1
|
Smith TP, Mombrikotb S, Ransome E, Kontopoulos DG, Pawar S, Bell T. Latent functional diversity may accelerate microbial community responses to temperature fluctuations. eLife 2022; 11:e80867. [PMID: 36444646 PMCID: PMC9708066 DOI: 10.7554/elife.80867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/26/2022] [Indexed: 11/30/2022] Open
Abstract
How complex microbial communities respond to climatic fluctuations remains an open question. Due to their relatively short generation times and high functional diversity, microbial populations harbor great potential to respond as a community through a combination of strain-level phenotypic plasticity, adaptation, and species sorting. However, the relative importance of these mechanisms remains unclear. We conducted a laboratory experiment to investigate the degree to which bacterial communities can respond to changes in environmental temperature through a combination of phenotypic plasticity and species sorting alone. We grew replicate soil communities from a single location at six temperatures between 4°C and 50°C. We found that phylogenetically and functionally distinct communities emerge at each of these temperatures, with K-strategist taxa favored under cooler conditions and r-strategist taxa under warmer conditions. We show that this dynamic emergence of distinct communities across a wide range of temperatures (in essence, community-level adaptation) is driven by the resuscitation of latent functional diversity: the parent community harbors multiple strains pre-adapted to different temperatures that are able to 'switch on' at their preferred temperature without immigration or adaptation. Our findings suggest that microbial community function in nature is likely to respond rapidly to climatic temperature fluctuations through shifts in species composition by resuscitation of latent functional diversity.
Collapse
Affiliation(s)
- Thomas P Smith
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| | - Shorok Mombrikotb
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| | - Emma Ransome
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| | | | - Samraat Pawar
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| | - Thomas Bell
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| |
Collapse
|
2
|
Single cell mutant selection for metabolic engineering of actinomycetes. Metab Eng 2022; 73:124-133. [PMID: 35809806 DOI: 10.1016/j.ymben.2022.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/31/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022]
Abstract
Actinomycetes are important producers of pharmaceuticals and industrial enzymes. However, wild type strains require laborious development prior to industrial usage. Here we present a generally applicable reporter-guided metabolic engineering tool based on random mutagenesis, selective pressure, and single-cell sorting. We developed fluorescence-activated cell sorting (FACS) methodology capable of reproducibly identifying high-performing individual cells from a mutant population directly from liquid cultures. Actinomycetes are an important source of catabolic enzymes, where product yields determine industrial viability. We demonstrate 5-fold yield improvement with an industrial cholesterol oxidase ChoD producer Streptomyces lavendulae to 20.4 U g-1 in three rounds. Strain development is traditionally followed by production medium optimization, which is a time-consuming multi-parameter problem that may require hard to source ingredients. Ultra-high throughput screening allowed us to circumvent medium optimization and we identified high ChoD yield production strains directly from mutant libraries grown under preset culture conditions. Genome-mining based drug discovery is a promising source of bioactive compounds, which is complicated by the observation that target metabolic pathways may be silent under laboratory conditions. We demonstrate our technology for drug discovery by activating a silent mutaxanthene metabolic pathway in Amycolatopsis. We apply the method for industrial strain development and increase mutaxanthene yields 9-fold to 99 mg l-1 in a second round of mutant selection. In summary, the ability to screen tens of millions of mutants in a single cell format offers broad applicability for metabolic engineering of actinomycetes for activation of silent metabolic pathways and to increase yields of proteins and natural products.
Collapse
|
3
|
Current Understanding on Adhesion and Biofilm Development in Actinobacteria. Int J Microbiol 2021; 2021:6637438. [PMID: 34122552 PMCID: PMC8166509 DOI: 10.1155/2021/6637438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/07/2021] [Indexed: 12/30/2022] Open
Abstract
Biofilm formation and microbial adhesion are two related and complex phenomena. These phenomena are known to play an important role in microbial life and various functions with positive and negative aspects. Actinobacteria have wide distribution in aquatic and terrestrial ecosystems. This phylum is very large and diverse and contains two important genera Streptomyces and Mycobacteria. The genus Streptomyces is the most biotechnologically important, while the genus Mycobacteria contains the pathogenic species of Mycobacteriaceae. According to the literature, the majority of studies carried out on actinomycetes are focused on the detection of new molecules. Despite the well-known diversity and metabolic activities, less attention has been paid to this phylum. Research on adhesion and biofilm formation is not well developed. In the present review, an attempt has been made to review the literature available on the different aspects on biofilm formation and adhesion of Actinobacteria. We focus especially on the genus Streptomyces. Furthermore, a brief overview about the molecules and structures involved in the adhesion phenomenon in the most relevant genus is summarized. We mention the mechanisms of quorum sensing and quorum quenching because of their direct association with biofilm formation.
Collapse
|
4
|
Wu Y, Kang Q, Zhang LL, Bai L. Subtilisin-Involved Morphology Engineering for Improved Antibiotic Production in Actinomycetes. Biomolecules 2020; 10:biom10060851. [PMID: 32503302 PMCID: PMC7356834 DOI: 10.3390/biom10060851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 12/27/2022] Open
Abstract
In the submerged cultivation of filamentous microbes, including actinomycetes, complex morphology is one of the critical process features for the production of secondary metabolites. Ansamitocin P-3 (AP-3), an antitumor agent, is a secondary metabolite produced by Actinosynnema pretiosum ATCC 31280. An excessive mycelial fragmentation of A. pretiosum ATCC 31280 was observed during the early stage of fermentation. Through comparative transcriptomic analysis, a subtilisin-like serine peptidase encoded gene APASM_4178 was identified to be responsible for the mycelial fragmentation. Mutant WYT-5 with the APASM_4178 deletion showed increased biomass and improved AP-3 yield by 43.65%. We also found that the expression of APASM_4178 is specifically regulated by an AdpA-like protein APASM_1021. Moreover, the mycelial fragmentation was alternatively alleviated by the overexpression of subtilisin inhibitor encoded genes, which also led to a 46.50 ± 0.79% yield increase of AP-3. Furthermore, APASM_4178 was overexpressed in salinomycin-producing Streptomyces albus BK 3-25 and validamycin-producing S. hygroscopicus TL01, which resulted in not only dispersed mycelia in both strains, but also a 33.80% yield improvement of salinomycin to 24.07 g/L and a 14.94% yield improvement of validamycin to 21.46 g/L. In conclusion, our work elucidates the involvement of a novel subtilisin-like serine peptidase in morphological differentiation, and modulation of its expression could be an effective strategy for morphology engineering and antibiotic yield improvement in actinomycetes.
Collapse
Affiliation(s)
- Yuanting Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200204, China; (Y.W.); (Q.K.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200204, China; (Y.W.); (Q.K.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Li Zhang
- College of Life Science, Tarim University, Alar 843300, China;
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200204, China; (Y.W.); (Q.K.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life Science, Tarim University, Alar 843300, China;
- Correspondence:
| |
Collapse
|
5
|
Zacchetti B, Wösten HA, Claessen D. Multiscale heterogeneity in filamentous microbes. Biotechnol Adv 2018; 36:2138-2149. [DOI: 10.1016/j.biotechadv.2018.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/15/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
|
6
|
Streptomyces Differentiation in Liquid Cultures as a Trigger of Secondary Metabolism. Antibiotics (Basel) 2018; 7:antibiotics7020041. [PMID: 29757948 PMCID: PMC6022995 DOI: 10.3390/antibiotics7020041] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 02/08/2023] Open
Abstract
Streptomyces is a diverse group of gram-positive microorganisms characterised by a complex developmental cycle. Streptomycetes produce a number of antibiotics and other bioactive compounds used in the clinic. Most screening campaigns looking for new bioactive molecules from actinomycetes have been performed empirically, e.g., without considering whether the bacteria are growing under the best developmental conditions for secondary metabolite production. These screening campaigns were extremely productive and discovered a number of new bioactive compounds during the so-called “golden age of antibiotics” (until the 1980s). However, at present, there is a worrying bottleneck in drug discovery, and new experimental approaches are needed to improve the screening of natural actinomycetes. Streptomycetes are still the most important natural source of antibiotics and other bioactive compounds. They harbour many cryptic secondary metabolite pathways not expressed under classical laboratory cultures. Here, we review the new strategies that are being explored to overcome current challenges in drug discovery. In particular, we focus on those aimed at improving the differentiation of the antibiotic-producing mycelium stage in the laboratory.
Collapse
|
7
|
Zacchetti B, Smits P, Claessen D. Dynamics of Pellet Fragmentation and Aggregation in Liquid-Grown Cultures of Streptomyces lividans. Front Microbiol 2018; 9:943. [PMID: 29867851 PMCID: PMC5958208 DOI: 10.3389/fmicb.2018.00943] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/23/2018] [Indexed: 11/20/2022] Open
Abstract
Streptomycetes are extensively used for the production of valuable products, including various antibiotics and industrial enzymes. The preferred way to grow these bacteria in industrial settings is in large-scale fermenters. Growth of streptomycetes under these conditions is characterized by the formation of complex mycelial particles, called pellets. While the process of pellet formation is well characterized, little is known about their disintegration. Here, we use a qualitative and quantitative approach to show that pellet fragmentation in Streptomyces lividans is initiated when cultures enter the stationary phase, which coincides with a remarkable change in pellet architecture. Unlike young pellets, aging pellets have a less dense appearance and are characterized by the appearance of filaments protruding from their outer edges. These morphological changes are accompanied by a dramatic increase in the number of mycelial fragments in the culture broth. In the presence of fresh nutrients, these fragments are able to aggregate with other small fragments, but not with disintegrating pellets, to form new mycelial particles. Altogether, our work indicates that fragmentation might represent an escape mechanism from the environmental stress caused by nutrient scarcity, with striking similarities to the disassembly of bacterial biofilms.
Collapse
Affiliation(s)
- Boris Zacchetti
- Microbial Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Paul Smits
- Microbial Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Dennis Claessen
- Microbial Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
8
|
Zacchetti B, Andrianos A, van Dissel D, de Ruiter E, van Wezel GP, Claessen D. Microencapsulation extends mycelial viability of Streptomyces lividans 66 and increases enzyme production. BMC Biotechnol 2018. [PMID: 29530017 PMCID: PMC5848461 DOI: 10.1186/s12896-018-0425-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Filamentous bacteria of the genus Streptomyces produce a large arsenal of industrially relevant antibiotics and enzymes. The industrial production of these molecules occurs in large fermenters, where many streptomycetes form dense mycelial networks called pellets. Pellets are characterized by slow growth and inefficient nutrient transfer and therefore regarded as undesirable from the perspective of productivity. Although non-pelleting strains have increased growth rates, their morphology also leads to a dramatic increase in the viscosity of the culture broth, which negatively impacts the process dynamics. RESULTS Here, we applied immobilization of Streptomyces lividans 66 using alginate as semi-solid matrix. This alginate-mediated micro-encapsulation increased the production of the extracellular enzyme tyrosinase more than three-fold. The increased production was accompanied by extended viability of the mycelium and a dramatic reduction in the release of intracellular proteins into the culture broth. CONCLUSIONS Our data demonstrate the utility of micro-encapsulation as a powerful technique to achieve higher yields and lower downstream-processing costs of streptomycetes.
Collapse
Affiliation(s)
- Boris Zacchetti
- Microbial Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands
| | | | - Dino van Dissel
- Microbial Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands
| | - Evelien de Ruiter
- Microbial Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands
| | - Gilles P van Wezel
- Microbial Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands
| | - Dennis Claessen
- Microbial Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands.
| |
Collapse
|
9
|
Morphology-driven downscaling of Streptomyces lividans to micro-cultivation. Antonie van Leeuwenhoek 2017; 111:457-469. [PMID: 29094245 PMCID: PMC5816114 DOI: 10.1007/s10482-017-0967-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022]
Abstract
Actinobacteria are prolific producers of secondary metabolites and industrially relevant enzymes. Growth of these mycelial micro-organisms in small culture volumes is challenging due to their complex morphology. Since morphology and production are typically linked, scaling down culture volumes requires better control over morphogenesis. In larger scale platforms, ranging from shake flasks to bioreactors, the hydrodynamics play an important role in shaping the morphology and determining product formation. Here, we report on the effects of agitation on the mycelial morphology of Streptomyces lividans grown in microtitre plates. Our work shows that at the appropriate agitation rates cultures can be scaled down to volumes as small as 100 µl while maintaining the same morphology as seen in larger scale platforms. Using image analysis and principal component analysis we compared the morphologies of the cultures; when agitated at 1400–1600 rpm the mycelial morphology in micro-cultures was similar to that obtained in shake flasks, while product formation was also maintained. Our study shows that the morphology of actinobacteria in micro-cultures can be controlled in a similar manner as in larger scale cultures by carefully controlling the mixing rate. This could facilitate high-throughput screening and upscaling.
Collapse
|
10
|
Kumar P, Dubey KK. Mycelium transformation of Streptomyces toxytricini into pellet: Role of culture conditions and kinetics. BIORESOURCE TECHNOLOGY 2017; 228:339-347. [PMID: 28088096 DOI: 10.1016/j.biortech.2017.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/31/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
The present study envisages the role of different carbon sources, nitrogen sources, metals, pH, inoculum volume and agitation rate in pellet formation of S. toxytricini at shake-flask level. It was found that galactose, ammonium sulphate, sodium nitrate, Cu2+, Zn2+, higher inoculum volume (5% v/v) and agitation rate at 300rpm caused significant reduction in pellet size (up to the range of 30μm-0.5mm) but biomass formations was also reduced subsequently. Interestingly diffused type of morphology was obtained in Fe2+ supplemented medium with reduced biomass (1.5gL-1). Rheological study revealed that non-Newtonian behaviour of culture broth. Besides this, kinetics study was also made to understand the growth kinetics (0.39gL-1h-1), oxygen uptake rate (0.1146mgL-1h-1), and production of lipstatin (0.0072gh-1).
Collapse
Affiliation(s)
- Punit Kumar
- Microbial Biotechnology Laboratory, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Kashyap Kumar Dubey
- Microbial Biotechnology Laboratory, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; Department of Biotechnology, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| |
Collapse
|
11
|
Active-site maturation and activity of the copper-radical oxidase GlxA are governed by a tryptophan residue. Biochem J 2017; 474:809-825. [DOI: 10.1042/bcj20160968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/02/2017] [Accepted: 01/13/2017] [Indexed: 11/17/2022]
Abstract
GlxA from Streptomyces lividans is a mononuclear copper-radical oxidase and a member of the auxiliary activity family 5 (AA5). Its domain organisation and low sequence homology make it a distinct member of the AA5 family in which the fungal galactose 6-oxidase (Gox) is the best characterised. GlxA is a key cuproenzyme in the copper-dependent morphological development of S. lividans with a function that is linked to the processing of an extracytoplasmic glycan. The catalytic sites in GlxA and Gox contain two distinct one-electron acceptors comprising the copper ion and a 3′-(S-cysteinyl) tyrosine. The latter is formed post-translationally through a covalent bond between a cysteine and a copper-co-ordinating tyrosine ligand and houses a radical. In GlxA and Gox, a second co-ordination sphere tryptophan residue (Trp288 in GlxA) is present, but the orientation of the indole ring differs between the two enzymes, creating a marked difference in the π–π stacking interaction of the benzyl ring with the 3′-(S-cysteinyl) tyrosine. Differences in the spectroscopic and enzymatic activity have been reported between GlxA and Gox with the indole orientation suggested as a reason. Here, we report a series of in vivo and in vitro studies using the W288F and W288A variants of GlxA to assess the role of Trp288 on the morphology, maturation, spectroscopic and enzymatic properties. Our findings point towards a salient role for Trp288 in the kinetics of copper loading and maturation of GlxA, with its presence essential for stabilising the metalloradical site required for coupling catalytic activity and morphological development.
Collapse
|
12
|
Petrus MLC, Vijgenboom E, Chaplin AK, Worrall JAR, van Wezel GP, Claessen D. The DyP-type peroxidase DtpA is a Tat-substrate required for GlxA maturation and morphogenesis in Streptomyces. Open Biol 2016; 6:150149. [PMID: 26740586 PMCID: PMC4736821 DOI: 10.1098/rsob.150149] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The filamentous bacterium Streptomyces lividans depends on the radical copper oxidase GlxA for the formation of reproductive aerial structures and, in liquid environments, for the formation of pellets. Incorporation of copper into the active site is essential for the formation of a cross-linked tyrosyl-cysteine cofactor, which is needed for enzymatic activity. In this study, we show a crucial link between GlxA maturation and a group of copper-related proteins including the chaperone Sco and a novel DyP-type peroxidase hereinafter called DtpA. Under copper-limiting conditions, the sco and dtpA deletion mutants are blocked in aerial growth and pellet formation, similarly to a glxA mutant. Western blot analysis showed that GlxA maturation is perturbed in the sco and dtpA mutants, but both maturation and morphology can by rescued by increasing the bioavailability of copper. DtpA acts as a peroxidase in the presence of GlxA and is a substrate for the twin-arginine translocation (Tat) translocation pathway. In agreement, the maturation status of GlxA is also perturbed in tat mutants, which can be compensated for by the addition of copper, thereby partially restoring their morphological defects. Our data support a model wherein a copper-trafficking pathway and Tat-dependent secretion of DtpA link to the GlxA-dependent morphogenesis pathway.
Collapse
Affiliation(s)
- Marloes L C Petrus
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Erik Vijgenboom
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Amanda K Chaplin
- School of Biological Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Jonathan A R Worrall
- School of Biological Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
13
|
Zacchetti B, Willemse J, Recter B, van Dissel D, van Wezel GP, Wösten HAB, Claessen D. Aggregation of germlings is a major contributing factor towards mycelial heterogeneity of Streptomyces. Sci Rep 2016; 6:27045. [PMID: 27244565 PMCID: PMC4886682 DOI: 10.1038/srep27045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/13/2016] [Indexed: 12/22/2022] Open
Abstract
Streptomycetes are filamentous bacteria that produce numerous valuable compounds, including the majority of clinically used antibiotics. At an industrial scale, most of these compounds are produced in bioreactors. Growth of streptomycetes under these conditions is characterized by the formation of complex mycelial particles, whose sizes follow a bimodal distribution. Given the correlation between specific productivity and morphology, this size heterogeneity poses a potential drawback in industry. Recent work indicates that mycelial morphology is controlled by a number of genes that encode proteins required for the synthesis of cell surface-associated glycans. Using a quantifiable system based on fluorescent markers, we here show that these glycans mediate aggregation between germlings and young mycelia, yielding mycelial particles that originate from many different individuals. We also demonstrate that at later time points aggregation between distinct particles is no longer detectable. Notably, the absence of the corresponding glycan synthases yields mycelia that are homogeneous in size, identifying mycelial aggregation as a driving factor towards size heterogeneity. Given that aggregation is widespread within streptomycetes and can also occur between different Streptomyces strains, our work paves the way to improve Streptomyces as a cell factory for the production of known metabolites, but possibly also to discover new ones.
Collapse
Affiliation(s)
- Boris Zacchetti
- Microbial Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Joost Willemse
- Microbial Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Brand Recter
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Dino van Dissel
- Microbial Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Gilles P. van Wezel
- Microbial Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - H. A. B. Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Dennis Claessen
- Microbial Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
14
|
OsdR of Streptomyces coelicolor and the Dormancy Regulator DevR of Mycobacterium tuberculosis Control Overlapping Regulons. mSystems 2016; 1:mSystems00014-16. [PMID: 27822533 PMCID: PMC5069765 DOI: 10.1128/msystems.00014-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/29/2016] [Indexed: 11/20/2022] Open
Abstract
Dormancy is a state of growth cessation that allows bacteria to escape the host defense system and antibiotic challenge. Understanding the mechanisms that control dormancy is of key importance for the treatment of latent infections, such as those from Mycobacterium tuberculosis. In mycobacteria, dormancy is controlled by the response regulator DevR, which responds to conditions of hypoxia. Here, we show that OsdR of Streptomyces coelicolor recognizes the same regulatory element and controls a regulon that consists of genes involved in the control of stress and development. Only the core regulon in the direct vicinity of dosR and osdR is conserved between M. tuberculosis and S. coelicolor, respectively. Thus, we show how the system has diverged from allowing escape from the host defense system by mycobacteria to the control of sporulation by complex multicellular streptomycetes. This provides novel insights into how bacterial growth and development are coordinated with the environmental conditions. Two-component regulatory systems allow bacteria to respond adequately to changes in their environment. In response to a given stimulus, a sensory kinase activates its cognate response regulator via reversible phosphorylation. The response regulator DevR activates a state of dormancy under hypoxia in Mycobacterium tuberculosis, allowing this pathogen to escape the host defense system. Here, we show that OsdR (SCO0204) of the soil bacterium Streptomyces coelicolor is a functional orthologue of DevR. OsdR, when activated by the sensory kinase OsdK (SCO0203), binds upstream of the DevR-controlled dormancy genes devR, hspX, and Rv3134c of M. tuberculosis. In silico analysis of the S. coelicolor genome combined with in vitro DNA binding studies identified many binding sites in the genomic region around osdR itself and upstream of stress-related genes. This binding correlated well with transcriptomic responses, with deregulation of developmental genes and genes related to stress and hypoxia in the osdR mutant. A peak in osdR transcription in the wild-type strain at the onset of aerial growth correlated with major changes in global gene expression. Taken together, our data reveal the existence of a dormancy-related regulon in streptomycetes which plays an important role in the transcriptional control of stress- and development-related genes. IMPORTANCE Dormancy is a state of growth cessation that allows bacteria to escape the host defense system and antibiotic challenge. Understanding the mechanisms that control dormancy is of key importance for the treatment of latent infections, such as those from Mycobacterium tuberculosis. In mycobacteria, dormancy is controlled by the response regulator DevR, which responds to conditions of hypoxia. Here, we show that OsdR of Streptomyces coelicolor recognizes the same regulatory element and controls a regulon that consists of genes involved in the control of stress and development. Only the core regulon in the direct vicinity of dosR and osdR is conserved between M. tuberculosis and S. coelicolor, respectively. Thus, we show how the system has diverged from allowing escape from the host defense system by mycobacteria to the control of sporulation by complex multicellular streptomycetes. This provides novel insights into how bacterial growth and development are coordinated with the environmental conditions.
Collapse
|
15
|
Chaplin AK, Wilson MT, Hough MA, Svistunenko DA, Hemsworth GR, Walton PH, Vijgenboom E, Worrall JAR. Heterogeneity in the Histidine-brace Copper Coordination Sphere in Auxiliary Activity Family 10 (AA10) Lytic Polysaccharide Monooxygenases. J Biol Chem 2016; 291:12838-12850. [PMID: 27129229 DOI: 10.1074/jbc.m116.722447] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 12/23/2022] Open
Abstract
Copper-dependent lytic polysaccharide monooxygenases (LPMOs) are enzymes that oxidatively deconstruct polysaccharides. The active site copper in LPMOs is coordinated by a histidine-brace. This utilizes the amino group and side chain of the N-terminal His residue with the side chain of a second His residue to create a T-shaped arrangement of nitrogen ligands. We report a structural, kinetic, and thermodynamic appraisal of copper binding to the histidine-brace in an auxiliary activity family 10 (AA10) LPMO from Streptomyces lividans (SliLPMO10E). Unexpectedly, we discovered the existence of two apo-SliLPMO10E species in solution that can each bind copper at a single site with distinct kinetic and thermodynamic (exothermic and endothermic) properties. The experimental EPR spectrum of copper-bound SliLPMO10E requires the simulation of two different line shapes, implying two different copper-bound species, indicative of three and two nitrogen ligands coordinating the copper. Amino group coordination was probed through the creation of an N-terminal extension variant (SliLPMO10E-Ext). The kinetics and thermodynamics of copper binding to SliLPMO10E-Ext are in accord with copper binding to one of the apo-forms in the wild-type protein, suggesting that amino group coordination is absent in the two-nitrogen coordinate form of SliLPMO10E. Copper binding to SliLPMO10B was also investigated, and again it revealed the presence of two apo-forms with kinetics and stoichiometry of copper binding identical to that of SliLPMO10E. Our findings highlight that heterogeneity exists in the active site copper coordination sphere of LPMOs that may have implications for the mechanism of loading copper in the cell.
Collapse
Affiliation(s)
- Amanda K Chaplin
- From the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Michael T Wilson
- From the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Michael A Hough
- From the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Dimitri A Svistunenko
- From the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Glyn R Hemsworth
- the Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom, and
| | - Paul H Walton
- the Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom, and
| | - Erik Vijgenboom
- the Molecular Biotechnology, Institute of Biology, Sylvius Laboratory, Leiden University, P. O. Box 9505, 2300RA Leiden, The Netherlands
| | - Jonathan A R Worrall
- From the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom,.
| |
Collapse
|
16
|
Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces. Proc Natl Acad Sci U S A 2015; 112:12181-6. [PMID: 26374838 DOI: 10.1073/pnas.1511027112] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
There is a great demand for precisely quantitating the expression of genes of interest in synthetic and systems biotechnology as new and fascinating insights into the genetics of streptomycetes have come to light. Here, we developed, for the first time to our knowledge, a quantitative method based on flow cytometry and a superfolder green fluorescent protein (sfGFP) at single-cell resolution in Streptomyces. Single cells of filamentous bacteria were obtained by releasing the protoplasts from the mycelium, and the dead cells could be distinguished from the viable ones by propidium iodide (PI) staining. With this sophisticated quantitative method, some 200 native or synthetic promoters and 200 ribosomal binding sites (RBSs) were characterized in a high-throughput format. Furthermore, an insulator (RiboJ) was recruited to eliminate the interference between promoters and RBSs and improve the modularity of regulatory elements. Seven synthetic promoters with gradient strength were successfully applied in a proof-of-principle approach to activate and overproduce the cryptic lycopene in a predictable manner in Streptomyces avermitilis. Our work therefore presents a quantitative strategy and universal synthetic modular regulatory elements, which will facilitate the functional optimization of gene clusters and the drug discovery process in Streptomyces.
Collapse
|
17
|
Walisko R, Moench-Tegeder J, Blotenberg J, Wucherpfennig T, Krull R. The Taming of the Shrew--Controlling the Morphology of Filamentous Eukaryotic and Prokaryotic Microorganisms. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 149:1-27. [PMID: 25796624 DOI: 10.1007/10_2015_322] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the most sensitive process characteristics in the cultivation of filamentous biological systems is their complex morphology. In submerged cultures, the observed macroscopic morphology of filamentous microorganisms varies from freely dispersed mycelium to dense spherical pellets consisting of a more or less dense, branched and partially intertwined network of hyphae. Recently, the freely dispersed mycelium form has been in high demand for submerged cultivation because this morphology enhances the growth and production of several valuable products. A distinct filamentous morphology and productivity are influenced by the environment and can be controlled by inoculum concentration, spore viability, pH value, cultivation temperature, dissolved oxygen concentration, medium composition, mechanical stress or process mode as well as through the addition of inorganic salts or microparticles, which provides the opportunity to tailor a filamentous morphology. The suitable morphology for a given bioprocess varies depending on the desired product. Therefore, the advantages and disadvantages of each morphological type should be carefully evaluated for every biological system. Because of the high industrial relevance of filamentous microorganisms, research in previous years has aimed at the development of tools and techniques to characterise their growth and obtain quantitative estimates of their morphological properties. The focus of this review is on current advances in the characterisation and control of filamentous morphology with a separation of eukaryotic and prokaryotic systems. Furthermore, recent strategies to tailor the morphology through classical biochemical process parameters, morphology and genetic engineering to optimise the productivity of these filamentous systems are discussed.
Collapse
Affiliation(s)
- Robert Walisko
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Gaußstraße 17, 38106, Braunschweig, Germany,
| | | | | | | | | |
Collapse
|
18
|
van Dissel D, Claessen D, Roth M, van Wezel GP. A novel locus for mycelial aggregation forms a gateway to improved Streptomyces cell factories. Microb Cell Fact 2015; 14:44. [PMID: 25889360 PMCID: PMC4391728 DOI: 10.1186/s12934-015-0224-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/09/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Streptomycetes produce a plethora of natural products including antibiotics and anticancer drugs, as well as many industrial enzymes. Their mycelial life style is a major bottleneck for industrial exploitation and over decades strain improvement programs have selected production strains with better growth properties. Uncovering the nature of the underlying mutations should allow the ready transfer of desirable traits to other production hosts. RESULTS Here we report that the mat gene cluster, which was identified through reverse engineering of a non-pelleting mutant selected in a chemostat, is key to pellet formation of Streptomyces lividans. Deletion of matA or matB, which encode putative polysaccharide synthases, effects mycelial metamorphosis, with very small and open mycelia. Growth rate and productivity of the matAB null mutant were increased by over 60% as compared to the wild-type strain. CONCLUSION Here, we present a way to counteract pellet formation by streptomycetes, which is one of the major bottlenecks in their industrial application. The mat locus is an ideal target for rational strain design approaches aimed at improving streptomycetes as industrial production hosts.
Collapse
Affiliation(s)
- Dino van Dissel
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300RA, Leiden, The Netherlands.
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300RA, Leiden, The Netherlands.
| | - Martin Roth
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany.
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300RA, Leiden, The Netherlands.
| |
Collapse
|
19
|
Serrano-Carreón L, Galindo E, Rocha-Valadéz JA, Holguín-Salas A, Corkidi G. Hydrodynamics, Fungal Physiology, and Morphology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 149:55-90. [PMID: 25652005 DOI: 10.1007/10_2015_304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Filamentous cultures, such as fungi and actinomycetes, contribute substantially to the pharmaceutical industry and to enzyme production, with an annual market of about 6 billion dollars. In mechanically stirred reactors, most frequently used in fermentation industry, microbial growth and metabolite productivity depend on complex interactions between hydrodynamics, oxygen transfer, and mycelial morphology. The dissipation of energy through mechanically stirring devices, either flasks or tanks, impacts both microbial growth through shearing forces on the cells and the transfer of mass and energy, improving the contact between phases (i.e., air bubbles and microorganisms) but also causing damage to the cells at high energy dissipation rates. Mechanical-induced signaling in the cells triggers the molecular responses to shear stress; however, the complete mechanism is not known. Volumetric power input and, more importantly, the energy dissipation/circulation function are the main parameters determining mycelial size, a phenomenon that can be explained by the interaction of mycelial aggregates and Kolmogorov eddies. The use of microparticles in fungal cultures is also a strategy to increase process productivity and reproducibility by controlling fungal morphology. In order to rigorously study the effects of hydrodynamics on the physiology of fungal microorganisms, it is necessary to rule out the possible associated effects of dissolved oxygen, something which has been reported scarcely. At the other hand, the processes of phase dispersion (including the suspended solid that is the filamentous biomass) are crucial in order to get an integral knowledge about biological and physicochemical interactions within the bioreactor. Digital image analysis is a powerful tool for getting relevant information in order to establish the mechanisms of mass transfer as well as to evaluate the viability of the mycelia. This review focuses on (a) the main characteristics of the two most common morphologies exhibited by filamentous microorganisms; (b) how hydrodynamic conditions affect morphology and physiology in filamentous cultures; and (c) techniques using digital image analysis to characterize the viability of filamentous microorganisms and mass transfer in multiphase dispersions. Representative case studies of fungi (Trichoderma harzianum and Pleurotus ostreatus) exhibiting different typical morphologies (disperse mycelia and pellets) are discussed.
Collapse
Affiliation(s)
- L Serrano-Carreón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Mor, México,
| | | | | | | | | |
Collapse
|
20
|
A terD domain-encoding gene (SCO2368) is involved in calcium homeostasis and participates in calcium regulation of a DosR-like regulon in Streptomyces coelicolor. J Bacteriol 2014; 197:913-23. [PMID: 25535276 DOI: 10.1128/jb.02278-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Streptomyces coelicolor is not resistant to tellurite, it possesses several TerD domain-encoding (tdd) genes of unknown function. To elucidate the function of tdd8, the transcriptomes of S. coelicolor strain M145 and of a tdd8 deletion mutant derivative (the Δtdd8 strain) were compared. Several orthologs of Mycobacterium tuberculosis genes involved in dormancy survival were upregulated in the deletion mutant at the visual onset of prodiginine production. These genes are organized in a putative redox stress response cluster comprising two large loci. A binding motif similar to the dormancy survival regulator (DosR) binding site of M. tuberculosis has been identified in the upstream sequences of most genes in these loci. A predicted role for these genes in the redox stress response is supported by the low NAD(+)/NADH ratio in the Δtdd8 strain. This S. coelicolor gene cluster was shown to be induced by hypoxia and NO stress. While the tdd8 deletion mutant (the Δtdd8 strain) was unable to maintain calcium homeostasis in a calcium-depleted medium, the addition of Ca(2+) in Δtdd8 culture medium reduced the expression of several genes of the redox stress response cluster. The results shown in this work are consistent with Tdd8 playing a significant role in calcium homeostasis and redox stress adaptation.
Collapse
|
21
|
van Dissel D, Claessen D, van Wezel GP. Morphogenesis of Streptomyces in submerged cultures. ADVANCES IN APPLIED MICROBIOLOGY 2014; 89:1-45. [PMID: 25131399 DOI: 10.1016/b978-0-12-800259-9.00001-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Members of the genus Streptomyces are mycelial bacteria that undergo a complex multicellular life cycle and propagate via sporulation. Streptomycetes are important industrial microorganisms, as they produce a plethora of medically relevant natural products, including the majority of clinically important antibiotics, as well as a wide range of enzymes with industrial application. While development of Streptomyces in surface-grown cultures is well studied, relatively little is known of the parameters that determine morphogenesis in submerged cultures. Here, growth is characterized by the formation of mycelial networks and pellets. From the perspective of industrial fermentations, such mycelial growth is unattractive, as it is associated with slow growth, heterogeneous cultures, and high viscosity. Here, we review the current insights into the genetic and environmental factors that determine mycelial growth and morphology in liquid-grown cultures. The genetic factors include cell-matrix proteins and extracellular polymers, morphoproteins with specific roles in liquid-culture morphogenesis, with the SsgA-like proteins as well-studied examples, and programmed cell death. Environmental factors refer in particular to those dictated by process engineering, such as growth media and reactor set-up. These insights are then integrated to provide perspectives as to how this knowledge can be applied to improve streptomycetes for industrial applications.
Collapse
Affiliation(s)
- Dino van Dissel
- Molecular Biotechnology, Institute Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute Biology Leiden, Leiden University, Leiden, The Netherlands.
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute Biology Leiden, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
22
|
Qi H, Zhao S, Fu H, Wen J, Jia X. Coupled cell morphology investigation and metabolomics analysis improves rapamycin production in Streptomyces hygroscopicus. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Sochorová Z, Petráčková D, Sitařová B, Buriánková K, Bezoušková S, Benada O, Kofroňová O, Janeček J, Halada P, Weiser J. Morphological and proteomic analysis of early stage air-liquid interface biofilm formation in Mycobacterium smegmatis. MICROBIOLOGY-SGM 2014; 160:1346-1356. [PMID: 24760966 DOI: 10.1099/mic.0.076174-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We studied the early stages of pellicle formation by Mycobacterium smegmatis on the surface of a liquid medium [air-liquid interface (A-L)]. Using optical and scanning electron microscopy, we showed the formation of a compact biofilm pellicle from micro-colonies over a period of 8-30 h. The cells in the pellicle changed size and cell division pattern during this period. Based on our findings, we created a model of M. smegmatis A-L early pellicle formation showing the coordinate growth of cells in the micro-colonies and in the homogeneous film between them, where the accessibility to oxygen and nutrients is different. A proteomic approach utilizing high-resolution two-dimensional gel electrophoresis, in combination with mass spectrometry-based protein identification, was used to analyse the protein expression profiles of the different morphological stages of the pellicle. The proteins identified formed four expression groups; the most interesting of these groups contained the proteins with highest expression in the biofilm development phase, when the floating micro-colonies containing long and more robust cells associate into flocs and start to form a compact pellicle. The majority of these proteins, including GroEL1, are involved in cell wall synthesis or modification, mostly through the involvement of mycolic acid biosynthesis, and their expression maxima correlated with the changes in cell size and the rigidity of the bacterial cell wall observed by scanning electron microscopy.
Collapse
Affiliation(s)
- Zuzana Sochorová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Denisa Petráčková
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Barbora Sitařová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Karolína Buriánková
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Silvia Bezoušková
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Oldřich Benada
- Department of Biology, Faculty of Science, J. E. Purkinje University in Ustí nad Labem, Ústí nad Labem, Czech Republic.,Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Olga Kofroňová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Janeček
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Halada
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jaroslav Weiser
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
24
|
Petrus MLC, Claessen D. Pivotal roles for Streptomyces cell surface polymers in morphological differentiation, attachment and mycelial architecture. Antonie van Leeuwenhoek 2014; 106:127-39. [PMID: 24682579 DOI: 10.1007/s10482-014-0157-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/12/2014] [Indexed: 01/07/2023]
Abstract
Cells that are part of a multicellular structure are typically embedded in an extracellular matrix, which is produced by the community members. These matrices, the composition of which is highly diverse between different species, are typically composed of large amounts of extracellular polymeric substances, including polysaccharides, proteins, and nucleic acids. The functions of all these matrices are diverse: they provide protection, mechanical stability, mediate adhesion to surfaces, regulate motility, and form a cohesive network in which cells are transiently immobilized. In this review we discuss the role of matrix components produced by streptomycetes during growth, development and attachment. Compared to other bacteria it appears that streptomycetes can form morphologically and functionally distinct matrices using a core set of building blocks.
Collapse
Affiliation(s)
- Marloes L C Petrus
- Molecular Biotechnology, Institute Biology Leiden, Leiden University, Sylviusweg 72, 2300 RA, Leiden, The Netherlands
| | | |
Collapse
|
25
|
Petrus MLC, van Veluw GJ, Wösten HAB, Claessen D. Sorting of Streptomyces cell pellets using a complex object parametric analyzer and sorter. J Vis Exp 2014:e51178. [PMID: 24561666 PMCID: PMC4123467 DOI: 10.3791/51178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Streptomycetes are filamentous soil bacteria that are used in industry for the production of enzymes and antibiotics. When grown in bioreactors, these organisms form networks of interconnected hyphae, known as pellets, which are heterogeneous in size. Here we describe a method to analyze and sort mycelial pellets using a Complex Object Parametric Analyzer and Sorter (COPAS). Detailed instructions are given for the use of the instrument and the basic statistical analysis of the data. We furthermore describe how pellets can be sorted according to user-defined settings, which enables downstream processing such as the analysis of the RNA or protein content. Using this methodology the mechanism underlying heterogeneous growth can be tackled. This will be instrumental for improving streptomycetes as a cell factory, considering the fact that productivity correlates with pellet size.
Collapse
Affiliation(s)
| | - G Jerre van Veluw
- Microbiology, Kluyver Centre for Genomics of Industrial Fermentation, Utrecht University
| | - Han A B Wösten
- Microbiology, Kluyver Centre for Genomics of Industrial Fermentation, Utrecht University
| | - Dennis Claessen
- Microbial Biotechnology, Institute Biology Leiden, Leiden University;
| |
Collapse
|
26
|
Rioseras B, López-García MT, Yagüe P, Sánchez J, Manteca Á. Mycelium differentiation and development of Streptomyces coelicolor in lab-scale bioreactors: programmed cell death, differentiation, and lysis are closely linked to undecylprodigiosin and actinorhodin production. BIORESOURCE TECHNOLOGY 2014; 151:191-8. [PMID: 24240146 PMCID: PMC3858829 DOI: 10.1016/j.biortech.2013.10.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 05/11/2023]
Abstract
Streptomycetes are mycelium-forming bacteria that produce two thirds of clinically relevant secondary metabolites. Secondary metabolite production is activated at specific developmental stages of Streptomyces life cycle. Despite this, Streptomyces differentiation in industrial bioreactors tends to be underestimated and the most important parameters managed are only indirectly related to differentiation: modifications to the culture media, optimization of productive strains by random or directed mutagenesis, analysis of biophysical parameters, etc. In this work the relationship between differentiation and antibiotic production in lab-scale bioreactors was defined. Streptomyces coelicolor was used as a model strain. Morphological differentiation was comparable to that occurring during pre-sporulation stages in solid cultures: an initial compartmentalized mycelium suffers a programmed cell death, and remaining viable segments then differentiate to a second multinucleated antibiotic-producing mycelium. Differentiation was demonstrated to be one of the keys to interpreting biophysical fermentation parameters and to rationalizing the optimization of secondary metabolite production in bioreactors.
Collapse
Affiliation(s)
- Beatriz Rioseras
- Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - María Teresa López-García
- Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Paula Yagüe
- Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Jesús Sánchez
- Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ángel Manteca
- Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
27
|
A simplified diphenylamine colorimetric method for growth quantification. Appl Microbiol Biotechnol 2013; 97:5069-77. [PMID: 23604560 DOI: 10.1007/s00253-013-4893-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/27/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
Abstract
Cell growth needs to be monitored in biological studies and bioprocess optimization. In special circumstances, such as microbial fermentations in media containing insoluble particles, accurate cell growth quantification is a challenge with current methods. Only the Burton method is applicable in such circumstances. The original Burton method was previously simplified by adopting a two-step sample pretreatment in perchloric acid procedure to eliminate the need for DNA extraction. Here, we further simplified the Burton method by replacing the previous two-step perchloric acid pretreatment with a new and one-step diphenylamine reagent pretreatment. The reliability and accuracy of this simplified method were assessed by measuring the biomass of four model microorganisms: Escherichia coli, Streptomyces clavuligerus, Saccharomyces cerevisiae, and Trichoderma reesei grown in normal media or those containing solid particles. The results demonstrate that this new simplified method performs comparably to the conventional methods, such as OD600 or the previously modified Burton method, and is much more sensitive than the dry weight method. Overall, the new method is simple, reliable, easy to perform, and generally applicable in most circumstances, and it reduces the operation time from more than 12 h (for the previously simplified Burton method) to about 2 h.
Collapse
|