1
|
Hernández-Sánchez A, Páez-Pérez ED, Alfaro-Saldaña E, García-Meza JV. Deciphering the enigmatic PilY1 of Acidithiobacillus thiooxidans: An in silico analysis. Biochem Biophys Rep 2024; 39:101797. [PMID: 39161578 PMCID: PMC11331964 DOI: 10.1016/j.bbrep.2024.101797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024] Open
Abstract
Thirty years since the first report on the PilY1 protein in bacteria, only the C-terminal domain has been crystallized; there is no study in which the N-terminal domain, let alone the complete protein, has been crystallized. In our laboratory, we are interested in characterizing the Type IV Pili (T4P) of Acidithiobacillus thiooxidans. We performed an in silico characterization of PilY1 and other pilins of the T4P of this acidophilic bacterium. In silico characterization is crucial for understanding how proteins adapt and function under extreme conditions. By analyzing the primary and secondary structures of proteins through computational methods, researchers can gain valuable insights into protein stability, key structural features, and unique amino acid compositions that contribute to resilience in harsh environments. Here, it is presented a description of the particularities of At. thiooxidans PilY1 through predictor software and homology data. Our results suggest that PilY1 from At. thiooxidans may have the same role as has been described for other PilY1 associated with T4P in neutrophilic bacteria; also, its C-terminal interacts (interface interaction) with the minor pilins PilX, PilW and PilV. The N-terminal region comprises domains such as the vWA and the MIDAS, involved in signaling, ligand-binding, and protein-protein interaction. In fact, the vWA domain has intrinsically disordered regions that enable it to maintain its structure over a wide pH range, not only at extreme acidity to which At. thiooxidans is adapted. The results obtained helped us design the correct methodology for its heterologous expression. This allowed us partially experimentally characterize it by obtaining the N-terminal domain recombinantly and evaluating its acid stability through fluorescence spectroscopy. The data suggest that it remains stable across pH changes. This work thus provides guidance for the characterization of extracellular proteins from extremophilic organisms.
Collapse
Affiliation(s)
| | - Edgar D. Páez-Pérez
- Corresponding author. Geomicrobiología, Metalurgia, UASLP, Sierra Leona 550, San Luis Potosí, 78210, SLP, Mexico.
| | - Elvia Alfaro-Saldaña
- Geomicrobiología, Metalurgia, UASLP, Sierra Leona 550, San Luis Potosí, 78210, SLP, Mexico
| | | |
Collapse
|
2
|
Hernández-Sánchez A, Páez-Pérez ED, Alfaro-Saldaña E, Olivares-Illana V, García-Meza JV. Understanding a Core Pilin of the Type IVa Pili of Acidithiobacillus thiooxidans, PilV. J Microbiol Biotechnol 2024; 34:527-537. [PMID: 38346803 PMCID: PMC11016768 DOI: 10.4014/jmb.2310.10033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 04/17/2024]
Abstract
Pilins are protein subunits of pili. The pilins of type IV pili (T4P) in pathogenic bacteria are well characterized, but anything is known about the T4P proteins in acidophilic chemolithoautotrophic microorganisms such as the genus Acidithiobacillus. The interest in T4P of A. thiooxidans is because of their possible role in cell recruitment and bacterial aggregation on the surface of minerals during biooxidation of sulfide minerals. In this study we present a successful ad hoc methodology for the heterologous expression and purification of extracellular proteins such as the minor pilin PilV of the T4P of A. thiooxidans, a pilin exposed to extreme conditions of acidity and high oxidation-reduction potentials, and that interact with metal sulfides in an environment rich in dissolved minerals. Once obtained, the model structure of A. thiooxidans PilV revealed the core basic architecture of T4P pilins. Because of the acidophilic condition, we carried out in silico characterization of the protonation status of acidic and basic residues of PilV in order to calculate the ionization state at specific pH values and evaluated their pH stability. Further biophysical characterization was done using UV-visible and fluorescence spectroscopy and the results showed that PilV remains soluble and stable even after exposure to significant changes of pH. PilV has a unique amino acid composition that exhibits acid stability, with significant biotechnology implications such as biooxidation of sulfide minerals. The biophysics profiles of PilV open new paradigms about resilient proteins and stimulate the study of other pilins from extremophiles.
Collapse
Affiliation(s)
- Araceli Hernández-Sánchez
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí, 78210, SLP, México
| | - Edgar D. Páez-Pérez
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí, 78210, SLP, México
| | - Elvia Alfaro-Saldaña
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí, 78210, SLP, México
| | - Vanesa Olivares-Illana
- Laboratorio de Interacciones Biomoleculares y Cáncer. Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, Privadas del Pedregal, San Luis Potosí, 78210, SLP, México
| | - J. Viridiana García-Meza
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí, 78210, SLP, México
| |
Collapse
|
3
|
Bobadilla-Fazzini RA, Poblete-Castro I. Biofilm Formation Is Crucial for Efficient Copper Bioleaching From Bornite Under Mesophilic Conditions: Unveiling the Lifestyle and Catalytic Role of Sulfur-Oxidizing Bacteria. Front Microbiol 2021; 12:761997. [PMID: 34745072 PMCID: PMC8569243 DOI: 10.3389/fmicb.2021.761997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
Biofilm formation within the process of bioleaching of copper sulfides is a relevant aspect of iron- and sulfur-oxidizing acidophilic microorganisms as it represents their lifestyle in the actual heap/dump mining industry. Here, we used biofilm flow cell chambers to establish laminar regimes and compare them with turbulent conditions to evaluate biofilm formation and mineralogic dynamics through QEMSCAN and SEM-EDS during bioleaching of primary copper sulfide minerals at 30°C. We found that laminar regimes triggered the buildup of biofilm using Leptospirillum spp. and Acidithiobacillus thiooxidans (inoculation ratio 3:1) at a cell concentration of 106 cells/g mineral on bornite (Cu5FeS4) but not for chalcopyrite (CuFeS2). Conversely, biofilm did not occur on any of the tested minerals under turbulent conditions. Inoculating the bacterial community with ferric iron (Fe3+) under shaking conditions resulted in rapid copper recovery from bornite, leaching 40% of the Cu content after 10 days of cultivation. The addition of ferrous iron (Fe2+) instead promoted Cu recovery of 30% at day 48, clearly delaying the leaching process. More efficiently, the biofilm-forming laminar regime almost doubled the leached copper amount (54%) after 32 days. In-depth inspection of the microbiologic dynamics showed that bacteria developing biofilm on the surface of bornite corresponded mainly to At. Thiooxidans, while Leptospirillum spp. were detected in planktonic form, highlighting the role of biofilm buildup as a means for the bioleaching of primary sulfides. We finally propose a mechanism for bornite bioleaching during biofilm formation where sulfur regeneration to sulfuric acid by the sulfur-oxidizing microorganisms is crucial to prevent iron precipitation for efficient copper recovery.
Collapse
Affiliation(s)
- Roberto A Bobadilla-Fazzini
- Biosystems Engineering Laboratory, Department of Chemical Engineering, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Ignacio Poblete-Castro
- Biosystems Engineering Laboratory, Department of Chemical Engineering, Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
4
|
Zlatkov N, Nadeem A, Uhlin BE, Wai SN. Eco-evolutionary feedbacks mediated by bacterial membrane vesicles. FEMS Microbiol Rev 2021; 45:fuaa047. [PMID: 32926132 PMCID: PMC7968517 DOI: 10.1093/femsre/fuaa047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/11/2020] [Indexed: 12/27/2022] Open
Abstract
Bacterial membrane vesicles (BMVs) are spherical extracellular organelles whose cargo is enclosed by a biological membrane. The cargo can be delivered to distant parts of a given habitat in a protected and concentrated manner. This review presents current knowledge about BMVs in the context of bacterial eco-evolutionary dynamics among different environments and hosts. BMVs may play an important role in establishing and stabilizing bacterial communities in such environments; for example, bacterial populations may benefit from BMVs to delay the negative effect of certain evolutionary trade-offs that can result in deleterious phenotypes. BMVs can also perform ecosystem engineering by serving as detergents, mediators in biochemical cycles, components of different biofilms, substrates for cross-feeding, defense systems against different dangers and enzyme-delivery mechanisms that can change substrate availability. BMVs further contribute to bacteria as mediators in different interactions, with either other bacterial species or their hosts. In short, BMVs extend and deliver phenotypic traits that can have ecological and evolutionary value to both their producers and the ecosystem as a whole.
Collapse
Affiliation(s)
- Nikola Zlatkov
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| | - Aftab Nadeem
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| | - Bernt Eric Uhlin
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
5
|
Méndez-Tovar M, García-Meza JV, González I. Electrochemical monitoring of Acidithiobacillus thiooxidans biofilm formation on graphite surface with elemental sulfur. Bioelectrochemistry 2019; 128:30-38. [PMID: 30909069 DOI: 10.1016/j.bioelechem.2019.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 01/05/2023]
Abstract
Inorganic wastewaters and sediments from the mining industry and mineral bioleaching processes have not been fully explored in bioelectrochemical systems (BES). Knowledge of interfacial changes due to biofilm evolution under acidic conditions may improve applications in electrochemical processes, specifically those related to sulfur compounds. Biofilm evolution of Acidithiobacillus thiooxidans on a graphite plate was monitored by electrochemical techniques, using the graphite plate as biofilm support and elemental sulfur as the only energy source. Even though the elemental sulfur was in suspension, S0 particles adhered to the graphite surface favoring biofilm development. The biofilms grown at different incubation times (without electric perturbation) were characterized in a classical three electrode electrochemical cell (sulfur and bacteria free culture medium) by non-invasive electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The biofilm structure was confirmed by Environmental Scanning Electrode Microscopy, while the relative fractions of exopolysaccharides and extracellular hydrophobic compounds at different incubation times were evaluated by Confocal Laser Scanning Microscopy. The experimental conditions chosen in this work allowed the EIS monitoring of the biofilm growth as well as the modification of Extracellular Polymeric Substances (EPS) composition (hydrophobic/ exopolysaccharides EPS ratio). This strategy could be useful to control biofilms for BES operation under acidic conditions.
Collapse
Affiliation(s)
- Marcela Méndez-Tovar
- Departamento de Química, Universidad Autónoma Metropolitana Iztapalapa, San Rafael Atlixco 186. Col. Vicentina, 09340 Ciudad de México, Mexico
| | - J Viridiana García-Meza
- Geomicrobiología, Facultad de Ingeniería-Metalurgia, UASLP. Sierra Leona 550, Lomas 2°, San Luis Potosí 78210, SLP, Mexico
| | - Ignacio González
- Departamento de Química, Universidad Autónoma Metropolitana Iztapalapa, San Rafael Atlixco 186. Col. Vicentina, 09340 Ciudad de México, Mexico.
| |
Collapse
|
6
|
Bioelectrochemical system for the biooxidation of a chalcopyrite concentrate by acidophilic bacteria coupled to energy current generation and cathodic copper recovery. Biotechnol Lett 2017; 40:63-73. [DOI: 10.1007/s10529-017-2435-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
|
7
|
Bioelectrochemical Changes during the Early Stages of Chalcopyrite Interaction with Acidithiobacillus Thiooxidans and Leptospirillum sp. MINERALS 2017. [DOI: 10.3390/min7090156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Ramírez-Aldaba H, Vazquez-Arenas J, Sosa-Rodríguez FS, Valdez-Pérez D, Ruiz-Baca E, García-Meza JV, Trejo-Córdova G, Lara RH. Assessment of biofilm changes and concentration-depth profiles during arsenopyrite oxidation by Acidithiobacillus thiooxidans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20082-20092. [PMID: 28702905 DOI: 10.1007/s11356-017-9619-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Biofilm formation and evolution are key factors to consider to better understand the kinetics of arsenopyrite biooxidation. Chemical and surface analyses were carried out using Raman spectroscopy, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), glow discharge spectroscopy (GDS), and protein analysis (i.e., quantification) in order to evaluate the formation of intermediate secondary compounds and any significant changes arising in the biofilm structure of Acidithiobacillus thiooxidans during a 120-h period of biooxidation. Results show that the biofilm first evolves from a low cell density structure (1 to 12 h) into a formation of microcolonies (24 to 120 h) and then finally becomes enclosed by a secondary compound matrix that includes pyrite (FeS2)-like, S n2-/S0, and As2S3 compounds, as shown by Raman and SEM-EDS. GDS analyses (concentration-depth profiles, i.e., 12 h) indicate significant differences for depth speciation between abiotic control and biooxidized surfaces, thus providing a quantitative assessment of surface-bulk changes across samples (i.e. reactivity and /or structure-activity relationship). Respectively, quantitative protein analyses and CLSM analyses suggest variations in the type of extracellular protein expressed and changes in the biofilm structure from hydrophilic (i.e., exopolysaccharides) to hydrophobic (i.e., lipids) due to arsenopyrite and cell interactions during the 120-h period of biooxidation. We suggest feasible environmental and industrial implications for arsenopyrite biooxidation based on the findings of this study.
Collapse
Affiliation(s)
- Hugo Ramírez-Aldaba
- Programa de Doctorado Interinstitucional en Ciencias Agropecuarias y Forestales, Universidad Juárez del Estado de Durango, Río Papaloapan y Blvd. Durango S/N, Col. Valle del Sur, 34120, Durango, DGO, Mexico
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120, Durango, DGO, Mexico
| | - Jorge Vazquez-Arenas
- Centro Mexicano para la Producción más Limpia, Instituto Politécnico Nacional, Avenida Acueducto s/n, Col. La Laguna Ticomán, 07340, Ciudad de México, Mexico
| | - Fabiola S Sosa-Rodríguez
- Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Azcapotzalco, 02200, Ciudad de México, Mexico
| | - Donato Valdez-Pérez
- Instituto Politécnico Nacional, UPALM, Edif. Z-4 3er Piso, 07738, Ciudad de México, Mexico
| | - Estela Ruiz-Baca
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120, Durango, DGO, Mexico
| | - Jessica Viridiana García-Meza
- Geomicrobiología, Facultad de Ingeniería, UASLP, Av. Sierra Leona 550, Lomas 2da, 78210, San Luis Potosí, SLP, Mexico
| | - Gabriel Trejo-Córdova
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque Tecnológico Querétaro-Sanfandila, 76703, Pedro Escobedo, QRO, Mexico
| | - René H Lara
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120, Durango, DGO, Mexico.
| |
Collapse
|
9
|
Silva AF, Antunes S, Freitas F, Carvalho G, Reis MAM, Barreto Crespo MT. Impact of sludge retention time on MBR fouling: role of extracellular polymeric substances determined through membrane autopsy. BIOFOULING 2017; 33:556-566. [PMID: 28675051 DOI: 10.1080/08927014.2017.1333112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
The impact of sludge retention time (SRT) on the biofouling of a membrane bioreactor (MBR) by extracellular polymeric substances (EPS) was investigated. The MBR was operated at 60 and 20 d SRT. The gel layer (recovered through optimized membrane autopsy methods) and the cake layer were analyzed for their content and profile of EPS proteins and polysaccharides. The change to a shorter SRT led to decreased membrane filterability, concomitant with a higher expression of EPS proteins in the cake layer, which were identified as being mainly related with biosynthesis and stress functions. The gel layer was more substantial in internal fibers, with polysaccharides being the major component in this layer. With the decrease in SRT (and filterability decrease), the overall polysaccharide content and sugar variety increased. In conclusion, SRT impacted not only on the quantity but also the composition of EPS molecules, and both were shown to be important in biofouling.
Collapse
Affiliation(s)
- Ana F Silva
- a IBET - Instituto de Biologia Experimental , Oeiras , Portugal
- b Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , Oeiras , Portugal
| | - Silvia Antunes
- c UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , Caparica , Portugal
| | - Filomena Freitas
- c UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , Caparica , Portugal
| | - Gilda Carvalho
- c UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , Caparica , Portugal
| | - Maria A M Reis
- c UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , Caparica , Portugal
| | - Maria T Barreto Crespo
- a IBET - Instituto de Biologia Experimental , Oeiras , Portugal
- b Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , Oeiras , Portugal
| |
Collapse
|
10
|
Yu RL, Liu A, Liu Y, Yu Z, Peng T, Wu X, Shen L, Liu Y, Li J, Liu X, Qiu G, Chen M, Zeng W. Evolution ofSulfobacillus thermosulfidooxidanssecreting alginate during bioleaching of chalcopyrite concentrate. J Appl Microbiol 2017; 122:1586-1594. [DOI: 10.1111/jam.13467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/07/2017] [Accepted: 03/27/2017] [Indexed: 11/28/2022]
Affiliation(s)
- R.-L. Yu
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
- Key Laboratory of Biometallurgy; Ministry of Education; Changsha China
| | - A. Liu
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
| | - Y. Liu
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
| | - Z. Yu
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
| | - T. Peng
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
| | - X. Wu
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
- Key Laboratory of Biometallurgy; Ministry of Education; Changsha China
| | - L. Shen
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
- Key Laboratory of Biometallurgy; Ministry of Education; Changsha China
| | - Y. Liu
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
- Key Laboratory of Biometallurgy; Ministry of Education; Changsha China
| | - J. Li
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
- Key Laboratory of Biometallurgy; Ministry of Education; Changsha China
| | - X. Liu
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
- Key Laboratory of Biometallurgy; Ministry of Education; Changsha China
| | - G. Qiu
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
- Key Laboratory of Biometallurgy; Ministry of Education; Changsha China
| | - M. Chen
- CSIRO Process Science and Engineering; Clayton Vic. Australia
| | - W. Zeng
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
- Key Laboratory of Biometallurgy; Ministry of Education; Changsha China
- CSIRO Process Science and Engineering; Clayton Vic. Australia
| |
Collapse
|