1
|
Zinnecker T, Reichl U, Genzel Y. Innovations in cell culture-based influenza vaccine manufacturing - from static cultures to high cell density cultivations. Hum Vaccin Immunother 2024; 20:2373521. [PMID: 39007904 PMCID: PMC11253887 DOI: 10.1080/21645515.2024.2373521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Influenza remains a serious global health concern, causing significant morbidity and mortality each year. Vaccination is crucial to mitigate its impact, but requires rapid and efficient manufacturing strategies to handle timing and supply. Traditionally relying on egg-based production, the field has witnessed a paradigm shift toward cell culture-based methods offering enhanced flexibility, scalability, and process safety. This review provides a concise overview of available cell substrates and technological advancements. We summarize crucial steps toward process intensification - from roller bottle production to dynamic cultures on carriers and from suspension cultures in batch mode to high cell density perfusion using various cell retention devices. Moreover, we compare single-use and conventional systems and address challenges including defective interfering particles. Taken together, we describe the current state-of-the-art in cell culture-based influenza virus production to sustainably meet vaccine demands, guarantee a timely supply, and keep up with the challenges of seasonal epidemics and global pandemics.
Collapse
Affiliation(s)
- Tilia Zinnecker
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Bioprocess Engineering, Otto-von-Guericke University, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
2
|
Zinnecker T, Badri N, Araujo D, Thiele K, Reichl U, Genzel Y. From single-cell cloning to high-yield influenza virus production - implementing advanced technologies in vaccine process development. Eng Life Sci 2024; 24:2300245. [PMID: 38584687 PMCID: PMC10991716 DOI: 10.1002/elsc.202300245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 04/09/2024] Open
Abstract
Innovations in viral vaccine manufacturing are crucial for pandemic preparedness and to meet ever-rising global demands. For influenza, however, production still mainly relies on technologies established decades ago. Although modern production shifts from egg-based towards cell culture technologies, the full potential has not yet been fully exploited. Here, we evaluate whether implementation of state-of-the-art technologies for cell culture-based recombinant protein production are capable to challenge outdated approaches in viral vaccine process development. For this, a fully automated single-cell cloning strategy was established to generate monoclonal suspension Madin-Darby canine kidney (MDCK) cells. Among selected cell clones, we could observe distinct metabolic and growth characteristics, with C59 reaching a maximum viable cell concentration of 17.3 × 106 cells/mL and low doubling times in batch mode. Screening for virus production using a panel of human vaccine-relevant influenza A and B viruses in an ambr15 system revealed high titers with yields competing or even outperforming available MDCK cell lines. With C113, we achieved cell-specific virus yields of up to 25,000 virions/cell, making this cell clone highly attractive for vaccine production. Finally, we confirmed process performance at a 50-fold higher working volume. In summary, we present a scalable and powerful approach for accelerated development of high-yield influenza virus production in chemically defined medium starting from a single cell.
Collapse
Affiliation(s)
- Tilia Zinnecker
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | | | - Diogo Araujo
- Sartorius Stedim Biotech S.A.Aubagne CedexFrance
| | | | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
- Bioprocess EngineeringOtto‐von‐Guericke UniversityMagdeburgGermany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| |
Collapse
|
3
|
Tingaud V, Bordes C, Al Mouazen E, Cogné C, Bolzinger MA, Lawton P. Experimental studies from shake flasks to 3 L stirred tank bioreactor of nutrients and oxygen supply conditions to improve the growth of the avian cell line DuckCelt®-T17. J Biol Eng 2023; 17:31. [PMID: 37095522 PMCID: PMC10127095 DOI: 10.1186/s13036-023-00349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND To produce viral vaccines, avian cell lines are interesting alternatives to replace the egg-derived processes for viruses that do not grow well on mammalian cells. The avian suspension cell line DuckCelt®-T17 was previously studied and investigated to produce a live attenuated metapneumovirus (hMPV)/respiratory syncytial virus (RSV) and influenza virus vaccines. However, a better understanding of its culture process is necessary for an efficient production of viral particles in bioreactors. RESULTS The growth and metabolic requirements of the avian cell line DuckCelt®-T17 were investigated to improve its cultivation parameters. Several nutrient supplementation strategies were studied in shake flasks highlighting the interest of (i) replacing L-glutamine by glutamax as main nutrient or (ii) adding these two nutrients in the serum-free growth medium in a fed-batch strategy. The scale-up in a 3 L bioreactor was successful for these types of strategies confirming their efficiencies in improving the cells' growth and viability. Moreover, a perfusion feasibility test allowed to achieve up to ~ 3 times the maximum number of viable cells obtained with the batch or fed-batch strategies. Finally, a strong oxygen supply - 50% dO2 - had a deleterious effect on DuckCelt®-T17 viability, certainly because of the greater hydrodynamic stress imposed. CONCLUSIONS The culture process using glutamax supplementation with a batch or a fed-batch strategy was successfully scaled-up to 3 L bioreactor. In addition, perfusion appeared as a very promising culture process for subsequent continuous virus harvesting.
Collapse
Affiliation(s)
- Valentine Tingaud
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France
| | - Claire Bordes
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France
| | - Eyad Al Mouazen
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France
| | - Claudia Cogné
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France
| | - Marie-Alexandrine Bolzinger
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France
| | - Philippe Lawton
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France.
- Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, ISPB, 8 avenue Rockefeller, Lyon, 69373, CEDEX 08, France.
| |
Collapse
|
4
|
Influenza Vaccine: An Engineering Vision from Virological Importance to Production. BIOTECHNOL BIOPROC E 2022; 27:714-738. [PMID: 36313971 PMCID: PMC9589582 DOI: 10.1007/s12257-022-0115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 01/26/2023]
Abstract
According to data from the World Health Organization (WHO) every year, millions of people are affected by flu. Flu is a disease caused by influenza viruses. For preventing this, seasonal influenza vaccinations are widely considered the most efficient way to protect against the negative effects of the flu. To date, there is no "one-size-fits-all" vaccine that can be effective all over the world to protect against all seasonal or pandemic influenza virus types. Because influenza virus transforms its genetic structure and it can emerges as immunogenically new (antigenic drift) which causes epidemics or new virus subtype (antigenic shift) which causes pandemics. As a result, annual revaccination or new subtype viral vaccine development is required. Currently, three types of vaccines (inactivated, live attenuated, and recombinant) are approved in different countries. These can be named "conventional influenza vaccines" and their production are based on eggs or cell culture. Although, there is good effort to develop new influenza vaccines for broader and longer period of time protection. In this sense these candidate vaccines are called "universal influenza vaccines". In this article, after we mentioned the short history of flu then virus morphology and infection, we explained the diseases caused by the influenza virus in humans. Afterward, we explained in detail the production methods of available influenza vaccines, types of bioreactors used in cell culture based production, conventional and new vaccine types, and development strategies for better vaccines.
Collapse
|
5
|
Chupin C, Pizzorno A, Traversier A, Brun P, Ogonczyk-Makowska D, Padey B, Milesi C, Dulière V, Laurent E, Julien T, Galloux M, Lina B, Eléouët JF, Moreau K, Hamelin ME, Terrier O, Boivin G, Dubois J, Rosa-Calatrava M. Avian Cell Line DuckCelt ®-T17 Is an Efficient Production System for Live-Attenuated Human Metapneumovirus Vaccine Candidate Metavac ®. Vaccines (Basel) 2021; 9:vaccines9101190. [PMID: 34696298 PMCID: PMC8540687 DOI: 10.3390/vaccines9101190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
The development of a live-attenuated vaccine (LAV) for the prevention of human metapneumovirus (HMPV) infection is often hampered by the lack of highly efficient and scalable cell-based production systems that support eventual global vaccine production. Avian cell lines cultivated in suspension compete with traditional cell platforms used for viral vaccine manufacture. We investigated whether the DuckCelt®-T17 avian cell line (Vaxxel), previously described as an efficient production system for several influenza strains, could also be used to produce a new HMPV LAV candidate (Metavac®, SH gene-deleted A1/C-85473 HMPV). To that end, we characterized the operational parameters of MOI, cell density, and trypsin addition to achieve the optimal production of Metavac®, and demonstrated that the DuckCelt®-T17 cell line is permissive and well-adapted to the production of the wild-type A1/C-85473 HMPV and the Metavac® vaccine candidate. Moreover, our results confirmed that the LAV candidate produced in DuckCelt®-T17 cells conserves its advantageous replication properties in LLC-MK2 and 3D-reconstituted human airway epithelium models, and its capacity to induce efficient neutralizing antibodies in a BALB/c mouse model. Our results suggest that the DuckCelt®-T17 avian cell line is a very promising platform for the scalable in-suspension serum-free production of the HMPV-based LAV candidate Metavac®.
Collapse
Affiliation(s)
- Caroline Chupin
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- Vaxxel, 43 Boulevard du Onze Novembre 1918, 69100 Villeurbanne, France
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
| | - Andrés Pizzorno
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
| | - Aurélien Traversier
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Pauline Brun
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Daniela Ogonczyk-Makowska
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Blandine Padey
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
| | - Cédrine Milesi
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Victoria Dulière
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Emilie Laurent
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Thomas Julien
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Marie Galloux
- Unité de Virologie et Immunologie Moléculaires, UVSQ, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (M.G.); (J.-F.E.)
| | - Bruno Lina
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, UVSQ, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (M.G.); (J.-F.E.)
| | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Team STAPHPATH, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France;
| | - Marie-Eve Hamelin
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
| | - Guy Boivin
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Julia Dubois
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- Vaxxel, 43 Boulevard du Onze Novembre 1918, 69100 Villeurbanne, France
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- Correspondence: (J.D.); (M.R.-C.)
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- Correspondence: (J.D.); (M.R.-C.)
| |
Collapse
|
6
|
Hein MD, Kollmus H, Marichal-Gallardo P, Püttker S, Benndorf D, Genzel Y, Schughart K, Kupke SY, Reichl U. OP7, a novel influenza A virus defective interfering particle: production, purification, and animal experiments demonstrating antiviral potential. Appl Microbiol Biotechnol 2020; 105:129-146. [PMID: 33275160 PMCID: PMC7778630 DOI: 10.1007/s00253-020-11029-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/14/2020] [Accepted: 11/22/2020] [Indexed: 11/24/2022]
Abstract
Abstract The novel influenza A virus (IAV) defective interfering particle “OP7” inhibits IAV replication in a co-infection and was previously suggested as a promising antiviral agent. Here, we report a batch-mode cell culture-based production process for OP7. In the present study, a seed virus containing standard virus (STV) and OP7 was used. The yield of OP7 strongly depended on the production multiplicity of infection. To inactivate infectious STV in the OP7 material, which may cause harm in a potential application, UV irradiation was used. The efficacy of OP7 in this material was preserved, as shown by an in vitro interference assay. Next, steric exclusion chromatography was used to purify and to concentrate (~ 13-fold) the UV-treated material. Finally, administration of produced OP7 material in mice did not show any toxic effects. Furthermore, all mice infected with a lethal dose of IAV survived the infection upon OP7 co-treatment. Thus, the feasibility of a production workflow for OP7 and its potential for antiviral treatment was demonstrated. Key points • OP7 efficacy strongly depended on the multiplicity of infection used for production • Purification by steric exclusion chromatography increased OP7 efficacy • OP7-treated mice were protected against a lethal infection with IAV Supplementary Information The online version contains supplementary material available at 10.1007/s00253-020-11029-5.
Collapse
Affiliation(s)
- Marc D Hein
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Pavel Marichal-Gallardo
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Sebastian Püttker
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Dirk Benndorf
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,University of Veterinary Medicine Hannover, Hannover, Germany.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Sascha Y Kupke
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Udo Reichl
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
7
|
Bissinger T, Fritsch J, Mihut A, Wu Y, Liu X, Genzel Y, Tan WS, Reichl U. Semi-perfusion cultures of suspension MDCK cells enable high cell concentrations and efficient influenza A virus production. Vaccine 2019; 37:7003-7010. [DOI: 10.1016/j.vaccine.2019.04.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
|
8
|
Lai CC, Cheng YC, Chen PW, Lin TH, Tzeng TT, Lu CC, Lee MS, Hu AYC. Process development for pandemic influenza VLP vaccine production using a baculovirus expression system. J Biol Eng 2019; 13:78. [PMID: 31666806 PMCID: PMC6813129 DOI: 10.1186/s13036-019-0206-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background Influenza viruses cause hundreds of thousands of respiratory diseases worldwide each year, and vaccination is considered the most effective approach for preventing influenza annual epidemics or pandemics. Since 1950, chicken embryonated eggs have been used as the main method for producing seasonal influenza vaccines. However, this platform has the main drawback of a lack of scale-up flexibility, and thus, egg-based vaccine manufacturers cannot supply sufficient doses within a short period for use for pandemic prevention. As a result, strategies for reducing the manufacturing time and increasing production capacity are urgently needed. Non-virion vaccine methods have been considered an alternative strategy against an influenza pandemic, and the purpose of maintaining an immunogenic capsule structure with infectious properties appears to be met by the virus-like particle (VLP) platform. Results An influenza H7N9-TW VLP production platform using insect cells, which included the expression of hemagglutinin (HA), NA, and M1 proteins, was established. To scale up H7N9-TW VLP production, several culture conditions were optimized to obtain a higher production yield. A high level of dissolved oxygen (DO) could be critical to H7N9-TW VLP production. If the DO was maintained at a high level, the HA titer obtained in the spinner flask system with ventilation was similar to that obtained in a shake flask. In this study, the HA titer in a 5-L bioreactor with a well-controlled DO level was substantially improved by 128-fold (from 4 HA units (HAU)/50 μL to 512 HAU/50 μL). Conclusions In this study, a multigene expression platform and an effective upstream process were developed. Notably, a high H7N9-TW VLP yield was achieved using a two-step production strategy while a high DO level was maintained. The upstream process, which resulted in high VLP titers, could be further used for large-scale influenza VLP vaccine production.
Collapse
Affiliation(s)
- Chia-Chun Lai
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan.,2College of Life Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
| | - Yu-Chieh Cheng
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
| | - Pin-Wen Chen
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
| | - Ting-Hui Lin
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan.,2College of Life Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
| | - Tsai-Teng Tzeng
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
| | - Chia-Chun Lu
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
| | - Alan Yung-Chih Hu
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
| |
Collapse
|
9
|
Lai CC, Weng TC, Tseng YF, Chiang JR, Lee MS, Hu AYC. Evaluation of novel disposable bioreactors on pandemic influenza virus production. PLoS One 2019; 14:e0220803. [PMID: 31404117 PMCID: PMC6690526 DOI: 10.1371/journal.pone.0220803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/23/2019] [Indexed: 01/19/2023] Open
Abstract
Since 1997, the highly pathogenic influenza H5N1 virus has spread from Hong Kong. According to the WHO bulletin report, the H5N1 virus is a zoonotic disease threat that has infected more than 850 humans, causing over 450 deaths. In addition, an outbreak of another new and highly pathogenic influenza virus (H7N9) occurred in 2013 in China. These highly pathogenic influenza viruses could potentially cause a worldwide pandemic. it is crucial to develop a rapid production platform to meet this surge demand against any possible influenza pandemic. A potential solution for this problem is the use of cell-based bioreactors for rapid vaccine production. These novel bioreactors, used for cell-based vaccine production, possess various advantages. For example, they enable a short production time, allow for the handling highly pathogenic influenza in closed environments, and can be easily scaled up. In this study, two novel disposable cell-based bioreactors, BelloCell and TideCell, were used to produce H5N1 clade II and H7N9 candidate vaccine viruses (CVVs). Madin-Darby canine kidney (MDCK) cells were used for the production of these influenza CVVs. A novel bench-scale bioreactor named BelloCell bioreactor was used in the study. All culturing conditions were tested and scaled to 10 L industrial-scale bioreactor known as TideCell002. The performances of between BelloCell and TideCell were similar in cell growth, the average MDCK cell doubling time was slightly decreased to 25 hours. The systems yielded approximately 39.2 and 18.0 μg/ml of HA protein with the 10-liter TideCell002 from the H5N1 clade II and H7N9 CVVs, respectively. The results of this study not only highlight the overall effectiveness of these bioreactors but also illustrate the potential of maintaining the same outcome when scaled up to industrial production, which has many implications for faster vaccine production. Although additional studies are required for process optimization, the results of this study are promising and show that oscillating bioreactors may be a suitable platform for pandemic influenza virus production.
Collapse
Affiliation(s)
- Chia-Chun Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- College of Life Science Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Tsai-Chuan Weng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Fen Tseng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Jen-Ron Chiang
- Vaccine Center, Centers for Disease Control, Taipei, Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Alan Yung-Chih Hu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- * E-mail:
| |
Collapse
|
10
|
Gränicher G, Coronel J, Pralow A, Marichal-Gallardo P, Wolff M, Rapp E, Karlas A, Sandig V, Genzel Y, Reichl U. Efficient influenza A virus production in high cell density using the novel porcine suspension cell line PBG.PK2.1. Vaccine 2019; 37:7019-7028. [PMID: 31005427 DOI: 10.1016/j.vaccine.2019.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022]
Abstract
Seasonal and pandemic influenza respiratory infections are still a major public health issue. Vaccination is the most efficient way to prevent influenza infection. One option to produce influenza vaccines is cell-culture based virus propagation. Different host cell lines, such as MDCK, Vero, AGE1.CR or PER.C6 cells have been shown to be a good substrate for influenza virus production. With respect to the ease of scale-up, suspension cells should be preferred over adherent cells. Ideally, they should replicate different influenza virus strains with high cell-specific yields. Evaluation of new cell lines and further development of processes is of considerable interest, as this increases the number of options regarding the design of manufacturing processes, flexibility of vaccine production and efficiency. Here, PBG.PK2.1, a new mammalian cell line that was developed by ProBioGen AG (Germany) for virus production is presented. The cells derived from immortal porcine kidney cells were previously adapted to growth in suspension in a chemically-defined medium. Influenza virus production was improved after virus adaptation to PBG.PK2.1 cells and optimization of infection conditions, namely multiplicity of infection and trypsin concentration. Hemagglutinin titers up to 3.24 log10(HA units/100 µL) were obtained in fed-batch mode in bioreactors (700 mL working volume). Evaluation of virus propagation in high cell density culture using a hollow-fiber based system (ATF2) demonstrated promising performance: Cell concentrations of up to 50 × 106 cells/mL with viabilities exceeding 95%, and a maximum HA titer of 3.93 log10(HA units/100 µL). Analysis of glycosylation of the viral HA antigen expressed showed clear differences compared to HA produced in MDCK or Vero cell lines. With an average cell-specific productivity of 5000 virions/cell, we believe that PBG.PK2.1 cells are a very promising candidate to be considered for next-generation influenza virus vaccine production.
Collapse
Affiliation(s)
- Gwendal Gränicher
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany.
| | - Juliana Coronel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | - Alexander Pralow
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | - Pavel Marichal-Gallardo
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | - Michael Wolff
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany; Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Gießen, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | | | | | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany; Chair for Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
11
|
Nikolay A, Léon A, Schwamborn K, Genzel Y, Reichl U. Process intensification of EB66® cell cultivations leads to high-yield yellow fever and Zika virus production. Appl Microbiol Biotechnol 2018; 102:8725-8737. [PMID: 30091043 PMCID: PMC6153634 DOI: 10.1007/s00253-018-9275-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023]
Abstract
A live-attenuated, human vaccine against mosquito-borne yellow fever virus has been available since the 1930s. The vaccine provides long-lasting immunity and consistent mass vaccination campaigns counter viral spread. However, traditional egg-based vaccine manufacturing requires about 12 months and vaccine supplies are chronically close to shortages. In particular, for urban outbreaks, vaccine demand can be covered rarely by global stockpiling. Thus, there is an urgent need for an improved vaccine production platform, ideally transferable to other flaviviruses including Zika virus. Here, we present a proof-of-concept study regarding cell culture-based yellow fever virus 17D (YFV) and wild-type Zika virus (ZIKV) production using duck embryo-derived EB66® cells. Based on comprehensive studies in shake flasks, 1-L bioreactor systems were operated with scalable hollow fiber-based tangential flow filtration (TFF) and alternating tangential flow filtration (ATF) perfusion systems for process intensification. EB66® cells grew in chemically defined medium to cell concentrations of 1.6 × 108 cells/mL. Infection studies with EB66®-adapted virus led to maximum YFV titers of 7.3 × 108 PFU/mL, which corresponds to about 10 million vaccine doses for the bioreactor harvest. For ZIKV, titers of 1.0 × 1010 PFU/mL were achieved. Processes were automated successfully using a capacitance probe to control perfusion rates based on on-line measured cell concentrations. The use of cryo-bags for direct inoculation of production bioreactors facilitates pre-culture preparation contributing to improved process robustness. In conclusion, this platform is a powerful option for next generation cell culture-based flavivirus vaccine manufacturing.
Collapse
Affiliation(s)
- Alexander Nikolay
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Arnaud Léon
- Valneva SE, 6 rue Alain Bombard, 44800, Saint-Herblain, France
| | | | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Sandtorstr. 1, 39106, Magdeburg, Germany.
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Sandtorstr. 1, 39106, Magdeburg, Germany
- Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
12
|
Production of HIV virus-like particles by transient transfection of CAP-T cells at bioreactor scale avoiding medium replacement. J Biotechnol 2017; 263:11-20. [DOI: 10.1016/j.jbiotec.2017.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 11/20/2022]
|
13
|
Nika L, Wallner J, Palmberger D, Koczka K, Vorauer-Uhl K, Grabherr R. Expression of full-length HER2 protein in Sf 9 insect cells and its presentation on the surface of budded virus-like particles. Protein Expr Purif 2017; 136:27-38. [DOI: 10.1016/j.pep.2017.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/19/2017] [Accepted: 06/11/2017] [Indexed: 12/11/2022]
|
14
|
Wang H, Guo S, Li Z, Xu X, Shao Z, Song G. Suspension culture process for H9N2 avian influenza virus (strain Re-2). Arch Virol 2017; 162:3051-3059. [DOI: 10.1007/s00705-017-3460-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/20/2017] [Indexed: 01/18/2023]
|
15
|
Influenza viruses production: Evaluation of a novel avian cell line DuckCelt®-T17. Vaccine 2017; 36:3101-3111. [PMID: 28571695 DOI: 10.1016/j.vaccine.2017.03.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 03/17/2017] [Accepted: 03/31/2017] [Indexed: 12/22/2022]
Abstract
The influenza vaccine manufacturing industry is looking for production cell lines that are easily scalable, highly permissive to multiple viruses, and more effective in term of viral productivity. One critical characteristic of such cell lines is their ability to grow in suspension, in serum free conditions and at high cell densities. Influenza virus causing severe epidemics both in human and animals is an important threat to world healthcare. The repetitive apparition of influenza pandemic outbreaks in the last 20years explains that manufacturing sector is still looking for more effective production processes to replace/supplement embryonated egg-based process. Cell-based production strategy, with a focus on avian cell lines, is one of the promising solutions. Three avian cell lines, namely duck EB66®cells (Valneva), duck AGE.CR® cells (Probiogen) and quail QOR/2E11 cells (Baxter), are now competing with traditional mammalian cell platforms (Vero and MDCK cells) used for influenza vaccine productions and are currently at advance stage of commercial development for the manufacture of influenza vaccines. The DuckCelt®-T17 cell line presented in this work is a novel avian cell line developed by Transgene. This cell line was generated from primary embryo duck cells with the constitutive expression of the duck telomerase reverse transcriptase (dTERT). The DuckCelt®-T17 cells were able to grow in batch suspension cultures and serum-free conditions up to 6.5×106cell/ml and were easily scaled from 10ml up to 3l bioreactor. In the present study, DuckCelt®-T17 cell line was tested for its abilities to produce various human, avian and porcine influenza strains. Most of the viral strains were produced at significant infectious titers (>5.8 log TCID50/ml) with optimization of the infection conditions. Human strains H1N1 and H3N2, as well as all the avian strains tested (H5N2, H7N1, H3N8, H11N9, H12N5) were the most efficiently produced with highest titre reached of 9.05 log TCID50/ml for A/Panama/2007/99 influenza H3N2. Porcine strains were also greatly rescued with titres from 4 to 7 log TCID50/ml depending of the subtypes. Interestingly, viral kinetics showed maximal titers reached at 24h post-infection for most of the strains, allowing early harvest time (Time Of Harvest: TOH). The B strains present specific production kinetics with a delay of 24h before reaching the maximal viral particle release. Process optimization on H1N1 2009 human pandemic strain allowed identifying best operating conditions for production (MOI, trypsin concentration, cell density at infection) allowing improving the production level by 2 log. Our results suggest that the DuckCelt®-T17 cell line is a very promising platform for industrial production of influenza viruses and particularly for avian viral strains.
Collapse
|
16
|
Zahoor MA, Khurshid M, Qureshi R, Naz A, Shahid M. Cell culture-based viral vaccines: current status and future prospects. Future Virol 2016. [DOI: 10.2217/fvl-2016-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cell culture-based viral vaccines are used globally to immunize humans against infections. The cell culture is continuous process of developing substrates for the safe production of viral vaccines. However, increased global demand and strict safety rules for novel vaccines to control and eradicate viral diseases have forced researchers and manufacturers toward cell culture-based vaccines. The choice of cell substrate is a critical step that cannot be generalized for every vaccine formulation, therefore, manufacturers intend to optimize the required processes for particular applications. The recently established cell lines, innovative bioreactor concepts and cultivation schemes are necessary to increase the potential of vaccine production. In this review, we have focused on current cell culture-based viral vaccines and their future prospects.
Collapse
Affiliation(s)
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Rabia Qureshi
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Aneeqa Naz
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
17
|
Venereo-Sanchez A, Gilbert R, Simoneau M, Caron A, Chahal P, Chen W, Ansorge S, Li X, Henry O, Kamen A. Hemagglutinin and neuraminidase containing virus-like particles produced in HEK-293 suspension culture: An effective influenza vaccine candidate. Vaccine 2016; 34:3371-80. [PMID: 27155499 DOI: 10.1016/j.vaccine.2016.04.089] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 12/30/2022]
Abstract
Virus-like particles (VLPs) constitute a promising alternative as influenza vaccine. They are non-replicative particles that mimic the morphology of native viruses which make them more immunogenic than classical subunit vaccines. In this study, we propose HEK-293 cells in suspension culture in serum-free medium as an efficient platform to produce large quantities of VLPs. For this purpose, a stable cell line expressing the main influenza viral antigens hemagglutinin (HA) and neuraminidase (NA) (subtype H1N1) under the regulation of a cumate inducible promoter was developed (293HA-NA cells). The production of VLPs was evaluated by transient transfection of plasmids encoding human immunodeficiency virus (HIV) Gag or M1 influenza matrix protein. To facilitate the monitoring of VLPs production, Gag was fused to the green fluorescence protein (GFP). The transient transfection of the gag containing plasmid in 293HA-NA cells increased the release of HA and NA seven times more than its counterpart transfected with the M1 encoding plasmid. Consequently, the production of HA-NA containing VLPs using Gag as scaffold was evaluated in a 3-L controlled stirred tank bioreactor. The VLPs secreted in the culture medium were recovered by ultracentrifugation on a sucrose cushion and ultrafiltered by tangential flow filtration. Transmission electron micrographs of final sample revealed the presence of particles with the average typical size (150-200nm) and morphology of HIV-1 immature particles. The concentration of the influenza glycoproteins on the Gag-VLPs was estimated by single radial immunodiffusion and hemagglutination assay for HA and by Dot-Blot for HA and NA. More significantly, intranasal immunization of mice with influenza Gag-VLPs induced strong antigen-specific mucosal and systemic antibody responses and provided full protection against a lethal intranasal challenge with the homologous virus strain. These data suggest that, with further optimization and characterization the process could support mass production of safer and better-controlled VLPs-based influenza vaccine candidate.
Collapse
Affiliation(s)
- Alina Venereo-Sanchez
- Department of Chemical Engineering, Ecole Polytechnique de Montréal, Montréal, Québec, Canada; Vaccine Program, Human Health Therapeutics, National Research Council Canada, Montréal, Québec, Canada
| | - Renald Gilbert
- Vaccine Program, Human Health Therapeutics, National Research Council Canada, Montréal, Québec, Canada
| | - Melanie Simoneau
- Vaccine Program, Human Health Therapeutics, National Research Council Canada, Montréal, Québec, Canada
| | - Antoine Caron
- Vaccine Program, Human Health Therapeutics, National Research Council Canada, Montréal, Québec, Canada
| | - Parminder Chahal
- Vaccine Program, Human Health Therapeutics, National Research Council Canada, Montréal, Québec, Canada
| | - Wangxue Chen
- Human Health Therapeutics, National Research Council Canada, Ottawa, Ontario, Canada
| | - Sven Ansorge
- Vaccine Program, Human Health Therapeutics, National Research Council Canada, Montréal, Québec, Canada
| | - Xuguang Li
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Ecole Polytechnique de Montréal, Montréal, Québec, Canada
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
18
|
Comparison between MDCK and MDCK-SIAT1 cell lines as preferred host for cell culture-based influenza vaccine production. Biotechnol Lett 2016; 38:941-8. [DOI: 10.1007/s10529-016-2069-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/25/2016] [Indexed: 01/31/2023]
|
19
|
Seo JS, Min BS, Kwon YB, Lee SY, Cho JM, Park KH, Yang YJ, Maeng KE, Chang SJ, Kim DI. Characteristics of human cell line, F2N78, for the production of recombinant antibody in fed-batch and perfusion cultures. J Biosci Bioeng 2016; 121:317-24. [DOI: 10.1016/j.jbiosc.2015.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/04/2015] [Accepted: 07/13/2015] [Indexed: 12/30/2022]
|
20
|
Krömmelbein N, Wiebusch L, Schiedner G, Büscher N, Sauer C, Florin L, Sehn E, Wolfrum U, Plachter B. Adenovirus E1A/E1B Transformed Amniotic Fluid Cells Support Human Cytomegalovirus Replication. Viruses 2016; 8:v8020037. [PMID: 26848680 PMCID: PMC4776192 DOI: 10.3390/v8020037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/22/2016] [Accepted: 01/28/2016] [Indexed: 11/30/2022] Open
Abstract
The human cytomegalovirus (HCMV) replicates to high titers in primary human fibroblast cell cultures. A variety of primary human cells and some tumor-derived cell lines do also support permissive HCMV replication, yet at low levels. Cell lines established by transfection of the transforming functions of adenoviruses have been notoriously resistant to HCMV replication and progeny production. Here, we provide first-time evidence that a permanent cell line immortalized by adenovirus type 5 E1A and E1B (CAP) is supporting the full HCMV replication cycle and is releasing infectious progeny. The CAP cell line had previously been established from amniotic fluid cells which were likely derived from membranes of the developing fetus. These cells can be grown under serum-free conditions. HCMV efficiently penetrated CAP cells, expressed its immediate-early proteins and dispersed restrictive PML-bodies. Viral DNA replication was initiated and viral progeny became detectable by electron microscopy in CAP cells. Furthermore, infectious virus was released from CAP cells, yet to lower levels compared to fibroblasts. Subviral dense bodies were also secreted from CAP cells. The results show that E1A/E1B expression in transformed cells is not generally repressive to HCMV replication and that CAP cells may be a good substrate for dense body based vaccine production.
Collapse
Affiliation(s)
- Natascha Krömmelbein
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
| | - Lüder Wiebusch
- Department of Pediatric Molecular Biology, Charité University Medical Centre Berlin, D-10117 Berlin, Germany.
| | | | - Nicole Büscher
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
| | - Caroline Sauer
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
| | - Luise Florin
- Institute for Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
| | - Elisabeth Sehn
- Institute for Zoology, Johannes Gutenberg-University Mainz, D-55099 Mainz, Germany.
| | - Uwe Wolfrum
- Institute for Zoology, Johannes Gutenberg-University Mainz, D-55099 Mainz, Germany.
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
| |
Collapse
|
21
|
Bachmann M, Breitwieser T, Lipps C, Wirth D, Jordan I, Reichl U, Frensing T. Impaired antiviral response of adenovirus-transformed cell lines supports virus replication. J Gen Virol 2016; 97:293-298. [DOI: 10.1099/jgv.0.000361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Mandy Bachmann
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Theresa Breitwieser
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Christoph Lipps
- Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Dagmar Wirth
- Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Ingo Jordan
- ProBioGen AG, Goethestrasse 54, 13086 Berlin, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
- Otto von Guericke University Magdeburg, Universitaetsplatz 2, 39106 Magdeburg, Germany
| | - Timo Frensing
- Otto von Guericke University Magdeburg, Universitaetsplatz 2, 39106 Magdeburg, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| |
Collapse
|
22
|
Optimized production of HIV-1 virus-like particles by transient transfection in CAP-T cells. Appl Microbiol Biotechnol 2015; 100:3935-47. [PMID: 26685677 DOI: 10.1007/s00253-015-7213-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023]
Abstract
HIV-1 virus-like particles (VLPs) have great potential as new-generation vaccines. The novel CAP-T cell line is used for the first time to produce Gag-GFP HIV-1 VLPs by means of polyethylenimine (PEI)-mediated transient transfection. CAP-T cells are adapted to grow to high cell densities in serum-free medium, and are able to express complex recombinant proteins with human post-translational modifications. Furthermore, this cell line is easily transfected with PEI, which offers the flexibility to rapidly generate and screen a number of candidates in preclinical studies. Transient transfection optimization of CAP-T cells has been performed systematically in this work. It is determined that for optimal production, cells need to be growing at mid-exponential phase, Protein Expression Medium (PEM) medium has to be added post-transfection, and cells can be transfected by independent addition of DNA and PEI with no prior complexation. A Box-Behnken experimental design is used to optimize cell density at time of transfection, DNA/cell and PEI/cell ratios. The optimal conditions determined are transfection at a density of 3.3E + 06 cells/mL with 0.5 pg of DNA/cell and 3 pg of PEI/cell. Using the optimized protocol, 6 × 10(10) VLP/mL are obtained, demonstrating that CAP-T is a highly efficient cell line for the production of HIV-1 VLPs and potentially other complex viral-based biotherapeutics.
Collapse
|
23
|
Shittu I, Zhu Z, Lu Y, Hutcheson JM, Stice SL, West FD, Donadeu M, Dungu B, Fadly AM, Zavala G, Ferguson-Noel N, Afonso CL. Development, characterization and optimization of a new suspension chicken-induced pluripotent cell line for the production of Newcastle disease vaccine. Biologicals 2015; 44:24-32. [PMID: 26586283 DOI: 10.1016/j.biologicals.2015.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/11/2015] [Accepted: 09/15/2015] [Indexed: 01/12/2023] Open
Abstract
Traditionally, substrates for production of viral poultry vaccines have been embryonated eggs or adherent primary cell cultures. The difficulties and cost involved in scaling up these substrates in cases of increased demand have been a limitation for vaccine production. Here, we assess the ability of a newly developed chicken-induced pluripotent cell line, BA3, to support replication and growth of Newcastle disease virus (NDV) LaSota vaccine strain. The characteristics and growth profile of the cells were also investigated. BA3 cells could grow in suspension in different media to a high density of up to 7.0 × 10(6) cells/mL and showed rapid proliferation with doubling time of 21 h. Upon infection, a high virus titer of 1.02 × 10(8) EID50/mL was obtained at 24 h post infection using a multiplicity of infection (MOI) of 5. In addition, the cell line was shown to be free of endogenous and exogenous Avian Leukosis viruses, Reticuloendotheliosis virus, Fowl Adenovirus, Marek's disease virus, and several Mycoplasma species. In conclusion, BA3 cell line is potentially an excellent candidate for vaccine production due to its highly desirable industrially friendly characteristics of growing to high cell density and capability of growth in serum free medium.
Collapse
Affiliation(s)
- Ismaila Shittu
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, Athens, GA 30605, USA
| | - Ziying Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Jessica M Hutcheson
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | | | | | - Aly M Fadly
- Avian Disease and Oncology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, 4279 East Mount Hope Road, East Lansing, MI 48823, USA
| | - Guillermo Zavala
- Poultry Diagnostic and Research Center, Department of Population Health, University of Georgia, Athens, GA 30602, USA
| | - Naola Ferguson-Noel
- Poultry Diagnostic and Research Center, Department of Population Health, University of Georgia, Athens, GA 30602, USA
| | - Claudio L Afonso
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, Athens, GA 30605, USA.
| |
Collapse
|
24
|
Huang D, Peng WJ, Ye Q, Liu XP, Zhao L, Fan L, Xia-Hou K, Jia HJ, Luo J, Zhou LT, Li BB, Wang SL, Xu WT, Chen Z, Tan WS. Serum-Free Suspension Culture of MDCK Cells for Production of Influenza H1N1 Vaccines. PLoS One 2015; 10:e0141686. [PMID: 26540170 PMCID: PMC4634975 DOI: 10.1371/journal.pone.0141686] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 10/12/2015] [Indexed: 01/03/2023] Open
Abstract
Development of serum-free suspension cell culture processes is very important for influenza vaccine production. Previously, we developed a MDCK suspension cell line in a serum-free medium. In the present study, the growth kinetics of suspension MDCK cells and influenza virus production in the serum-free medium were investigated, in comparison with those of adherent MDCK cells in both serum-containing and serum-free medium. It was found that the serum-free medium supported the stable subculture and growth of both adherent and suspension cells. In batch culture, for both cell lines, the growth kinetics in the serum-free medium was comparable with those in the serum-containing medium and a commercialized serum-free medium. In the serum-free medium, peak viable cell density (VCD), haemagglutinin (HA) and median tissue culture infective dose (TCID50) titers of the two cell lines reached 4.51×106 cells/mL, 2.94Log10(HAU/50 μL) and 8.49Log10(virions/mL), and 5.97×106 cells/mL, 3.88Log10(HAU/50 μL), and 10.34Log10(virions/mL), respectively. While virus yield of adherent cells in the serum-free medium was similar to that in the serum-containing medium, suspension culture in the serum-free medium showed a higher virus yield than adherent cells in the serum-containing medium and suspension cells in the commercialized serum-free medium. However, the percentage of infectious viruses was lower for suspension culture in the serum-free medium. These results demonstrate the great potential of this suspension MDCK cell line in serum-free medium for influenza vaccine production and further improvements are warranted.
Collapse
Affiliation(s)
- Ding Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wen-Juan Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xu-Ping Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- * E-mail: (X-PL); (W-ST)
| | - Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kang Xia-Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Han-Jing Jia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Luo
- Shanghai Institute of Biological Products Co., Ltd., Shanghai 200052, China
| | - Lin-Ting Zhou
- Shanghai Institute of Biological Products Co., Ltd., Shanghai 200052, China
| | - Bei-Bei Li
- Shanghai Institute of Biological Products Co., Ltd., Shanghai 200052, China
| | - Shi-Lei Wang
- Shanghai Institute of Biological Products Co., Ltd., Shanghai 200052, China
| | - Wen-Ting Xu
- Shanghai Institute of Biological Products Co., Ltd., Shanghai 200052, China
| | - Ze Chen
- Shanghai Institute of Biological Products Co., Ltd., Shanghai 200052, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- * E-mail: (X-PL); (W-ST)
| |
Collapse
|
25
|
Rodrigues AF, Soares HR, Guerreiro MR, Alves PM, Coroadinha AS. Viral vaccines and their manufacturing cell substrates: New trends and designs in modern vaccinology. Biotechnol J 2015. [PMID: 26212697 PMCID: PMC7161866 DOI: 10.1002/biot.201400387] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vaccination is one of the most effective interventions in global health. The worldwide vaccination programs significantly reduced the number of deaths caused by infectious agents. A successful example was the eradication of smallpox in 1979 after two centuries of vaccination campaigns. Since the first variolation administrations until today, the knowledge on immunology has increased substantially. This knowledge combined with the introduction of cell culture and DNA recombinant technologies revolutionized vaccine design. This review will focus on vaccines against human viral pathogens, recent developments on vaccine design and cell substrates used for their manufacture. While the production of attenuated and inactivated vaccines requires the use of the respective permissible cell substrates, the production of recombinant antigens, virus‐like particles, vectored vaccines and chimeric vaccines requires the use – and often the development – of specific cell lines. Indeed, the development of novel modern viral vaccine designs combined with, the stringent safety requirements for manufacture, and the better understanding on animal cell metabolism and physiology are increasing the awareness on the importance of cell line development and engineering areas. A new era of modern vaccinology is arriving, offering an extensive toolbox to materialize novel and creative ideas in vaccine design and its manufacture.
Collapse
Affiliation(s)
- Ana F Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Hugo R Soares
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Miguel R Guerreiro
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana S Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal. .,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
26
|
Aubrit F, Perugi F, Léon A, Guéhenneux F, Champion-Arnaud P, Lahmar M, Schwamborn K. Cell substrates for the production of viral vaccines. Vaccine 2015; 33:5905-12. [PMID: 26187258 DOI: 10.1016/j.vaccine.2015.06.110] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/12/2015] [Accepted: 06/26/2015] [Indexed: 11/20/2022]
Abstract
Vaccines have been used for centuries to protect people and animals against infectious diseases. For vaccine production, it has become evident that cell culture technology can be considered as a key milestone and has been the result of decades of progress. The development and implementation of cell substrates have permitted massive and safe production of viral vaccines. The demand in new vaccines against emerging viral diseases, the increasing vaccine production volumes, and the stringent safety rules for manufacturing have made cell substrates mandatory viral vaccine producer factories. In this review, we focus on cell substrates for the production of vaccines against human viral diseases. Depending on the nature of the vaccine, choice of the cell substrate is critical. Each manufacturer intending to develop a new vaccine candidate should assess several cell substrates during the early development phase in order to select the most convenient for the application. First, as vaccine safety is quite naturally a central concern of Regulatory Agencies, the cell substrate has to answer the regulatory rules stringency. In addition, the cell substrate has to be competitive in terms of viral-specific production yields and manufacturing costs. No cell substrate, even the so-called "designer" cell lines, is able to fulfil all the requested criteria for all viral vaccines. Therefore, the availability of a variety of cell substrates for vaccine production is essential because it improves the chance to successfully respond to the current and future needs of vaccines linked to new emerging or re-emerging infectious diseases (e.g. pandemic flu, Ebola, and Chikungunya outbreaks).
Collapse
Affiliation(s)
- Françoise Aubrit
- Vaccines Research & Discovery Department, Valneva SE, 6 rue Alain Bombard, 44800 Saint-Herblain, France.
| | - Fabien Perugi
- Vaccines Research & Discovery Department, Valneva SE, 6 rue Alain Bombard, 44800 Saint-Herblain, France.
| | - Arnaud Léon
- Vaccines Research & Discovery Department, Valneva SE, 6 rue Alain Bombard, 44800 Saint-Herblain, France.
| | - Fabienne Guéhenneux
- Vaccines Research & Discovery Department, Valneva SE, 6 rue Alain Bombard, 44800 Saint-Herblain, France.
| | - Patrick Champion-Arnaud
- Vaccines Research & Discovery Department, Valneva SE, 6 rue Alain Bombard, 44800 Saint-Herblain, France.
| | - Mehdi Lahmar
- Vaccines Research & Discovery Department, Valneva SE, 6 rue Alain Bombard, 44800 Saint-Herblain, France.
| | - Klaus Schwamborn
- Vaccines Research & Discovery Department, Valneva SE, 6 rue Alain Bombard, 44800 Saint-Herblain, France.
| |
Collapse
|
27
|
Soema PC, Kompier R, Amorij JP, Kersten GFA. Current and next generation influenza vaccines: Formulation and production strategies. Eur J Pharm Biopharm 2015; 94:251-63. [PMID: 26047796 DOI: 10.1016/j.ejpb.2015.05.023] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
Vaccination is the most effective method to prevent influenza infection. However, current influenza vaccines have several limitations. Relatively long production times, limited vaccine capacity, moderate efficacy in certain populations and lack of cross-reactivity are important issues that need to be addressed. We give an overview of the current status and novel developments in the landscape of influenza vaccines from an interdisciplinary point of view. The feasibility of novel vaccine concepts not only depends on immunological or clinical outcomes, but also depends on biotechnological aspects, such as formulation and production methods, which are frequently overlooked. Furthermore, the next generation of influenza vaccines is addressed, which hopefully will bring cross-reactive influenza vaccines. These developments indicate that an exciting future lies ahead in the influenza vaccine field.
Collapse
Affiliation(s)
- Peter C Soema
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands; Division of Drug Delivery and Technology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Ronald Kompier
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands; FluConsult, Noordwijk, The Netherlands
| | - Jean-Pierre Amorij
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.
| | - Gideon F A Kersten
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands; Division of Drug Delivery and Technology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| |
Collapse
|
28
|
Silva AC, Simão D, Küppers C, Lucas T, Sousa MFQ, Cruz P, Carrondo MJT, Kochanek S, Alves PM. Human amniocyte-derived cells are a promising cell host for adenoviral vector production under serum-free conditions. Biotechnol J 2015; 10:760-71. [DOI: 10.1002/biot.201400765] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/02/2015] [Accepted: 04/13/2015] [Indexed: 11/09/2022]
|
29
|
Genzel Y. Designing cell lines for viral vaccine production: Where do we stand? Biotechnol J 2015; 10:728-40. [PMID: 25903999 DOI: 10.1002/biot.201400388] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/24/2015] [Accepted: 03/31/2015] [Indexed: 12/11/2022]
Abstract
Established animal cells, such as Vero, Madin Darby canine kidney (MDCK) or chicken embryo fibroblasts (CEFs), are still the main cell lines used for viral vaccine production, although new "designer cells" have been available for some years. These designer cell lines were specifically developed as a cell substrate for one application and are well characterized. Later screening for other possible applications widened the product range. These cells grow in suspension in chemically defined media under controlled conditions and can be used for up to 100 passages. Scale-up is easier and current process options allow cultivation in disposable bioreactors at cell concentrations higher than 1 × 10(7) cells/mL. This review covers the limitations of established cell lines and discusses the requirements and screening options for new host cells. Currently available designer cells for viral vaccine production (PER.C6, CAP, AGE1.CR, EB66 cells), together with other new cell lines (PBS-1, QOR/2E11, SogE, MFF-8C1 cells) that were recently described as possible cell substrates are presented. Using current process knowledge and cell line development tools, future upstream processing could resemble today's Chinese hamster ovary (CHO) cell processes for monoclonal antibody production: small scale bioreactors (disposable) in perfusion or fed-batch mode with cell concentrations above 1 × 10(8) cells/mL.
Collapse
Affiliation(s)
- Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| |
Collapse
|
30
|
Genzel Y, Vogel T, Buck J, Behrendt I, Ramirez DV, Schiedner G, Jordan I, Reichl U. High cell density cultivations by alternating tangential flow (ATF) perfusion for influenza A virus production using suspension cells. Vaccine 2014; 32:2770-81. [DOI: 10.1016/j.vaccine.2014.02.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Genzel Y, Rödig J, Rapp E, Reichl U. Vaccine production: upstream processing with adherent or suspension cell lines. Methods Mol Biol 2014; 1104:371-393. [PMID: 24297427 DOI: 10.1007/978-1-62703-733-4_23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The production of viral vaccines in cell culture can be accomplished with primary, diploid, or continuous (transformed) cell lines. Each cell line, each virus type, and each vaccine preparation require the specific design of upstream and downstream processing. Media have to be selected as well as production vessels, cultivation conditions, and modes of operation. Many viruses only replicate to high titers in adherently growing cells, but similar to processes established for recombinant protein production, an increasing number of suspension cell lines is being evaluated for future use. Here, we describe key issues to be considered for the establishment of large-scale virus production in bioreactors. As an example upstream processing of cell culture-derived influenza virus production is described in more detail for adherently growing and for suspension cells. In particular, use of serum-containing, serum-free, and chemically defined media as well as choice of cultivation vessel are considered.
Collapse
Affiliation(s)
- Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | | | | | | |
Collapse
|
32
|
Comparison of influenza virus yields and apoptosis-induction in an adherent and a suspension MDCK cell line. Vaccine 2013; 31:5693-9. [DOI: 10.1016/j.vaccine.2013.09.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/22/2013] [Accepted: 09/24/2013] [Indexed: 01/09/2023]
|
33
|
Breaking limitations of complex culture media: functional non-viral miRNA delivery into pharmaceutical production cell lines. J Biotechnol 2013; 168:589-600. [PMID: 23994267 DOI: 10.1016/j.jbiotec.2013.08.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are promising targets for cell engineering through modulation of crucial cellular pathways. An effective introduction of miRNAs into the cell is a prerequisite to reliably study microRNA function. Previously, non-viral delivery of nucleic acids has been demonstrated to be cell type as well as culture medium dependent. Due to their importance for biopharmaceutical research and manufacturing, Chinese hamster ovary (CHO) and Cevec's Amniocyte Production (CAP) cells were used as host cell lines to investigate transfection reagents with respect to successful delivery of small non-coding RNAs (ncRNAs) and their ability to allow for biological activity of miRNAs and small interfering RNAs (siRNAs) within the cell. In the present study, we screened numerous transfection reagents for their suitability to successfully deliver miRNA mimics into CHO DG44 and CAP cells. Our investigation revealed that the determination of transfection efficiency for a given transfection reagent alone is not sufficient to draw conclusions about its ability to maintain the functionality of the miRNA. We could show that independent from high transfection rates observed for several reagents only one was suitable for efficient introduction of functional miRNA mimics into cells cultured in complex protein production media. We provide evidence for the functionality of transferred ncRNAs by demonstrating siRNA-mediated changes in protein levels and cellular phenotype as well as decreased twinfilin-1 (twf-1) transcript levels by its upstream miR-1 regulator. Furthermore, the process could be shown to be scalable which has important implications for biotechnological applications.
Collapse
|