1
|
Xiong D, Zhou Y, Song L, Liu B, Matchawe C, Chen X, Pelle R, Jiao X, Pan Z. Development of a Duplex TaqMan Real-Time Polymerase Chain Reaction for Accurate Identification and Quantification of Salmonella Enteritidis from Laboratory Samples and Contaminated Chicken Eggs. Foods 2022; 11:foods11050742. [PMID: 35267375 PMCID: PMC8909838 DOI: 10.3390/foods11050742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/07/2022] Open
Abstract
Salmonella enteritidis is a major causative agent of foodborne illnesses worldwide. As the traditional serotyping and quantification methods are labor-intensive, time-consuming, and expensive, faster and more convenient molecular diagnostic methods are needed. In this study, we developed and validated a rapid duplex TaqMan real-time polymerase chain reaction (PCR) for the accurate identification and quantification of S. enteritidis. The primers and TaqMan probes were designed based on the S. enteritidis-specific gene lygD and the Salmonella genus-specific gene invA. The melt curve and gel electrophoresis analysis showed that the designed primers had potent specificity for the amplification of lygD and invA. The duplex real-time PCR specifically identified S. enteritidis from a panel of 40 Salmonella strains that represented 29 serovars and 12 non-Salmonella organisms. The duplex real-time PCR assay detected four copies of S. enteritidis DNA per reaction. The intra- and inter- assays indicated a high degree of reproducibility. The real-time PCR could accurately detect and quantify S. enteritidis in chicken organs after Salmonella infection. Furthermore, the assay identified 100% of the S. enteritidis and Salmonella genus isolates from chicken egg samples with superior sensitivity after 6 h of pre-enrichment compared to the traditional culture method. Additionally, the most-probable-number (MPN) combined with qPCR and a shortened incubation time (MPN-qPCR-SIT) method was developed for the population determination of S. enteritidis and compared with various enumeration methods. Thus, we have established and validated a new duplex real-time PCR assay and MPN-qPCR-SIT method for the accurate detection and quantification of S. enteritidis, which could contribute to meeting the need for fast detection and identification in prevention and control measures for food safety.
Collapse
Affiliation(s)
- Dan Xiong
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; (D.X.); (Y.Z.); (L.S.); (B.L.); (X.C.); (Z.P.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; (D.X.); (Y.Z.); (L.S.); (B.L.); (X.C.); (Z.P.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Li Song
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; (D.X.); (Y.Z.); (L.S.); (B.L.); (X.C.); (Z.P.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Bowen Liu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; (D.X.); (Y.Z.); (L.S.); (B.L.); (X.C.); (Z.P.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Chelea Matchawe
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi 00100, Kenya; (C.M.); (R.P.)
- Institute of Medical Research and Medicinal Plants Studies, Yaounde 4123, Cameroon
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; (D.X.); (Y.Z.); (L.S.); (B.L.); (X.C.); (Z.P.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Roger Pelle
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi 00100, Kenya; (C.M.); (R.P.)
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; (D.X.); (Y.Z.); (L.S.); (B.L.); (X.C.); (Z.P.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; (D.X.); (Y.Z.); (L.S.); (B.L.); (X.C.); (Z.P.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Wan J, Lu Z, Bie X, Lv F, Zhao H. Improvement of a new selective enrichment broth for culturing
Salmonella
in ready‐to‐eat fruits and vegetables. J Food Saf 2020. [DOI: 10.1111/jfs.12817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jiajia Wan
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Fengxia Lv
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Haizhen Zhao
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| |
Collapse
|
3
|
Santos AR, da Silva AF, Batista AFP, Freitas CF, Bona E, Sereia MJ, Caetano W, Hioka N, Mikcha JMG. Application of Response Surface Methodology to Evaluate Photodynamic Inactivation Mediated by Eosin Y and 530 nm LED against Staphylococcus aureus. Antibiotics (Basel) 2020; 9:antibiotics9030125. [PMID: 32192121 PMCID: PMC7148482 DOI: 10.3390/antibiotics9030125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 11/16/2022] Open
Abstract
Photodynamic antimicrobial chemotherapy (PAC) is an efficient tool for inactivating microorganisms. This technique is a good approach to inactivate the foodborne microorganisms, which are responsible for one of the major public health concerns worldwide—the foodborne diseases. In this work, response surface methodology (RSM) was used to evaluate the interaction of Eosin Y (EOS) concentration and irradiation time on Staphylococcus aureus counts and a sequence of designed experiments to model the combined effect of each factor on the response. A second-order polynomial empirical model was developed to describe the relationship between EOS concentration and irradiation time. The results showed that the derived model could predict the combined influences of these factors on S. aureus counts. The agreement between predictions and experimental observations (R2adj = 0.9159, p = 0.000034) was also observed. The significant terms in the model were the linear negative effect of photosensitizer (PS) concentration, followed by the linear negative effect of irradiation time, and the quadratic negative effect of PS concentration. The highest reductions in S. aureus counts were observed when applying a light dose of 9.98 J/cm2 (498 nM of EOS and 10 min. irradiation). The ability of the evaluated model to predict the photoinactivation of S. aureus was successfully validated. Therefore, the use of RSM combined with PAC is a promising approach to inactivate foodborne pathogens.
Collapse
Affiliation(s)
- Adriele R. Santos
- Postgraduate Program in Food Science, State University of Maringá, Maringá 87020-900—Paraná, Brazil;
- Correspondence: (A.R.S.); (J.M.G.M.)
| | - Alex F. da Silva
- Postgraduate Program in Health Science, State University of Maringá, Maringá 87020-900—Paraná, Brazil;
| | - Andréia F. P. Batista
- Postgraduate Program in Food Science, State University of Maringá, Maringá 87020-900—Paraná, Brazil;
| | - Camila F. Freitas
- Department of Chemistry, State University of Maringá, Maringá 87020-900—Paraná, Brazil; (C.F.F.); (W.C.); (N.H.)
| | - Evandro Bona
- Department of Food, Federal Technological University of Paraná, Campo Mourão 87301-899—Paraná, Brazil; (E.B.)
| | - Maria J. Sereia
- Department of Food, Federal Technological University of Paraná, Campo Mourão 87301-899—Paraná, Brazil; (E.B.)
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá 87020-900—Paraná, Brazil; (C.F.F.); (W.C.); (N.H.)
| | - Noburu Hioka
- Department of Chemistry, State University of Maringá, Maringá 87020-900—Paraná, Brazil; (C.F.F.); (W.C.); (N.H.)
| | - Jane M. G. Mikcha
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá 87020-900—Paraná, Brazil
- Correspondence: (A.R.S.); (J.M.G.M.)
| |
Collapse
|
4
|
Encapsulation of live marine bacteria for use in aquaculture facilities and process evaluation using response surface methodology. Appl Microbiol Biotechnol 2020; 104:1993-2006. [PMID: 31915904 DOI: 10.1007/s00253-019-10332-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/13/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
New strategies are being proposed in marine aquaculture to use marine bacteria as alternative to antibiotics, as nutritional additive or as immune-stimulant. These approaches are particularly promising for larval and juvenile cultures. In many cases, the bacteria are released in the seawater, where they have to be at appropriate concentrations. In addition, only low-cost technologies are sustainable for this industry, without any complex requirements for use or storage. In this work, we explore the possibilities of preservation of a potential marine probiotic bacterium (Phaeobacter PP-154) as a product suitable for use in marine aquaculture by addition to the seawater. A method which guaranteed the preservation of the viable marine bacteria in a saline medium and their rapid release in the seawater was searched for. In a previous step, classical procedures (freeze-drying and freezing) had been explored, but undesirable results of the interaction of the products obtained with natural seawater led to investigate alternatives. We report the results of the immobilization of the marine bacteria in calcium alginate beads. The final product complies the salinity which allows the requirements of the bacteria without interference with alginate in the formation of beads, and a balanced hardness to retain the bacteria and to be easily released in the marine aquaculture environment. The process was evaluated using the central composite rotatable design (CCRD), a standard response surface methodology (RSM).
Collapse
|
5
|
Santos AR, Silva AF, Freitas CF, Silva MV, Bona E, Nakamura CV, Hioka N, Mikcha JMG. Response surface methodology can be used to predict photoinactivation of foodborne pathogens using Rose Bengal excited by 530 nm LED. J Food Saf 2019. [DOI: 10.1111/jfs.12736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adriele R. Santos
- Programa de Pós‐Graduação em Ciência de AlimentosUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| | - Alex F. Silva
- Programa de Pós‐Graduação em Ciência da SaúdeUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| | - Camila F. Freitas
- Programa de Pós‐Graduação em QuímicaUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| | - Marcos V. Silva
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha Alegrete, Rio Grande do Sul Brazil
| | - Evandro Bona
- Departamento de AlimentosUniversidade Tecnológica Federal do Paraná—campus Campo Mourão Campo Mourão Puerto Rico Brazil
| | - Celso V. Nakamura
- Departamento de Ciências Básicas da SaúdeUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| | - Noboru Hioka
- Departamento de QuímicaUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| | - Jane M. G. Mikcha
- Departamento de Análises Clínicas e BiomedicinaUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| |
Collapse
|
6
|
Achuth J, Renuka RM, Jalarama Reddy K, Shivakiran MS, Venkataramana M, Kadirvelu K. Development and evaluation of an IgY based silica matrix immunoassay platform for rapid onsite SEB detection. RSC Adv 2018; 8:25500-25513. [PMID: 35702392 PMCID: PMC9097597 DOI: 10.1039/c8ra03574a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022] Open
Abstract
The present study involves immunoassay platform development based on a surface functionalized silica matrix for rapid onsite detection of Staphylococcal enterotoxin B (SEB). Silica matrix functionalization as well as the immunoassay parameters was experimentally designed and optimized through response surface methodology (RSM). Silica surface functionalization was carried out with hydrofluoric acid (HF), ammonia, 3-aminopropyl triethoxysilane (APTES) and glutaraldehyde (GA). The RSM optimized matrix functionalization parameters for HF, ammonia, APTES and GA were determined to be 10%, 40%, 20% and 10% (V/V), respectively. Antibodies for the study were generated against recombinant SEB toxin in rabbit (anti-SEB IgG) and chicken (anti-SEB IgY). Subsequently, antibodies were immobilized on the functionalized silica matrix and were further characterized by SEM and contact angle measurements to elucidate the surface uniformity and degree of hydrophilicity. The immunoassay platform was developed with anti-SEB IgG (capturing agent) and anti-SEB IgY (revealing partner). The limit of detection (LOD) of the developed platform was determined to be 0.005 μg mL-1 and no cross-reactivity with similar toxins was observed. Upon co-evaluation with a standard ELISA kit (Chondrex, Inc) against various field isolates, the platform was found to be on par and reliable. In conclusion, the developed method may find better utility in onsite detection of SEB from resource-poor settings.
Collapse
Affiliation(s)
- J Achuth
- DRDO-BU-CLS, Bharathiar University Campus Coimbatore Tamilnadu-641046 India +0422 2428162
| | - R M Renuka
- DRDO-BU-CLS, Bharathiar University Campus Coimbatore Tamilnadu-641046 India +0422 2428162
| | - K Jalarama Reddy
- Freeze Drying and Animal Product Technology Division, Defence Food Research Laboratory Siddarthanagar Mysore Karnataka- 570011 India
| | - M S Shivakiran
- Department of Biotechnology, Vignan's University Guntur Andhra Pradesh-522213 India
| | - M Venkataramana
- DRDO-BU-CLS, Bharathiar University Campus Coimbatore Tamilnadu-641046 India +0422 2428162
| | - K Kadirvelu
- DRDO-BU-CLS, Bharathiar University Campus Coimbatore Tamilnadu-641046 India +0422 2428162
| |
Collapse
|
7
|
Bai J, Trinetta V, Shi X, Noll LW, Magossi G, Zheng W, Porter EP, Cernicchiaro N, Renter DG, Nagaraja TG. A multiplex real-time PCR assay, based on invA and pagC genes, for the detection and quantification of Salmonella enterica from cattle lymph nodes. J Microbiol Methods 2018; 148:110-116. [PMID: 29621581 DOI: 10.1016/j.mimet.2018.03.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Cattle lymph nodes can harbor Salmonella and potentially contaminate beef products. We have developed and validated a new real-time PCR (qPCR) assay for the detection and quantification of Salmonella enterica in cattle lymph nodes. The assay targets both the invA and pagC genes, the most conserved molecular targets in Salmonella enterica. An 18S rRNA gene assay that amplifies from cattle and other animal species was also included as an internal control. Available DNA sequences for invA, pagC and 18S rRNA genes were used for primer and probe selections. Three Salmonella serotypes, S. Typhimurium, S. Anatum, and S. Montevideo, were used to assess the assay's analytical sensitivity. Correlation coefficients of standard curves generated for each target and for all three serotypes were >99% and qPCR amplification efficiencies were between 93% and 110%. Assay sensitivity was also determined using standard curve data generated from Salmonella-negative cattle lymph nodes spiked with 10-fold dilutions of the three Salmonella serotypes. Assay specificity was determined using Salmonella culture method, and qPCR testing on 36 Salmonella strains representing 33 serotypes, 38 Salmonella strains of unknown serotypes, 252 E. coli strains representing 40 serogroups, and 31 other bacterial strains representing 18 different species. A collection of 647 cattle lymph node samples from steers procured from the Midwest region of the US were tested by the qPCR, and compared to culture-method of detection. Salmonella prevalence by qPCR for pre-enriched and enriched lymph nodes was 19.8% (128/647) and 94.9% (614/647), respectively. A majority of qPCR positive pre-enriched samples (105/128) were at concentrations between 104 and 105 CFU/mL. Culture method detected Salmonella in 7.7% (50/647) and 80.7% (522/647) of pre- and post-enriched samples, respectively; 96.0% (48/50) of pre-enriched and 99.4% (519/522) of post-enriched culture-positive samples were also positive by qPCR. More samples tested positive by qPCR than by culture method, indicating that the real-time PCR assay was more sensitive. Our data indicate that this triplex qPCR can be used to accurately detect and quantify Salmonella enterica strains from cattle lymph node samples. The assay may serve as a useful tool to monitor the prevalence of Salmonella in beef production systems.
Collapse
Affiliation(s)
- Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States; Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States.
| | - Valentina Trinetta
- Food Science Institute, College of Agriculture, Kansas State University, Manhattan, KS 66506, United States.
| | - Xiaorong Shi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Lance W Noll
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Gabriela Magossi
- Food Science Institute, College of Agriculture, Kansas State University, Manhattan, KS 66506, United States
| | - Wanglong Zheng
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States; Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
| | - Elizabeth P Porter
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Natalia Cernicchiaro
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - David G Renter
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Tiruvoor G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| |
Collapse
|
8
|
Nanographite-based fluorescent biosensing of Salmonella enteritidis by applying deoxyribonuclease-assisted recycling. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2363-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Alves J, Niguma NH, de Oliveira TC. Detection of Salmonella
spp. in Eight Complex Food Matrices Using Polymerase Chain Reaction Assay. J Food Saf 2015. [DOI: 10.1111/jfs.12194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juliane Alves
- Department of Food Science and Technology; Londrina State University; Rodovia Celso Garcia Cid, PR 445, Km 380, Campus Universitário, Caixa Postal 10.011 CEP 86057-970 Londrina Paraná Brazil
| | - Natália H. Niguma
- Department of Food Science and Technology; Londrina State University; Rodovia Celso Garcia Cid, PR 445, Km 380, Campus Universitário, Caixa Postal 10.011 CEP 86057-970 Londrina Paraná Brazil
| | - Tereza C.R.M. de Oliveira
- Department of Food Science and Technology; Londrina State University; Rodovia Celso Garcia Cid, PR 445, Km 380, Campus Universitário, Caixa Postal 10.011 CEP 86057-970 Londrina Paraná Brazil
| |
Collapse
|
10
|
Determination of the invA gene of Salmonella using surface plasmon resonance along with streptavidin aptamer amplification. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1330-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Mano J, Hatano S, Futo S, Minegishi Y, Ninomiya K, Nakamura K, Kondo K, Teshima R, Takabatake R, Kitta K. Development of direct real-time PCR system applicable to a wide range of foods and agricultural products. SHOKUHIN EISEIGAKU ZASSHI. JOURNAL OF THE FOOD HYGIENIC SOCIETY OF JAPAN 2014; 55:25-33. [PMID: 24598224 DOI: 10.3358/shokueishi.55.25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To improve the efficiency of DNA analysis of foods and agricultural products, we investigated a direct real-time PCR based on the real-time monitoring of DNA amplification directly from crude cell lysates of analytical samples. We established a direct real-time PCR system comprising sample pretreatment with a specified lysis buffer and real-time PCR using the developed master mix reagent. No PCR inhibition was observed in the analysis of crude cell lysates from 50 types of samples, indicating that the direct real-time PCR system is applicable to a wide range of materials. The specificity of the direct real-time PCR was evaluated by means of a model assay system for single nucleotide discrimination. Even when crude cell lysates coexisted in the reaction mixtures, the primer selectivity was not affected, suggesting that the sequence specificity of the direct real-time PCR was equivalent to that of PCR from purified DNA templates. We evaluated the sensitivity and quantitative performance of the direct real-time PCR using soybean flour samples including various amounts of genetically modified organisms. The results clearly showed that the direct real-time PCR system provides sensitive detection and precise quantitation.
Collapse
Affiliation(s)
- Junichi Mano
- National Food Research Institute, National Agriculture and Food Research Organization
| | | | | | | | | | | | | | | | | | | |
Collapse
|