encoding pro-inflammatory cytokines. Moreover, the β-glucan had an anti-inflammatory effect, when it was evaluated in an induced inflammation model of Tg(mpx:GFP) zebrafish. Therefore, P. parvulus 2.6 and its EPS showed positive health properties in in vivo fish models, supporting their potential usage in aquaculture.
Collapse
Affiliation(s)
- Adrián Pérez-Ramos
- Laboratory of Molecular Biology of Gram-positive Bacteria, Department of Microorganisms and Plant Biotechnology, Biological Research Center, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Maria L. Mohedano
- Laboratory of Molecular Biology of Gram-positive Bacteria, Department of Microorganisms and Plant Biotechnology, Biological Research Center, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Miguel Á. Pardo
- Food Research Division, Centro Tecnológico de Investigación Marina y Alimentaria (AZTI), Derio, Spain
| | - Paloma López
- Laboratory of Molecular Biology of Gram-positive Bacteria, Department of Microorganisms and Plant Biotechnology, Biological Research Center, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
19
|
Bervoets I, Charlier D. A novel and versatile dual fluorescent reporter tool for the study of gene expression and regulation in multi- and single copy number. Gene 2017; 642:474-482. [PMID: 29191759 DOI: 10.1016/j.gene.2017.11.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 12/27/2022]
Abstract
To unravel intricate mechanisms of gene regulation it is imperative to work in physiologically relevant conditions and therefore preferentially in single copy constructs, which are not always easy to manipulate. Such in vivo studies are generally based on enzymatic assays, microarrays, RNA-seq, qRT-PCR, or multicopy reporter gene systems, frequently with β-galactosidase, luciferase or a fluorescent protein as reporter. Each method has its advantages and shortcomings and may require validation. Enzyme assays are generally reliable but may be quite complex, time consuming, and require a (expensive) substrate. Microarrays and RNA-seq provide a genome wide view of gene expression but may rapidly become expensive and time consuming especially for detailed studies with large numbers of mutants, different growth conditions and multiple time points. Multicopy reporter gene systems are handy to generate numerous constructs but may not provide accurate information due to titration effects of trans-acting regulatory elements. Therefore and in spite of the existence of various reporter systems, there is still need for an efficient and user-friendly tool for detailed studies and high throughput screenings. Here we develop and validate a novel and versatile fluorescent reporter tool to study gene regulation in single copy mode that enables real-time measurement. This tool bears two independent fluorescent reporters that allow high throughput screening and standardization, and combines modern efficient cloning methods (multicopy, in vitro manipulation) with classical genetics (in vivo homologous recombination with a stable, self-transmissible episome) to generate multi- and single copy reporter systems. We validate the system with constitutive and differentially regulated promoters and show that the tool can equally be used with heterologous transcription factors. The flexibility and versatility of this dual reporter tool in combination with an easy conversion from a multicopy plasmid to a stable, single copy reporter system makes this system unique and attractive for a variety of applications. Examples are in vivo studies of DNA-binding transcription factors (single copy) or screening of promoter and RBS libraries (multicopy) for synthetic biology purposes.
Collapse
Affiliation(s)
- Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
20
|
Nácher-Vázquez M, Ruiz-Masó JA, Mohedano ML, del Solar G, Aznar R, López P. Dextransucrase Expression Is Concomitant with that of Replication and Maintenance Functions of the pMN1 Plasmid in Lactobacillus sakei MN1. Front Microbiol 2017; 8:2281. [PMID: 29209293 PMCID: PMC5702455 DOI: 10.3389/fmicb.2017.02281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/06/2017] [Indexed: 11/27/2022] Open
Abstract
The exopolysaccharide synthesized by Lactobacillus sakei MN1 is a dextran with antiviral and immunomodulatory properties of potential utility in aquaculture. In this work we have investigated the genetic basis of dextran production by this bacterium. Southern blot hybridization experiments demonstrated the plasmidic location of the dsrLS gene, which encodes the dextransucrase involved in dextran synthesis. DNA sequencing of the 11,126 kbp plasmid (pMN1) revealed that it belongs to a family which replicates by the theta mechanism, whose prototype is pUCL287. The plasmid comprises the origin of replication, repA, repB, and dsrLS genes, as well as seven open reading frames of uncharacterized function. Lb. sakei MN1 produces dextran when sucrose, but not glucose, is present in the growth medium. Therefore, plasmid copy number and stability, as well as dsrLS expression, were investigated in cultures grown in the presence of either sucrose or glucose. The results revealed that pMN1 is a stable low-copy-number plasmid in both conditions. Gene expression studies showed that dsrLS is constitutively expressed, irrespective of the carbon source present in the medium. Moreover, dsrLS is expressed from a monocistronic transcript as well as from a polycistronic repA-repB-orf1-dsrLS mRNA. To our knowledge, this is the first report of a plasmid-borne dextransucrase-encoding gene, as well as the first time that co-transcription of genes involved in plasmid maintenance and replication with a gene encoding an enzyme has been established.
Collapse
Affiliation(s)
- Montserrat Nácher-Vázquez
- Department of Molecular Microbiology and Infection Biology, Biological Research Center, Spanish National Research Council (CSIC), Madrid, Spain
| | - José A. Ruiz-Masó
- Department of Molecular Microbiology and Infection Biology, Biological Research Center, Spanish National Research Council (CSIC), Madrid, Spain
| | - María L. Mohedano
- Department of Molecular Microbiology and Infection Biology, Biological Research Center, Spanish National Research Council (CSIC), Madrid, Spain
| | - Gloria del Solar
- Department of Molecular Microbiology and Infection Biology, Biological Research Center, Spanish National Research Council (CSIC), Madrid, Spain
| | - Rosa Aznar
- Department of Food Safety and Preservation, Institute of Agrochemistry and Food Technology, CSIC, Paterna, Spain
- Department of Microbiology and Ecology, University of Valencia, Burjassot, Spain
| | - Paloma López
- Department of Molecular Microbiology and Infection Biology, Biological Research Center, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
21
|
Landete JM, Arqués JL. Fluorescent Lactic Acid Bacteria and Bifidobacteria as Vehicles of DNA Microbial Biosensors. Int J Mol Sci 2017; 18:ijms18081728. [PMID: 32962311 PMCID: PMC5578118 DOI: 10.3390/ijms18081728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 02/01/2023] Open
Abstract
Control and quantification of effector molecules such as heavy metals, toxins or other target molecules is of great biotechnological, social and economic interest. Microorganisms have regulatory proteins that recognize and modify the gene expression in the presence or absence of these compounds (effector molecules) by means of binding to gene sequences. The association of these recognizing gene sequences to reporter genes will allow the detection of effector molecules of interest with high sensitivity. Once investigators have these two elements-recognizing gene sequences and reporter genes that emit signals-we need a suitable vehicle to introduce both elements. Here, we suggest lactic acid bacteria (LAB) and bifidobacteria as promising carrier microorganisms for these molecular biosensors. The use of fluorescent proteins as well as food-grade vectors and clustered regularly interspaced short palindromic repeats (CRISPR) are indispensable tools for introducing biosensors into these microorganisms. The use of these LAB and bifidobacteria would be of special interest for studying the intestinal environment or other complex ecosystems. The great variety of species adapted to many environments, as well as the possibility of applying several protocols for their transformation with recognizing gene sequences and reporter genes are considerable advantages. Finally, an effort must be made to find recognizable gene sequences.
Collapse
|
22
|
Martinez-Jaramillo E, Garza-Morales R, Loera-Arias MJ, Saucedo-Cardenas O, Montes-de-Oca-Luna R, McNally LR, Gomez-Gutierrez JG. Development of Lactococcus lactis encoding fluorescent proteins, GFP, mCherry and iRFP regulated by the nisin-controlled gene expression system. Biotech Histochem 2017; 92:167-174. [PMID: 28318334 PMCID: PMC5638124 DOI: 10.1080/10520295.2017.1289554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Fluorescent proteins are useful reporter molecules for a variety of biological systems. We present an alternative strategy for cloning reporter genes that are regulated by the nisin-controlled gene expression (NICE) system. Lactoccocus lactis was genetically engineered to express green fluorescent protein (GFP), mCherry or near-infrared fluorescent protein (iRFP). The reporter gene sequences were optimized to be expressed by L. lactis using inducible promoter pNis within the pNZ8048 vector. Expression of constructions that carry mCherry or GFP was observed by fluorescence microscopy 2 h after induction with nisin. Expression of iRFP was evaluated at 700 nm using an infrared scanner; cultures induced for 6 h showed greater iRFP expression than non-induced cultures or those expressing GFP. We demonstrated that L. lactis can express efficiently GFP, mCherry and iRFP fluorescent proteins using an inducible expression system. These strains will be useful for live cell imaging studies in vitro or for imaging studies in vivo in the case of iRFP.
Collapse
Affiliation(s)
- E Martinez-Jaramillo
- The Hiram C Polk Jr., MD, Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Histology, School of Medicine, Autonomous University of Nuevo León, Monterrey, NL, México
| | - R Garza-Morales
- Department of Histology, School of Medicine, Autonomous University of Nuevo León, Monterrey, NL, México
| | - MJ Loera-Arias
- Department of Histology, School of Medicine, Autonomous University of Nuevo León, Monterrey, NL, México
| | - O Saucedo-Cardenas
- Department of Histology, School of Medicine, Autonomous University of Nuevo León, Monterrey, NL, México
| | - R Montes-de-Oca-Luna
- Department of Histology, School of Medicine, Autonomous University of Nuevo León, Monterrey, NL, México
| | - LR McNally
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - JG Gomez-Gutierrez
- The Hiram C Polk Jr., MD, Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
23
|
Zhu D, Fu Y, Liu F, Xu H, Saris PEJ, Qiao M. Enhanced heterologous protein productivity by genome reduction in Lactococcus lactis NZ9000. Microb Cell Fact 2017; 16:1. [PMID: 28049473 PMCID: PMC5210298 DOI: 10.1186/s12934-016-0616-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The implementation of novel chassis organisms to be used as microbial cell factories in industrial applications is an intensive research field. Lactococcus lactis, which is one of the most extensively studied model organisms, exhibits superior ability to be used as engineered host for fermentation of desirable products. However, few studies have reported about genome reduction of L. lactis as a clean background for functional genomic studies and a model chassis for desirable product fermentation. RESULTS Four large nonessential DNA regions accounting for 2.83% in L. lactis NZ9000 (L. lactis 9 k) genome (2,530,294 bp) were deleted using the Cre-loxP deletion system as the first steps toward a minimized genome in this study. The mutants were compared with the parental strain in several physiological traits and evaluated as microbial cell factories for heterologous protein production (intracellular and secretory expression) with the red fluorescent protein (RFP) and the bacteriocin leucocin C (LecC) as reporters. The four mutants grew faster, yielded enhanced biomass, achieved increased adenosine triphosphate content, and diminished maintenance demands compared with the wild strain in the two media tested. In particular, L. lactis 9 k-4 with the largest deletion was identified as the optimum candidate host for recombinant protein production. With nisin induction, not only the transcriptional efficiency but also the production levels of the expressed reporters were approximately three- to fourfold improved compared with the wild strain. The expression of lecC gene controlled with strong constitutive promoters P5 and P8 in L. lactis 9 k-4 was also improved significantly. CONCLUSIONS The genome-streamlined L. lactis 9 k-4 outcompeted the parental strain in several physiological traits assessed. Moreover, L. lactis 9 k-4 exhibited good properties as platform organism for protein production. In future works, the genome of L. lactis will be maximally reduced by using our specific design to provide an even more clean background for functional genomics studies than L. lactis 9 k-4 constructed in this study. Furthermore, an improved background will be potentially available for use in biotechology.
Collapse
Affiliation(s)
- Duolong Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.,Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Yuxin Fu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Fulu Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Haijin Xu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Per Erik Joakim Saris
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mingqiang Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China. .,College of Life Sciences, Nankai University, Room 301, Tianjin, China.
| |
Collapse
|
24
|
Landete JM, Medina M, Arqués JL. Fluorescent reporter systems for tracking probiotic lactic acid bacteria and bifidobacteria. World J Microbiol Biotechnol 2016; 32:119. [PMID: 27263014 DOI: 10.1007/s11274-016-2077-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/27/2016] [Indexed: 12/19/2022]
Abstract
In the last two decades, there has been increasing evidence supporting the role of the intestinal microbiota in health and disease, as well as the use of probiotics to modulate its activity and composition. Probiotic bacteria selected for commercial use in foods, mostly lactic acid bacteria and bifidobacteria, must survive in sufficient numbers during the manufacturing process, storage, and passage through the gastro-intestinal tract. They have several modes of action and it is crucial to unravel the mechanisms underlying their postulated beneficial effects. To track their survival and persistence, and to analyse their interaction with the gastro-intestinal epithelia it is essential to discriminate probiotic strains from endogenous microbiota. Fluorescent reporter proteins are relevant tools that can be exploited as a non-invasive marker system for in vivo real-time imaging in complex ecosystems as well as in vitro fluorescence labelling. Oxygen is required for many of these reporter proteins to fluoresce, which is a major drawback in anoxic environments. However, some new fluorescent proteins are able to overcome the potential problems caused by oxygen limitations. The current available approaches and the benefits/disadvantages of using reporter vectors containing fluorescent proteins for labelling of bacterial probiotic species commonly used in food are addressed.
Collapse
Affiliation(s)
- José M Landete
- Dpto. de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040, Madrid, Spain
| | - Margarita Medina
- Dpto. de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040, Madrid, Spain
| | - Juan L Arqués
- Dpto. de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040, Madrid, Spain.
| |
Collapse
|
25
|
Roces C, Campelo AB, Escobedo S, Wegmann U, García P, Rodríguez A, Martínez B. Reduced Binding of the Endolysin LysTP712 to Lactococcus lactis ΔftsH Contributes to Phage Resistance. Front Microbiol 2016; 7:138. [PMID: 26904011 PMCID: PMC4749879 DOI: 10.3389/fmicb.2016.00138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/25/2016] [Indexed: 02/01/2023] Open
Abstract
Absence of the membrane protease FtsH in Lactococcus lactis hinders release of the bacteriophage TP712. In this work we have analyzed the mechanism responsible for the non-lytic phenotype of L. lactis ΔftsH after phage infection. The lytic cassette of TP712 contains a putative antiholin–pinholin system and a modular endolysin (LysTP712). Inducible expression of the holin gene demonstrated the presence of a dual start motif which is functional in both wildtype and L. lactis ΔftsH cells. Moreover, simulating holin activity with ionophores accelerated lysis of wildtype cells but not L. lactis ΔftsH cells, suggesting inhibition of the endolysin rather than a role of FtsH in holin activation. However, zymograms revealed the synthesis of an active endolysin in both wildtype and L. lactis ΔftsH TP712 lysogens. A reporter protein was generated by fusing the cell wall binding domain of LysTP712 to the fluorescent mCherry protein. Binding of this reporter protein took place at the septa of both wildtype and L. lactis ΔftsH cells as shown by fluorescence microscopy. Nonetheless, fluorescence spectroscopy demonstrated that mutant cells bound 40% less protein. In conclusion, the non-lytic phenotype of L. lactis ΔftsH is not due to direct action of the FtsH protease on the phage lytic proteins but rather to a putative function of FtsH in modulating the architecture of the L. lactis cell envelope that results in a lower affinity of the phage endolysin to its substrate.
Collapse
Affiliation(s)
- Clara Roces
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Ana B Campelo
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Susana Escobedo
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Udo Wegmann
- Institute of Food Research, Norwich Research Park Norwich, UK
| | - Pilar García
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Ana Rodríguez
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Beatriz Martínez
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| |
Collapse
|
26
|
van Zyl WF, Deane SM, Dicks LMT. Reporter systems for in vivo tracking of lactic acid bacteria in animal model studies. Gut Microbes 2015; 6:291-9. [PMID: 26516656 PMCID: PMC4826117 DOI: 10.1080/19490976.2015.1086058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bioluminescence (BLI) and fluorescence imaging (FI) allow for non-invasive detection of viable microorganisms from within living tissue and are thus ideally suited for in vivo probiotic studies. Highly sensitive optical imaging techniques detect signals from the excitation of fluorescent proteins, or luciferase-catalyzed oxidation reactions. The excellent relation between microbial numbers and photon emission allow for quantification of tagged bacteria in vivo with extreme accuracy. More information is gained over a shorter period compared to traditional pre-clinical animal studies. The review summarizes the latest advances in in vivo bioluminescence and fluorescence imaging and points out the advantages and limitations of different techniques. The practical application of BLI and FI in the tracking of lactic acid bacteria in animal models is addressed.
Collapse
Affiliation(s)
- Winschau F van Zyl
- Department of Microbiology; Stellenbosch University; Matieland, Stellenbosch, South Africa
| | - Shelly M Deane
- Department of Microbiology; Stellenbosch University; Matieland, Stellenbosch, South Africa
| | - Leon M T Dicks
- Department of Microbiology; Stellenbosch University; Matieland, Stellenbosch, South Africa,Correspondence to: Leon M T Dicks;
| |
Collapse
|
27
|
van Zyl WF, Deane SM, Dicks LMT. Use of the mCherry Fluorescent Protein To Study Intestinal Colonization by Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 in Mice. Appl Environ Microbiol 2015; 81:5993-6002. [PMID: 26116681 PMCID: PMC4551250 DOI: 10.1128/aem.01247-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/22/2015] [Indexed: 12/19/2022] Open
Abstract
Lactic acid bacteria (LAB) are natural inhabitants of the gastrointestinal tract (GIT) of humans and animals, and some LAB species receive considerable attention due to their health benefits. Although many papers have been published on probiotic LAB, only a few reports have been published on the migration and colonization of the cells in the GIT. This is due mostly to the lack of efficient reporter systems. In this study, we report on the application of the fluorescent mCherry protein in the in vivo tagging of the probiotic strains Enterococcus mundtii ST4SA and Lactobacillus plantarum 423. The mCherry gene, encoding a red fluorescent protein (RFP), was integrated into a nonfunctional region on the genome of L. plantarum 423 by homologous recombination. In the case of E. mundtii ST4SA, the mCherry gene was cloned into the pGKV223D LAB/Escherichia coli expression vector. Expression of the mCherry gene did not alter the growth rate of the two strains and had no effect on bacteriocin production. Both strains colonized the cecum and colon of mice.
Collapse
Affiliation(s)
- Winschau F van Zyl
- Department of Microbiology, University of Stellenbosch, Stellenbosch, South Africa
| | - Shelly M Deane
- Department of Microbiology, University of Stellenbosch, Stellenbosch, South Africa
| | - Leon M T Dicks
- Department of Microbiology, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
28
|
Russo P, Iturria I, Mohedano ML, Caggianiello G, Rainieri S, Fiocco D, Angel Pardo M, López P, Spano G. Zebrafish gut colonization by mCherry-labelled lactic acid bacteria. Appl Microbiol Biotechnol 2015; 99:3479-90. [PMID: 25586576 DOI: 10.1007/s00253-014-6351-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/18/2014] [Accepted: 12/21/2014] [Indexed: 12/21/2022]
Abstract
A critical feature of probiotic microorganisms is their ability to colonize the intestine of the host. Although the microbial potential to adhere to the human gut lumen has been investigated in in vitro models, there is still much to discover about their in vivo behaviour. Zebrafish is a vertebrate model that is being widely used to investigate various biological processes shared with humans. In this work, we report on the use of the zebrafish model to investigate the in vivo colonization ability of previously characterized probiotic lactic acid bacteria. Lactobacillus plantarum Lp90, L. plantarum B2 and Lactobacillus fermentum PBCC11.5 were fluorescently tagged by transfer of the pRCR12 plasmid, which encodes the mCherry protein and which was constructed in this work. The recombinant bacteria were used to infect germ-free zebrafish larvae. After removal of bacteria, the colonization ability of the strains was monitored until 3 days post-infection by using a fluorescence stereomicroscope. The results indicated differential adhesion capabilities among the strains. Interestingly, a displacement of bacteria from the medium to the posterior intestinal tract was observed as a function of time that suggested a transient colonization by probiotics. Based on fluorescence observation, L. plantarum strains exhibited a more robust adhesion capability. In conclusion, the use of pRCR12 plasmid for labelling Lactobacillus strains provides a powerful and very efficient tool to monitor the in vivo colonization in zebrafish larvae and to investigate the adhesion ability of probiotic microorganisms.
Collapse
|
29
|
Mohedano ML, García-Cayuela T, Pérez-Ramos A, Gaiser RA, Requena T, López P. Construction and validation of a mCherry protein vector for promoter analysis in Lactobacillus acidophilus. J Ind Microbiol Biotechnol 2014; 42:247-53. [PMID: 25533634 DOI: 10.1007/s10295-014-1567-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/12/2014] [Indexed: 01/02/2023]
Abstract
Lactobacilli are widespread in natural environments and are increasingly being investigated as potential health modulators. In this study, we have adapted the broad-host-range vector pNZ8048 to express the mCherry protein (pRCR) to expand the usage of the mCherry protein for analysis of gene expression in Lactobacillus. This vector is also able to replicate in Streptococcus pneumoniae and Escherichia coli. The usage of pRCR as a promoter probe was validated in Lactobacillus acidophilus by characterizing the regulation of lactacin B expression. The results show that the regulation is exerted at the transcriptional level, with lbaB gene expression being specifically induced by co-culture of the L. acidophilus bacteriocin producer and the S. thermophilus STY-31 inducer bacterium.
Collapse
Affiliation(s)
- M Luz Mohedano
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Campelo AB, Roces C, Mohedano ML, López P, Rodríguez A, Martínez B. A bacteriocin gene cluster able to enhance plasmid maintenance in Lactococcus lactis. Microb Cell Fact 2014; 13:77. [PMID: 24886591 PMCID: PMC4055356 DOI: 10.1186/1475-2859-13-77] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/16/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lactococcus lactis is widely used as a dairy starter and has been extensively studied. Based on the acquired knowledge on its physiology and metabolism, new applications have been envisaged and there is an increasing interest of using L. lactis as a cell factory. Plasmids constitute the main toolbox for L. lactis genetic engineering and most rely on antibiotic resistant markers for plasmid selection and maintenance. In this work, we have assessed the ability of the bacteriocin Lactococcin 972 (Lcn972) gene cluster to behave as a food-grade post-segregational killing system to stabilize recombinant plasmids in L. lactis in the absence of antibiotics. Lcn972 is a non-lantibiotic bacteriocin encoded by the 11-kbp plasmid pBL1 with a potent antimicrobial activity against Lactococcus. RESULTS Attempts to clone the full lcn972 operon with its own promoter (P972), the structural gene lcn972 and the immunity genes orf2-orf3 in the unstable plasmid pIL252 failed and only plasmids with a mutated promoter were recovered. Alternatively, cloning under other constitutive promoters was approached and achieved, but bacteriocin production levels were lower than those provided by pBL1. Segregational stability studies revealed that the recombinant plasmids that yielded high bacteriocin titers were maintained for at least 200 generations without antibiotic selection. In the case of expression vectors such as pTRL1, the Lcn972 gene cluster also contributed to plasmid maintenance without compromising the production of the fluorescent mCherry protein. Furthermore, unstable Lcn972 recombinant plasmids became integrated into the chromosome through the activity of insertion sequences, supporting the notion that Lcn972 does apply a strong selective pressure against susceptible cells. Despite of it, the Lcn972 gene cluster was not enough to avoid the use of antibiotics to select plasmid-bearing cells right after transformation. CONCLUSIONS Inserting the Lcn972 cluster into segregational unstable plasmids prevents their lost by segregation and probable could be applied as an alternative to the use of antibiotics to support safer and more sustainable biotechnological applications of genetically engineered L. lactis.
Collapse
Affiliation(s)
- Ana B Campelo
- Dairy Safe group, Department Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de AsturiasIPLA-CSIC, Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| | - Clara Roces
- Dairy Safe group, Department Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de AsturiasIPLA-CSIC, Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| | - M Luz Mohedano
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas CIB (CSIC), 28040 Madrid, Spain
| | - Paloma López
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas CIB (CSIC), 28040 Madrid, Spain
| | - Ana Rodríguez
- Dairy Safe group, Department Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de AsturiasIPLA-CSIC, Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| | - Beatriz Martínez
- Dairy Safe group, Department Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de AsturiasIPLA-CSIC, Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| |
Collapse
|
31
|
Cebrián R, Rodríguez-Ruano S, Martínez-Bueno M, Valdivia E, Maqueda M, Montalbán-López M. Analysis of the promoters involved in enterocin AS-48 expression. PLoS One 2014; 9:e90603. [PMID: 24594763 PMCID: PMC3942455 DOI: 10.1371/journal.pone.0090603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/31/2014] [Indexed: 11/17/2022] Open
Abstract
The enterocin AS-48 is the best characterized antibacterial circular protein in prokaryotes. It is a hydrophobic and cationic bacteriocin, which is ribosomally synthesized by enterococcal cells and post-translationally cyclized by a head-to-tail peptide bond. The production of and immunity towards AS-48 depend upon the coordinated expression of ten genes organized in two operons, as-48ABC (where genes encoding enzymes with processing, secretion, and immunity functions are adjacent to the structural as-48A gene) and as-48C1DD1EFGH. The current study describes the identification of the promoters involved in AS-48 expression. Seven putative promoters have been here amplified, and separately inserted into the promoter-probe vector pTLR1, to create transcriptional fusions with the mCherry gene used as a reporter. The activity of these promoter regions was assessed measuring the expression of the fluorescent mCherry protein using the constitutive pneumococcal promoter PX as a reference. Our results revealed that only three promoters PA, P2(2) and PD1 were recognized in Enterococcus faecalis, Lactococcus lactis and Escherichia coli, in the conditions tested. The maximal fluorescence was obtained with PX in all the strains, followed by the P2(2) promoter, which level of fluorescence was 2-fold compared to PA and 4-fold compared to PD1. Analysis of putative factors influencing the promoter activity in single and double transformants in E. faecalis JH2-2 demonstrated that, in general, a better expression was achieved in presence of pAM401-81. In addition, the P2(2) promoter could be regulated in a negative fashion by genes existing in the native pMB-2 plasmid other than those of the as-48 cluster, while the pH seems to affect differently the as-48 promoter expression.
Collapse
Affiliation(s)
- Rubén Cebrián
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Sonia Rodríguez-Ruano
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Eva Valdivia
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Mercedes Maqueda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Manuel Montalbán-López
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| |
Collapse
|